
Kernel-Kernel Communication
in a Shared-Memory Multiprocessor

Eliseu M. Chaves, Jr., Prakash Ch. Das,
Thomas J. LeBlanc, Brian D. Marsh, and Michael L. Scott

Computer Science Department
University of Rochester

Rochester, New York 14627-0226

Abstract

In the standard kernel organization on a bus-based multiprocessor, all processors share the

code and data of the operating system; explicit synchronization is used to control access to kernel

data structures. Distributed-memory multicomputers use an alternative approach, in which each

instance of the kernel performs local operations directly and uses remote invocation to perform

remote operations. Either approach to inter-kernel communication can be used in a large-scale

shared-memory multiprocessor.

In this paper we discuss the issues and architectural features that must be considered when

choosing between remote memory access and remote invocation. We focus in particular on

experience with the Psyche multiprocessor operating system on the BBN Butterfly Plus. We find

that the Butterfly architecture is biased towards the use of remote invocation for kernel operations

that perform a significant number of memory references, and that current architectural trends are

likely to increase this bias in future machines. This conclusion suggests that straightforward

parallelization of existing kernels (e.g. by using semaphores to protect shared data) is unlikely in

the future to yield acceptable performance. We note, however, that remote memory access is use-

ful for small, frequently-executed operations, and is likely to remain so.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
This research was supported by NSF grant no. CCR-9005633, NSF Institutional Infrastructure grant

no. CDA-8822724, a DARPA/NASA Graduate Research Assistantship in Parallel Processing, the Federal
University of Rio de Janeiro, and the Brazilian National Research Council.

Eliseu Chaves is with the Universidade Federal do Rio de Janeiro, Brazil. He spent six months on
leave at the University of Rochester in 1990. Prakash Das is now with Transarc Corp. in Pittsburgh, PA.
Brian Marsh is now with the Matsushita Information Technology Lab in Princeton, NJ. Current electronic
addresses are: COS99286@UFRJ.BITNET (Chaves), prakash@transarc.com, marsh@mitl.com, and
{leblanc,scott}@cs.rochester.edu.

mls
Tech. Rep. 368, Apr. 1991



2

1. Introduction

Computer architecture has a strong influence on the design of multiprocessor operating sys-

tem kernels, affecting the distribution of kernel functionality among processors, the form of

inter-kernel communication, the layout of kernel data structures, and the need for synchroniza-

tion. For example, in bus-based shared-memory multiprocessors, it is easy for all processors to

share the code and data of the operating system.1 Explicit synchronization can be used to control

access to kernel data structures. Both distributed-memory multicomputers (e.g., hypercubes and

mesh-connected machines) and distributed systems (e.g. workstations on a network) use an alter-

native organization, with kernel data distributed among the processors, each of which executes a

copy of the kernel. Each instance of the kernel performs operations on local data directly and

uses remote invocation to request operations on remote data. Nonpreemption of the kernel (other

than by interrupt handlers) provides a significant amount of implicit synchronization among the

kernel threads sharing a processor.

Although very different, these two organizations each have their advantages. A shared-

memory kernel is similar in structure to a uniprocessor kernel, with the exception that access to

kernel data structures requires explicit synchronization. As a result, it is relatively straightfor-

ward to port a uniprocessor implementation to a shared-memory multiprocessor. Having each

processor execute its own operations directly on shared memory is also reasonably efficient, at

least on small machines. In addition, this kernel organization simplifies load balancing and glo-

bal resource management, since all information is globally accessible to all kernels.

Message-passing (i.e., remote invocation) kernels, on the other hand, are naturally suited to

architectures that don’t support shared memory. Each copy of the kernel is able to manage its

own data structures, so the source of errors is localized. The problem of synchronization is

simplified, because all contention for data structures is local, and can be managed in large part

using nonpreemption. This kernel organization scales easily, since each additional processor has

little impact on other kernels, other than the support necessary to send invocations to one more

kernel.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
1 It is customary to refer to bus-based machines as UMA (uniform memory access) multiprocessors,

but the terminology can be misleading. Main memory (if present) is equally far from all processors, but
caches are not, and caches are the dominant determinant of memory performance.



3

Large-scale shared-memory multiprocessors have properties in common with both bus-based

machines and distributed-memory multicomputers. All of memory can be accessed directly, but

at very different costs. The programmer may be responsible for allocating data to processors (as

in so-called NUMA — non-uniform memory access — machines such as the BBN Butterfly [17],

IBM RP3 [30], Illinois Cedar [22], and Toronto Hector [34]), or the hardware may provide

coherent caches (as in the Scalable Coherent Interface [21] and the Stanford DASH [26], MIT

April/Alewife [1], and Kendall Square [18] machines). In either case, the performance and con-

ceptual tradeoffs between the use of remote invocation and remote memory access in the kernel

are not well understood, and depend both on architectural parameters and on the overall design of

the operating system.

In this paper we focus on the tradeoffs between remote memory access and remote invoca-

tion in kernel-level software on NUMA multiprocessors. We begin in section 2 by discussing the

various aspects of locality, and the range of options available for kernel-kernel communication.

We then explore the implementation of one of these options in detail in section 3. Specifically,

we note that remote invocation can cause a kernel operation to execute either at interrupt level or

in a normal kernel process context, and that the choice between these alternatives has a major

effect on the generality and performance of the mechanism, and on its impact on other aspects of

kernel execution.

With implementation details in hand, we examine remote access/invocation tradeoffs in sec-

tion 4. We consider direct costs (latency) for individual remote operations, indirect costs

imposed on local operations by the choice of remote communication mechanism, processor and

memory contention, and the conceptual compatibility of communication mechanisms with com-

mon models of kernel organization. The importance of these tradeoffs can be seen in current

trends: operating system overhead has grown to 15−20% of execution time on modern micropro-

cessors [2], and the growing complexity of parallel systems software demands that kernels be

made as clean and maintainable as possible.

Our observations are made concrete in section 5 through a series of experiments with our

implementation of the Psyche multiprocessor operating system on the BBN Butterfly Plus mul-

tiprocessor (the hardware base of the GP1000 product line). Our conclusions appear in section 6.

Briefly, we find that remote memory access provides reasonable performance only for inter-

processor kernel operations that perform less than a few dozen memory references. Remote invo-

cation enjoys a significant performance advantage for lengthier operations, an advantage that is



4

likely to increase in future machines. Since lengthy operations generally require a kernel process

context, interrupt-level remote invocation is useful only in special cases.

2. Kernel-Kernel Communication Options

As multiprocessors increase in size, it becomes increasingly difficult to construct operating

systems for them that perform well. Machines with a very small number of processors can use a

lightly-modified version of an existing O. S. (e.g. Unix) in a master-slave configuration. All ker-

nel calls execute on a single processor; other processors request services via traps to a remote

invocation mechanism. Unfortunately, as the scale of the machine increases, the master proces-

sor inevitably becomes a bottleneck. By using locks to protect shared data structures, several

manufacturers have parallelized the Unix kernel for concurrent execution on bus-based shared-

memory multiprocessors of up to 30 processors [4]. Even on this scale, however, the

modifications required to avoid performance-degrading contention are non-trivial [9, 11, 29].

Operating systems for machines with large numbers of processors (hundreds or even

thousands) will require extensive re-writes of existing code, or will need to be written from

scratch. The latter approach has been employed successfully by the vendors of distributed-

memory multicomputers. The former approach is being pursued by a variety of groups (e.g.

OSF), but has yet to be demonstrated on a large-scale machine. In developing the nX operating

system for the Butterfly GP1000 and TC2000 machines, BBN ACI explicitly eschewed the goal

of large-scale parallelism within the Unix kernel, opting instead for a resident front-end. Unix

applications under nX run only within one small cluster of the machine, with a master-slave ker-

nel organization. The bulk of the machine is dedicated to running parallel applications with little

kernel support other than high-speed parallel I/O. Similarly, the version of Mach developed for

the IBM RP3 performs best when most of the processors do not make system calls [10].

We focus in the remainder of this paper on design alternatives for general-purpose parallel

operating systems, in which the full range of kernel services are available with reasonable per-

formance on every processor. We consider a machine organization consisting of a collection of

nodes, each of which contains memory and one or more processors (possibly with caches). Each

processor can access all of the memory on the machine, but it can access data located at the local

node much more quickly than it can access data located at a remote node. When a processor at

node i begins executing an operation that must access data on node j, interaction among nodes is

required.



5

Experience with several multiprocessor kernels indicates that most kernel operations can be

performed primarily using local memory references on some node. This node locality in kernel

operations is crucial for reasonable performance in large machines. It implies that most memory

accesses will be local even when using remote memory accesses for inter-kernel communication,

and that the total amount of time spent waiting for replies from other processors when using

remote invocation will be small compared to the time spent on other operations. At the same

time, experience with uniprocessor operating systems suggests that it is very hard to build a ker-

nel with a high degree of address locality. Consecutive memory references tend not to lie in any

small set of dense address ranges [14], due to heavy use of pointer-based dynamic data structures,

operations on multiple process contexts, interrupt-driven activity, and a lack of nested loops.

On a NUMA multiprocessor (without coherent caches) there are three principal alternatives

for kernel-kernel communication:

remote memory access

The operation executes on node i, reading and writing node j’s memory as necessary. The

memory at node j may be mapped by node i statically, or it may be mapped on demand.

remote invocation

The processor at node i sends a message to a processor at node j, asking it to perform the

operation on its behalf. The operation may be executed directly by the message interrupt

handler, or indirectly via wakeup of a kernel process.

bulk data transfer

The kernel moves the data required by the operation from node j to node i, where it is

inspected or modified, and possibly copied back. The kernel programmer may request this

data movement explicitly, or it may be implemented transparently by lower-level software

using page faults.

Cache-coherent multiprocessors blur the distinction between remote memory access and bulk

data transfer. As in software bulk transfer requests, cache-coherent machines move multiple

words of data at a time, potentially improving performance both through amortized movement

costs (prefetching) and through repeated local access during an operation (caching). On the other

hand, cache-coherent machines migrate data automatically, and generally use cache lines that are

smaller than a page. The lack of kernel intervention during data migration means that logical

structure, locking, and synchronization issues that pertain to remote memory access in NUMA



6

machines also pertain in cache-coherent machines. Moreover, in a kernel with a high degree of

node locality, most data items will have a node at which they usually reside (even on cache-only

machines [18] with no ‘‘main’’ memory), and will migrate back to that node if temporarily

accessed elsewhere. Most of the tradeoffs between remote memory access and remote invocation

discussed in the following sections apply to both classes of architecture, though we will couch

our discussion in terms of NUMA machines.

In terms of the communication options listed above, the lack of address locality in the kernel

suggests that data accessed by any particular kernel operation are unlikely to be contiguous, even

if they reside on the same node. We therefore concentrate here on a comparison between remote

memory access and remote invocation. We present two different versions of remote invocation

in section 3. One is fast but of limited use; the second is slower but more general. In the subse-

quent section, and in the case study that follows, we focus on the tradeoffs between remote

memory access and these two forms of remote invocation. We consider direct, measurable costs

of individual remote operations, indirect costs imposed on local operations, the effects of com-

petition among remote operations for processor and memory cycles, and the extent to which dif-

ferent communication mechanisms complement or clash with the structural division of labor

among processes in the kernel. Ultimately, we find that the more general form of remote invoca-

tion is best for most operations, but that the other two mechanisms (remote memory access and

the faster form of invocation) are both better in certain cases.

3. Implementation of Remote Invocation

The simplest way to perform a remote invocation is to execute the requested operation in the

interrupt handler of the interprocessor communication mechanism. In Unix terminology [25],

this places the code for the operation in the ‘‘bottom half’’ of the target processor’s kernel. Alter-

natively, one can arrange to execute remote invocations in a normal process context in the ‘‘top

half’’ of the kernel. Doing so can be expensive: it requires a context switch out of the interrupt

handler, and may require synchronization with other process(es) running in the kernel. An

interrupt-level remote invocation (RI) may be very fast, but can only be used for operations that

can be executed safely in an interrupt handler. A process-level RI is slower, but of more general

utility.



7

3.1. Interrupt-Level Remote Invocation

Since interrupts occur at unpredictable times from the target processor’s point of view, and

since interrupt handlers cannot block (because they lack a process context), mutual exclusion for

data structures shared between interrupt handlers and the rest of the kernel must be achieved by

masking interrupts. On a uniprocessor these data structures consist primarily of I/O buffers. On a

multiprocessor with interrupt-level RIs, they may be more numerous and varied, and normal

(non-interrupt) kernel routines may need to lock more than one data structure at a time. Simply

turning interrupts on and off may not suffice for lock acquisition and release.

One standard solution is to maintain a count of the number of critical sections currently

active in normal kernel routines. Interrupt-level RIs are permitted only when the counter is at

zero (i.e., when interrupts are enabled). The lock acquisition and release routines turn interrupts

on or off when changing the counter from 1 to 0 or vice versa. Alternatively, the handler for

interrupt-level RIs could place requests in a queue when the counter is non-zero (rather than exe-

cuting them immediately) and the lock release routine could re-generate an interprocessor com-

munication interrupt when changing the counter from 1 to 0 in the presence of a non-empty

queue. This latter approach minimizes the period of time during which interrupts are masked,

and may improve performance by reducing the probability of lost interrupts.2

Interrupt-level RI has several limitations. Because its handlers lack a process context, it can-

not be used for operations that may block. If used extensively it may require more data structures

to be available to interrupt routines than would otherwise have been the case. The only form of

synchronization available for these data structures is short-term mutual exclusion (masking inter-

rupts), and that occurs at a very coarse grain. Even invocations that do not touch data of any

interest to current process-level activity are likely to be disabled much of the time. To prevent

deadlock, we must prohibit outgoing invocations when incoming invocations are disabled. This

rule severely limits the circumstances under which an interrupt-level RI is permitted. In particu-

lar, it precludes the use of interrupt-level RI for operations that must access data on two different

processors as a single atomic operation, unless the programmer is willing to detect and recover

from deadlock.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

2 Message-based multicomputers generally incorporate hardware queuing to avoid lost messages.
Shared-memory multiprocessors generally incorporate a single interprocessor interrupt vector, with no
lower bound on the time between interrupts from separate processors. They rely on software queuing in
shared memory to tolerate lost interrupts.



8

It may be possible on some machines to interrupt a remote processor at a lower priority than

device interrupts (or to re-post a high-priority interrupt at a lower level).3 It may therefore be

feasible to use interrupt-level RI for lengthy operations. Several other factors, however, suggest

that it be used only for short operations. Longer operations are more likely to need condition syn-

chronization, or to require locks on more than one processor, or to require that large amounts of

data be accessible to interrupt routines. Longer operations are also more able to tolerate the

latency of a general-purpose, process-level invocation. Finally, during short operations it makes

sense for the requesting processor to busy-wait for notice of completion, which in turn makes it

possible for us to request an interrupt-level RI from within the handler for another. Re-

scheduling is likely to be slower than busy-waiting when requesting an interrupt-level RI from a

normal kernel routine. Re-scheduling is not possible in an interrupt-level routine, but busy-

waiting is, provided that we restore data structures to a consistent state and re-enable interrupt-

level RIs before making a nested invocation.4 We assume in the rest of this paper that interrupt-

level RI is used for short operations only, and that the requesting processor spins.

3.2. Process-level Remote Invocation

To execute a remote invocation in the normal (process-level) part of the target processor’s

kernel, the interprocessor communication interrupt handler uses the same mechanism employed

by device handlers to initiate ‘‘top-half’’ activity. If the processor was executing in user space

prior to the interrupt, the handler performs an asynchronous trap and the remote invocation exe-

cutes immediately. If the processor was executing in the kernel prior to the interrupt, the handler

queues the invocation for execution the next time control returns to user space or enters the

kernel’s idle loop. Deadlock prevention requires that a process block when making a process-

level RI, rather than busy-wait, because busy-waiting would lock out incoming process-level RIs.

Blocking also makes sense in other ways: it may take a significant amount of time to get around

to executing a request on the target processor, and we assume that process-level RI will be used

for longer operations anyway.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
3 Note that the ability to interrupt a remote processor at high priority is required for operations such as

TLB shootdown [7, 15, 31].
4 Nested interrupt-level RIs must be performed with care. They may require large interrupt stacks,

and raise the possibility that a processor may spin for an unbounded amount of time while the processor to
which it made an interrupt-level RI services unrelated interrupts.



9

Because it executes in a process context, the requested operation can block during its execu-

tion, e.g. for condition synchronization. A process can perform a process-level RI while holding

semaphores or other scheduler-based locks. Processes can therefore synchronize with the execu-

tion of process-level RIs from other processors. Deadlock is still possible, but only as a result of

algorithmic problems in the kernel, not because of overly-coarse locking inherent in the invoca-

tion mechanism.

Remote memory access and the two forms of remote invocation are to a large extent compa-

tible, and can be used in the same system if certain guidelines are followed. It is easy to use dif-

ferent mechanisms for unrelated data structures. It is almost as easy to use remote access and

process-level RI on the same data structure, provided that the synchronization mechanisms are

also compatible. Either spin locks or semaphores can be used, though performance may suffer if

a process performs a process-level RI (and blocks) while holding a spin lock, and the scheduling

mechanisms that underlie semaphores will need to be implemented with atomic instructions or

interrupt-level RI in order to work across nodes.

We can also use remote access and interrupt-level RI on the same data structure, but only

with a ‘‘hybrid’’ lock that uses both interrupt masking and spinning (such locks are always

required for data that are accessed both by remote processors and by interrupt-level routines on

their home processor). Pseudo-code for a simple hybrid lock appears in figure 1. Its key task is

to ensure that an interrupt-level routine that attempts to acquire a lock is given top priority, and

will therefore succeed after a bounded amount of spinning. For the sake of deadlock avoidance,

we must refrain from performing an interrupt-level RI or acquiring a remote lock while holding a

local lock, because we mask out interrupts.

<< FIGURE 1 GOES SOMEWHERE NEAR HERE >>

Finally, we can use both interrupt-level and process-level RI on the same data structure so

long as we respect the deadlock-avoidance rule: it must always be possible to perform incoming

invocations while waiting for an outgoing invocation. In particular, a process cannot request a

process-level RI while it has locked out interrupt-level RIs in order to touch a data structure that

is shared between normal and interrupt-level code.



10

4. Remote Access/Invocation Tradeoffs

In this section we consider four dimensions along which to compare remote memory access

and remote invocation. The first of these dimensions is the latency of an operation in isolation,

based on architectural constants. The second dimension is the impact on local operations of the

organization and synchronization required for compatibility with remote operations. The third

dimension is contention and throughput. The fourth dimension is the extent to which kernel-

kernel communication alternatives complement or clash conceptually with the basic organiza-

tional structure of the kernel.

4.1. Direct Costs of Remote Operations

A first cut at deciding between remote memory access or remote invocation for a particular

operation can be made on the basis of the latency incurred under the two different implementa-

tions. For example, consider an operation O invoked from node i that needs to perform n

memory accesses to a data structure on another node j. We can perform those memory accesses

remotely from node i, or we can perform a remote invocation to node j, where they will be per-

formed locally. For the sake of simplicity, suppose that O must perform a fixed number of local

memory accesses (e.g. to stack variables) and a fixed number of register-register operations

regardless of whether it is executed on node i or on node j. If the remote/local memory access

time ratio is R and the overhead of a remote invocation is C times the local memory access time,

then it will be cheaper to implement O via remote memory access when (R −1) n<C.5

The fixed overhead of remote invocation, independent of operation complexity, suggests that

operations requiring a large amount of time should be implemented via remote invocation (all

other things being equal).6 Back of the envelope calculations should suffice in many cases to

evaluate the performance tradeoff. Many operations are simple enough to make a rough guess of

memory access counts possible, and few are critical enough to require a truly definitive answer.

For critical operations, however, experimentation is necessary.
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

5 This formula assumes, of course, that we are executing on a NUMA machine. If the hardware
provides coherent caches, then only the first reference to data in a particular cache line will incur a remote
access cost.

6 We did not include the cost of parameter passing in our simple analysis. Nearly all our kernel
operations take only one or two parameters, and require no reply other than a notice of completion, so our
assumption of a fixed cost for remote invocation is realistic.



11

4.2. Indirect Costs for Local Operations

Kernel operations will often be organized differently when performed via remote invocation,

instead of remote memory access. They may require context available on the invoking node to be

packaged into parameters. They may be re-arranged to increase node locality, so that accesses to

data on the invoking and target processor are not interleaved. Most important, perhaps, the use of

process-level RI for all remote accesses to a particular data structure may allow that data struc-

ture to be implemented without explicit synchronization, depending instead on a lack of preemp-

tion within the kernel to provide implicit synchronization. Explicit synchronization is still

required, of course, for any data structures that a process needs to keep locked on the local node

during an outgoing process-level RI. Because interrupt-level RI handlers can always execute

unless explicitly locked out (even if they interrupt normal kernel activity), explicit synchroniza-

tion is also required for data structures accessible to interrupt routines. Depending on architec-

tural parameters, locks that inhibit interrupt-level RI may be faster than semaphores or process-

level spin locks; in particular, they are slightly faster on the Butterfly Plus.

Avoiding explicit synchronization can improve the speed not only of remote operations but

also of the (presumably more frequent) local operations that access the same data structure. The

impact of explicit synchronization on local operations is easy to underestimate. The case study in

the following section includes operations in which lock acquisition and release account for 49%

of the total execution time (in the absence of contention). This overhead could probably be

reduced by a coarser granularity of locking, but only with considerable effort: fine-grain locking

introduces fewer opportunities for deadlock, and allows for greater concurrency.

On a machine in which nodes are bus-based multiprocessors (with parallel execution of one

local copy of the kernel), explicit synchronization may be required for certain data structures

even if remote invocation is always used for operations on those data structures requested by

other nodes. On the other hand, clever use of atomic fetch-and-Φ operations to create concurrent

no-wait data structures [20] may allow explicit synchronization to be omitted even for data struc-

tures whose operations are implemented via remote memory access.7

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
7 A parallel data structure is said to be wait-free if each of its access functions is guaranteed to

complete within a bounded amount of time. As designed by Herlihy and others, wait-free data structures
employ fetch-and-Φ operations (e.g. compare_and_swap, fetch_and_store, fetch_and_add, and the newer
load_linked and store_conditional provided by the MIPS R4000 and DEC Alpha processors) to divert
competing processors into different code paths, without ever spinning or blocking.



12

If remote memory accesses are used for many data structures, large portions of the kernel

data space on other processors will need to be mapped into each instance of the kernel. Since vir-

tual address space is limited (at least on 32-bit processors), this mapping may make it difficult to

scale the kernel design to very large machines, particularly if kernel operations must also be able

to access the full range of virtual addresses in the currently-running user process. Mapping

remote kernel data structures on demand is likely to cost more than sending a request for remote

invocation. Mechanisms to cache information about kernel data structures may be limited in

their effectiveness by the lack of address locality. Systems that map remote kernel data into a

separate kernel-kernel address space [32] may waste large amounts of time switching back and

forth between the kernel-kernel space and the various user-kernel spaces.

4.3. Competition for Processor and Memory Cycles

Operations that access a central resource must serialize at some level. Operations imple-

mented via remote invocation serialize on the processor that executes those operations. Opera-

tions implemented via remote memory accesses serialize at the memory. Because an operation

does more than access shared data, there is more opportunity with remote memory access for

overlapped computation. Operations implemented via remote memory access may still serialize

if they compete for a common coarse-grain lock, but operations implemented via remote invoca-

tion will serialize even if they have no data in common whatsoever.

If competition for a shared resource is high enough to have a noticeable impact on overall

system throughput, it will be desirable to reorganize the kernel to eliminate the bottleneck. The

amount of competition that can occur before inducing a bottleneck may be slightly larger with

remote memory access, because of the ability to overlap computation. Even in the absence of

bottlenecks, we expect that operations on a shared data structure will occasionally conflict in

time. The coarser the granularity of the resulting serialization, the higher the expected variance

in completion time will be. The desire for predictability in kernel operations suggests that opera-

tions requiring a large amount of time should be implemented via remote memory access, in

order to serialize at the memory instead of the processor. This suggestion conflicts with the

desire to minimize operation latency, as described above; it may not be possible to minimize

latency and variance simultaneously.

Given that the requestor of a interrupt-level RI busy-waits for notice of completion, the

desirability of remote invocation in comparison to remote memory access may then depend on



13

whether we are interested in latency or throughput. An interrupt-level RI may execute quickly

from the requesting processor’s point of view, but in the absence of unrelated interrupts it ties up

both the requesting and responding processors for the duration of the requested operation.

4.4. Compatibility With the Conceptual Model of Kernel Organization

There are two broad classes of kernel organization, identified by Lauer and Needham [23] as

the message-based and procedure-based approaches (see figure 2). In a procedure-based kernel

there is no fundamental distinction between a process in user space and a process in the kernel.

Each user program is represented by a process that enters the kernel via traps, performs kernel

operations, and returns to user space. Kernel resources are represented by data structures shared

between processes. In a message-based kernel each major kernel resource is represented by a

separate kernel process, and a typical kernel operation requires communication (via queues or

message-passing) among the set of kernel processes that represent the resources needed by the

operation.

<< FIGURE 2 GOES SOMEWHERE NEAR HERE >>

We have found the choice between the procedure-based and message-based organizations to

have a more pervasive impact on the rest of the operating system than any other single design

decision. (Psyche is procedure-based, but we have built message-based kernels as well.) Both

approaches can be aesthetically appealing, depending on one’s point of view. The procedure-

based organization presents a uniform model for user- and kernel-level processes, and closely

mimics the hardware organization of an UMA multiprocessor. The message-based organization,

on the other hand, leads to a compartmentalization of the kernel in which all synchronization is

subsumed by message passing. The message-based organization closely mimics the hardware

organization of a distributed-memory multicomputer. Because it minimizes context switching,

the procedure-based organization is likely to perform better on a machine with uniform memory

[13]. The message-based organization may be easier to debug [19]. Most Unix kernels are

procedure-based. Demos [5] and Minix [33] are message-based.

Remote invocation seems to be more in keeping with the message-based approach to kernel

design. Remote memory access seems appropriate to the procedure-based approach. When port-

ing an operating system from some other environment, the pre-existence of a procedure-based or

message-based bias in the implementation may suggest the use of the corresponding mechanism

for kernel-kernel communication, though mixed approaches are possible [24]. If a procedure-



14

based kernel is used on a uniprocessor, the lack of context switching in the kernel may obviate

the need for explicit synchronization in many cases. Extending the procedure-based approach to

include remote memory access may then incur substantial new costs for locks. On a machine

with multiprocessor nodes, however, such locking may already be necessary.

5. Case Study: Psyche on the BBN Butterfly

Our experimentation with alternative communication mechanisms took place in the kernel of

the Psyche operating system [32] running on a BBN Butterfly Plus multiprocessor [3]. The

Psyche implementation is written in C++, and uses shared memory as the primary kernel com-

munication mechanism. The Psyche kernel was modified to provide performance figures for

remote invocation as well, with and without fine-grain locking. Our results are based on experi-

ments using these modified versions of the kernel.

The Psyche implementation displays a high degree of node locality. The kernel object

representing an application-level abstraction (process, address space, memory segment) is allo-

cated and initialized on a single node, either on the node where the creation request originated or

another specified node. Other kernel data structures associated with a node’s local resources are

also local to that node. It is quite common, therefore, for a kernel operation not to need access to

data on another node. In those cases where kernel-kernel communication is required, local

accesses still tend to dominate.

Among those kernel operations requiring access to data on more than one node, it was com-

mon in the original Psyche implementation for remote memory accesses to occur at several dif-

ferent times in the course of the operation. In an attempt to optimize our remote procedure call

mechanism we found that many, though not all, of these accesses could be grouped together by

re-structuring the code, thereby permitting them to be implemented by a single remote invoca-

tion.

5.1. Fundamental Costs

The Butterfly Plus is a NUMA machine with one processor per node, no caches, and a

remote-to-local memory access time ratio of approximately 12:1. The average measured execu-

tion time [16] of an instruction to read a 32-bit remote memory location using register indirect

addressing is 6.88 µs; the corresponding instruction to read local memory takes 0.518 µs. The

time to write memory is slightly lower: 4.27 µs and 0.398 µs for remote and local memory,



15

respectively.8 Microcoded support for block copy operations can be used to move large amounts

of data between nodes in about a fifth of the time required for a word-by-word copy (345 µs

instead of 1.76 ms for 1K bytes). None of the experiments reported below moved enough data to

need this operation.

Our remote invocation mechanisms rely on remote memory access and on the ability of one

processor to cause an interrupt on another. A processor that requires a remote operation writes an

operation code and any necessary parameters into a preallocated local buffer. It then writes a

pointer to that buffer into a reserved location on the remote node, and issues a remote interrupt.

The requesting processor then spins on an ‘‘operation received’’ flag in the local buffer. When

the target processor receives the interrupt, it checks its reserved location to obtain a pointer to the

buffer. It sets the ‘‘operation received’’ flag, at which point the requesting kernel process either

blocks (in the case of a process-level RI), or begins to spin on an ‘‘operation completed’’ flag (in

the case of an interrupt-level RI). If another request from a different node overwrites the original

request, the second request will be serviced instead. After a fixed period of unsuccessful waiting

for the ‘‘operation received’’ flag, the first processor will time-out and resend its request. In case

a processor’s request is completed just before a resend, receiving processors ignore request

buffers whose ‘‘operation received’’ flag is already set.

The mechanism to trigger a remote invocation is optimistic, in that it minimizes latency in

the absence of contention and admits starvation in the presence of contention. The average

latency of an interrupt-level RI, excluding parameter copying and operation costs, is 56 µs (meas-

ured by timing a large number of consecutive invocations, and dividing). An earlier, non-

optimistic, implementation relied on microcoded atomic queues, but these required approxi-

mately 60 µs for the enqueue and dequeue operations alone. The average latency of a process-

level RI, again excluding parameter copying and operation costs, is about 421 µs. Process-level

RI could be made faster with some more hand optimization, but it is unlikely that we could get it

under 300 µs. Interrupt-level RI is highly optimized; we see no way to make it significantly

faster.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhh
8 The original Butterfly architecture had a remote-to-local access time ratio of approximately 5:1.

The speed of local memory was significantly improved in the Butterfly Plus, with only a modest
improvement in the speed of remote accesses.



16

5.2. Explicit Synchronization

Psyche uses spin locks to synchronize access to kernel data structures. In order to achieve a

high degree of concurrency within the kernel, access to each component data structure requires

possession of a lock. This approach admits simultaneous operations on different parts of the

same kernel data structure, but also introduces a large number of synchronization points in the

kernel. Mapping a memory segment into the current address space, for example, can require up

to 9 lock acquisitions. Creating a segment can require 38 lock acquisitions. A cheap implemen-

tation of locks is critical.

We use a test-and-test&set lock [28] to minimize latency in the absence of contention. If the

lock is in local memory, we use the native MC68020 TAS instruction. Otherwise, we use a more

expensive atomic instruction implemented in microcode on the Butterfly. (TAS is not supported

on remote locations.) The slight cost of checking to see whether the lock is local (involving a

few bit operations on its virtual address) is more than balanced by the use of a faster atomic prim-

itive in the common, local case. Moreover this cost must also be incurred when using remote

invocation, rather than remote access, in order to determine the node to interrupt.

A lock can be acquired and released manually by calling inline subroutines, or automatically

using features of C++. The automatic approach passes the lock as an initialization parameter to a

dummy variable in the block of code to be protected. The constructor for the dummy variable

acquires the lock; the destructor (called by the compiler automatically at the end of a scope)

releases it. Constructor-based critical sections are slightly slower, but make it harder to forget to

release a lock. Manual locking is used for critical sections that span function boundaries or that

do not properly nest. Acquiring and releasing a local lock manually requires a minimum of 5 µs,

and may require as much as 10 µs, depending on instruction alignment, the ability of the compiler

to exploit common subexpressions, and the number of registers available for temporary variables.

Acquiring and releasing a remote lock manually requires 38 to 45 µs. The additional time

required to acquire and release a lock through constructors is about 1 to 3 µs. Synchronization

using remote locks is expensive because the Butterfly’s microcoded atomic operations are

significantly more costly than native processor instructions. Extensive use of no-wait data struc-

tures [20] might reduce the need for fine-grain locks, but would probably not be faster, given the

cost of atomic operations.

The performance of semaphores is indistinguishable from that of spin locks in the absence of

lock competition; the only thing that differs on the code path is a check in the V operation to



17

determine whether any processes are waiting. Disabling and enabling of interrupt-level RIs is

slightly cheaper: a critical section counter can be incremented and then decremented again in just

over 5 µs.

5.3. Impact on the Cost of Kernel Operations

To assess the impact of alternative kernel-kernel communication mechanisms on the per-

formance of typical kernel operations, we measured the time to perform several such operations

via local memory access, remote memory access, and remote invocation, with and without expli-

cit synchronization. The results appear in table 1.

<< TABLE 1 GOES SOMEWHERE NEAR HERE >>

The first three lines give times for low-latency operations. The first of these inserts and then

removes an element in a doubly-linked list-based queue; the second and third search for elements

in a list. Remote invocations for all three are implemented in interrupt-level routines. The last

three lines give times for high-latency operations: creating a segment, mapping a segment, and

adding a new process to an address space. Remote invocations for these are implemented at the

process level. All times are accurate to about ± 3 in the third significant digit. Times for the

low-latency operations are averaged over 10,000 consecutive trials. They are stable in any partic-

ular kernel load image, but fluctuate with changes in instruction alignment. They are also sensi-

tive to the context in which they appear, due to variations in the success of compiler optimiza-

tions.9 Times for the high-latency operations are averaged over a small number of consecutive

trials in several separate runs.

Times in columns 1 and 2 are with all data on the local node. Times in columns 3 through 6

are with target data on a remote node, but with temporary variables still in the local stack.

Columns 1 and 3 give times for the original, unmodified version of the Psyche kernel. Column 2

indicates what operations would cost if synchronization were achieved through lack of context

switching, with no direct access to remote data structures. Column 4 indicates what operations

on remote data structures would cost if subsumed in some other operation with coarse-grain lock-

ing. Column 6 indicates what remote operations would cost if the data structures they manipulate

were always accessed via remote invocation, with no explicit synchronization required beyond
hhhhhhhhhhhhhhhhhhhhhhhhhhhhh

9 We have read through the assembly language output of the compiler to make sure the optimizer isn’t
removing any apparently useless code of importance to the timing tests.



18

recognizing that invocations were not disabled. Column 5 indicates the cost of performing opera-

tions via remote invocation in a hybrid kernel that continues to rely on locks.

Explicit Synchronization

We can calculate the fraction of the cost of each of our kernel operations due to synchroniza-

tion by comparing figures in adjacent columns of table 1. The comparisons appear in figure 3.

Synchronization clearly dominates the cost of simple operations on queues, contributing in some

cases nearly 50% for local operations and 40% for remote operations. Though less overwhelm-

ing, synchronization impacts more complex operations as well, due to the use of fine-grain locks.

Segment creation requires acquiring and releasing approximately 38 constructor-based locks,

contributing over 500 µs, or 8%, to the cost in the local case and 1.7 ms, or 11%, to the cost in the

remote case. The overhead of fine-grain locking combined with automatically-acquired locks is

clearly significant. More to the point, in the case of process-level data structures this overhead is

imposed on local access simply to permit remote access. We could reduce the cost of synchroni-

zation by locking data structures at a coarser grain. This change would reduce the number of

locks required by a typical operation, but would simultaneously reduce the potential level of con-

currency.

<< FIGURE 3 GOES SOMEWHERE NEAR HERE >>

Remote References

We can assess the impact of remote memory references by comparing the cost of local and

remote operations in table 1. Figure 4 indicates the marginal cost of remote references for each

of our kernel operations. Without locking, this marginal cost is 86% for a remote

enqueue/dequeue operation pair; remote references exclusive of synchronization account for 54%

of the cost even when locking is used (154 µs to perform the operation remotely excluding syn-

chronization costs minus 21.6 µs to perform the operation locally, over 247 µs total time). When

searching for the 10th element in a list, remote references exclusive of synchronization account

for 2/3 of the cost of the operation. Even for complex operations such as segment creation, which

performs much of its work using stack variables, remote references account for over half of the

total cost.

<< FIGURE 4 GOES SOMEWHERE NEAR HERE >>



19

The overhead associated with explicit synchronization and remote references is a function of

the complexity of the operation, while the overhead associated with remote invocation is fixed.

In addition, if using process-level RI exclusively we can rely on implicit synchronization (non-

preemption in the kernel), thereby reducing the cost of operations significantly. In table 1, the

times in the last three rows of column 6 are not only much faster than the corresponding times in

column 3, they are in several cases close to the times in column 1; the ability to avoid lock

acquisition and release almost hides the cost of remote invocation and parameter passing. Given

that a remote memory access costs more than 6 µs more than a local access, the 60 µs overhead

of an interrupt-level RI with a single parameter can be justified on the Butterfly Plus in order to

avoid eleven remote references. The 421 µs overhead of a process-level RI can be justified to

avoid 71−7k remote references, where k is the number of lock acquisitions that can be eliminated

by exclusive use of process-level RI. If hand optimization were to yield an implementation of

process-level RI that cost 300 µs, it could be justified to avoid 50−7k remote references.

Comparative Latency of Remote Access and Remote Invocation

Figure 5 presents three different comparisons of the cost of remote invocation and the cost of

remote memory access. The first bar in each group expresses column 6 in table 1 as a percentage

of column 3; it compares remote memory access with explicit locking to remote invocation

without explicit locking. The second bar in each group expresses column 5 in table 1 as a percen-

tage of column 3; it includes locking overhead for both remote memory access and remote invo-

cation, as would exist in a hybrid kernel. The third bar in each group expresses columns 6 in

table 1 as a percentage of column 4; it considers the case in which the desired operation is sub-

sumed in some other operation with coarse-grain locking.

<< FIGURE 5 GOES SOMEWHERE NEAR HERE >>

Figures greater than one indicate scenarios in which remote memory access displays a lower

latency. Based on this metric alone, our experiments would seem to indicate that remote memory

access is justified only for the most trivial of operations. Other factors soften this conclusion,

however, and make remote invocation less of a clear win than it might at first appear. In particu-

lar, our experiments highlight the extreme cases of operations simple enough to perform via

interrupt-level RI, or complex enough to absorb the overhead of a process-level RI. For

medium-size operations we may be unwilling to accept either the limitations of interrupt-level RI



20

or the overhead of process-level RI. Moreover even for tiny operations the throughput of

interrupt-level RI may be unacceptably low, as discussed in the following section.

Throughput for Interrupt-Level Remote Invocations

On the Butterfly Plus remote memory accesses steal bus cycles from the processor on which

the memory resides, thereby slowing that processor’s progress. Remote invocations, however,

steal the entire processor for the duration of the operation. In the case of interrupt-level RIs,

parallelism is lost: the requesting processor remains idle until the invocation completes. In the

case of process-level RIs, the requesting processor has the opportunity to do something else

instead. These observations suggest that latency provides a reasonable measure of the perform-

ance of process-level RI, but that throughput must also be considered for interrupt-level RI.

We conducted a simple experiment to compare the impact of remote memory accesses and

interrupt-level RIs on the progress of other computations on a given processor. We timed the

slowdown of a compute-bound application on a processor subjected to remote memory accesses

and interrupt-level RIs. For a set of low-latency operations whose aggregate latency was 19 ms

when using remote memory access and 22 ms when using interrupt-level RI, we measured appli-

cation slowdowns of 1 ms and 17 ms, respectively. From these figures we can see that interrupt-

level RI significantly affects the throughput of the remote processor, whereas remote access does

not. Thus, in all cases where the latency of the two alternatives is comparable, and even in some

cases where the latency of remote access is higher, remote access would be preferred for reasons

of throughput.

6. Conclusions

Architectural features strongly influence operating system design. The choice between

remote invocation and remote access as the basic communication mechanism between kernels on

a shared-memory multiprocessor is highly dependent on the cost of the remote invocation

mechanism, the cost of the atomic operations used for synchronization, and the ratio of remote to

local memory access time. On a cache-coherent machine it is also dependent on the cache line

size, the degree to which lines are falsely shared, and the extent to which prefetching and caching

effects can reduce the cost of typical kernel operations. Since the overhead associated with

remote access scales with the operation, while the overhead associated with remote invocation is

fixed, there will for any machine be a break-even point above which process-level RI enjoys an

increasingly compelling performance advantage. For smaller operations the operating system



21

designer must weigh the issues of latency, throughput, conceptual appeal, and the possibility of

eliminating explicit synchronization in order to make a choice between remote access and the two

forms of remote invocation.

Our experience with Psyche indicates that the natural node locality of kernel operations is

sufficient to allow us to perform most large operations with only one or two remote invocations.

Without this locality many invocations would be needed just to collect the data necessary to per-

form an operation. Under those circumstances remote access would be competitive with

process-level RI, but performance would be poor; a kernel without node locality is not a reason-

able option for the Butterfly architecture.

Our original decision to use remote memory access as the principal kernel-kernel communi-

cation mechanism was based primarily on the conceptual appeal of a uniform procedure-based

organization across the entire machine. We underestimated the impact that locking would have

on the cost of typical operations, and did not give adequate consideration to lengthy operations

early in the design process. If we were to re-build the kernel at this point, we would make more

extensive use of process-level RI for lengthy operations. We would also attempt to identify data

structures for which process-level RI alone would suffice, allowing us to eliminate explicit lock-

ing. Finally, we would attempt where possible to increase the granularity of our remaining locks,

being careful to avoid the introduction of bottlenecks.

There are only a small number of cases in which interrupt-level RI is the mechanism of

choice. The most plausible scenario arises with low-latency operations that cannot be performed

via remote access. TLB shootdown is such an operation on most machines; instructions that

manipulate the TLB cannot be invoked remotely. We also use interrupt-level RI for console I/O,

and to implement our remote kernel debugging facility [32]. Interrupt-level RI may also be pre-

ferred over remote access when the target processor of a remote operation is idle, or when the

latency of remote access is more than twice the latency of interrupt-level RI (e.g. for a memory-

intensive operation on a machine in which remote memory is exceptionally slow). In both these

latter scenarios interrupt-level RI will outperform remote memory access even in terms of

throughput.

On the Butterfly Plus, remote invocation is relatively fast, explicit synchronization is costly,

and remote references are significantly more expensive than local references. Increases in proces-

sor speed relative to memory and interconnect latencies are likely to make remote references even

more expensive in future machines. All but the shortest operations on the Butterfly Plus display



22

lower latency with remote invocation than they do with remote memory access, and the disparity

between the two options is likely to increase.

It is not yet clear whether the large-scale multiprocessors of the future will provide system-

wide hardware cache coherence. Several projects are moving in that direction [1, 18, 21, 26], but

others are pursuing software-managed coherence beyond the bounds of a single bus [6, 12, 34].

NUMA machines are likely to be cheaper to build than their cache-coherent cousins, and recent

studies suggest [8] that they can provide comparable performance for reasonable applications.

Our results apply most directly to NUMA machines, but suggest that remote invocation should be

attractive for kernel-kernel communication on cache-coherent machines as well. Deliberate

exploitation of node locality in the kernel for a cache-coherent machine would associate each data

structure with a ‘‘home node’’ on which that structure is accessed most often. As inter-processor

communication becomes slower and slower relative to processor performance [27], operations

that touch several cache lines that ‘‘belong’’ to another processor might profitably be dispatched

to that processor for execution, rather than running locally. Further performance studies will be

needed to quantify kernel-kernel communication tradeoffs more precisely on large cache-

coherent machines.

For small operations, interrupt-level RI can display lower latency than remote access, but it

may display lower throughput as well, and is limited by the need to use coarse, interrupt-masking

locks and to restore all data structures to a consistent state before performing an outgoing

interrupt-level RI. Moreover, we strongly suspect that the desire to keep data structures out of the

interrupt-level portion of the kernel will mean that some operations that are too small to absorb

the overhead of process-level RI will still touch too much data to use interrupt-level RI. These

observations imply that performance will be maximized if remote access is used for operations

comprising up to a few dozen remote memory references and process-level RI is used above this

limit. Interrupt-level RI should be reserved for special cases.

Acknowledgments

Our thanks to Rob Fowler and to the referees for their helpful comments on this paper, and to

Tim Becker for his invaluable assistance with experiments. An earlier version of this paper was

presented at the Second USENIX Symposium on Experiences with Distributed and Multiproces-

sor Systems; this current version benefited significantly from discussions with symposium atten-

dees, particularly Jim Gibson of BBN ACI.



23

References

[1] A. Agarwal, B. Lim, D. Kranz and J. Kubiatowicz, ‘‘APRIL: A Processor Architecture for

Multiprocessing,’’ Proceedings of the Seventeenth International Symposium on Computer

Architecture, 28-31 May 1990, pp. 104-114. In CAN 18:2.

[2] T. E. Anderson, H. M. Levy, B. N. Bershad and E. D. Lazowska, ‘‘The Interaction of

Architecture and Operating System Design,’’ Proceedings of the Fourth International

Conference on Architectural Support for Programming Languages and Operating Sys-

tems, 8-11 April 1991, pp. 108-120. In ACM SIGARCH Computer Architecture News

19:2, ACM SIGOPS Operating Systems Review 25 (special issue), and ACM SIGPLAN

Notices 26:4.

[3] BBN Advanced Computers Incorporated, ‘‘Inside the Butterfly Plus,’’ Cambridge, MA,

16 October 1987.

[4] M. J. Bach and S. J. Buroff, ‘‘Multiprocessor Unix Systems,’’ AT&T Bell Laboratories

Technical Journal 63:8 (October 1984), pp. 1733-1750.

[5] F. Baskett, J. H. Howard and J. T. Montague, ‘‘Task Communication in Demos,’’

Proceedings of the Sixth ACM Symposium on Operating Systems Principles, November

1977, pp. 23-31.

[6] R. Bisiani and M. Ravishankar, ‘‘PLUS: A Distributed Shared-Memory System,’’

Proceedings of the Seventeenth International Symposium on Computer Architecture, 28-31

May 1990, pp. 115-124. In CAN 18:2.

[7] D. L. Black, R. F. Rashid, D. B. Golub, C. R. Hill and R. V. Baron, ‘‘Translation Looka-

side Buffer Consistency: A Software Approach,’’ Proceedings of the Third International

Conference on Architectural Support for Programming Languages and Operating Sys-

tems, 3-6 April 1989, pp. 113-122.

[8] W. J. Bolosky and M. L. Scott, ‘‘A Trace-Based Comparison of Shared Memory Multipro-

cessor Architectures,’’ TR 432, Computer Science Department, University of Rochester,

July 1992.



24

[9] J. Boykin and A. Langerman, ‘‘The Parallelization of Mach/4.3BSD: Design Philosophy

and Performance Analysis,’’ Proceedings of the First USENIX Workshop on Experiences

Building Distributed and Multiprocessor Systems, 5-6 October, 1989, pp. 105-126.

[10] R. Bryant, H. Chang and B. Rosenburg, ‘‘Experience Developing the RP3 Operating Sys-

tem,’’ Proceedings of the Second USENIX Symposium on Experiences with Distributed

and Multiprocessor Systems, 21-22 March 1991, pp. 1-18.

[11] M. D. Campbell, R. Holt and J. Slice, ‘‘Lock Granularity Tuning Mechanisms in

SVR4/MP,’’ Proceedings of the Second USENIX Symposium on Experiences with Distrib-

uted and Multiprocessor Systems, 21-22 March 1991, pp. 221-228.

[12] D. R. Cheriton, H. A. Goosen and P. D. Boyle, ‘‘Paradigm: A Highly Scalable Shared-

Memory Multicomputer Architecture,’’ Computer, February 1991, pp. 33-46.

[13] D. Clark, ‘‘The Structuring of Systems Using Upcalls,’’ Proceedings of the Tenth ACM

Symposium on Operating Systems Principles, 1-4 December 1985, pp. 171-180. In ACM

SIGOPS Operating Systems Review 19:5.

[14] D. W. Clark and J. S. Emer, ‘‘Performance of the VAX-11/780 Translation Buffer: Simu-

lation and Measurement,’’ ACM Transactions on Computer Systems 3:1 (February 1985),

pp. 31-62.

[15] A. L. Cox and R. J. Fowler, ‘‘The Implementation of a Coherent Memory Abstraction on a

NUMA Multiprocessor: Experiences with PLATINUM,’’ Proceedings of the Twelfth ACM

Symposium on Operating Systems Principles, 3-6 December 1989, pp. 32-44. In ACM

SIGOPS Operating Systems Review 23:5.

[16] A. L. Cox, R. J. Fowler and J. E. Veenstra, ‘‘Interprocessor Invocation on a NUMA Mul-

tiprocessor,’’ TR 356, Computer Science Department, University of Rochester, October

1990.

[17] W. Crowther, J. Goodhue, E. Starr, R. Thomas, W. Milliken and T. Blackadar, ‘‘Perform-

ance Measurements on a 128-Node Butterfly Parallel Processor,’’ Proceedings of the 1985

International Conference on Parallel Processing, 20-23 August 1985, pp. 531-540.



25

[18] T. H. Dunigan, ‘‘Kendall Square Multiprocessor: Early Experiences and Performance,’’

ORNL/TM-12065, Oak Ridge National Laboratory, May 1992.

[19] R. A. Finkel, M. L. Scott, Y. Artsy and H. Chang, ‘‘Experience with Charlotte: Simplicity

and Function in a Distributed Operating System,’’ IEEE Transactions on Software

Engineering 15:6 (June 1989), pp. 676-685.

[20] M. Herlihy, ‘‘Wait-Free Synchronization,’’ ACM Transactions on Programming

Languages and Systems 13:1 (January 1991), pp. 124-149.

[21] D. V. James, A. T. Laundrie, S. Gjessing and G. S. Sohi, ‘‘Scalable Coherent Interface,’’

Computer 23:6 (June 1990), pp. 74-77.

[22] D. J. Kuck, E. S. Davidson, D. H. Lawrie and A. H. Sameh, ‘‘Parallel Supercomputing

Today and the Cedar Approach,’’ Science 231 (28 February 1986), pp. 967-974.

[23] H. C. Lauer and R. M. Needham, ‘‘On the Duality of Operating System Structures,’’ ACM

SIGOPS Operating Systems Review 13:2 (April 1979), pp. 3-19. Originally presented at

the Second International Symposium on Operating Systems, October 1978.

[24] T. J. LeBlanc, J. M. Mellor-Crummey, N. M. Gafter, L. A. Crowl and P. C. Dibble, ‘‘The

Elmwood Multiprocessor Operating System,’’ Software — Practice and Experience 19:11

(November 1989), pp. 1029-1056.

[25] S. J. Leffler, M. K. McKusick, M. J. Karels and J. S. Quarterman, The Design and Imple-

mentation of the 4.3BSD UNIX Operating System, The Addison-Wesley Publishing Com-

pany, Reading, MA, 1989.

[26] D. Lenoski, J. Laudon, K. Gharachorloo, A. Gupta and J. Hennessy, ‘‘The Directory-Based

Cache Coherence Protocol for the DASH Multiprocessor,’’ Proceedings of the Seventeenth

International Symposium on Computer Architecture, 28-31 May 1990, pp. 148-159. In

CAN 18:2.

[27] E. P. Markatos and T. J. LeBlanc, ‘‘Shared-Memory Multiprocessor Trends and the Impli-

cations for Parallel Program Performance,’’ TR 420, Computer Science Department,

University of Rochester, May 1992.



26

[28] J. M. Mellor-Crummey and M. L. Scott, ‘‘Algorithms for Scalable Synchronization on

Shared-Memory Multiprocessors,’’ ACM Transactions on Computer Systems 9:1 (Febru-

ary 1991), pp. 21-65.

[29] N. Paciorek, S. LoVerso and A. Langerman, ‘‘Debugging Multiprocessor Operating Sys-

tem Kernels,’’ Proceedings of the Second USENIX Symposium on Experiences with Dis-

tributed and Multiprocessor Systems, 21-22 March 1991, pp. 185-202.

[30] G. R. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kleinfelder, K. P. McAu-

liffe, E. A. Melton, V. A. Norton and J. Weiss, ‘‘The IBM Research Parallel Processor

Prototype (RP3): Introduction and Architecture,’’ Proceedings of the 1985 International

Conference on Parallel Processing, 20-23 August 1985, pp. 764-771.

[31] B. Rosenburg, ‘‘Low-Synchronization Translation Lookaside Buffer Consistency in

Large-Scale Shared-Memory Multiprocessors,’’ Proceedings of the Twelfth ACM Sympo-

sium on Operating Systems Principles, 3-6 December 1989, pp. 137-146. In ACM

SIGOPS Operating Systems Review 23:5.

[32] M. L. Scott, T. J. LeBlanc, B. D. Marsh, T. G. Becker, C. Dubnicki, E. P. Markatos and

N. G. Smithline, ‘‘Implementation Issues for the Psyche Multiprocessor Operating Sys-

tem,’’ Computing Systems 3:1 (Winter 1990), pp. 101-137. Earlier version presented at

the First USENIX Workshop on Experiences Building Distributed and Multiprocessor Sys-

tems, Ft. Lauderdale, FL, 5-6 October, 1989.

[33] A. S. Tanenbaum, Operating Systems: Design and Implementation, Prentice-Hall, Engle-

wood Cliffs, NJ, 1987.

[34] Z. G. Vranesic, M. Stumm, D. M. Lewis and R. White, ‘‘Hector: A Hierarchically Struc-

tured Shared-Memory Multiprocessor,’’ Computer 24:1 (January 1991), pp. 72-79.



27

acquire:
if on home node

nested_maskings +:= 1
disable interrupts
lock.urgently_needed := true
loop

exit if TAS (lock)
pause

lock.urgently_needed := false
else

loop
exit if not lock.urgently_needed and then TAS (lock)
pause

release:
lock := 0
if on home node

nested_maskings -:= 1
if nested_maskings = 0 then

enable interrupts

Figure 1: Pseudo-code for a ‘‘hybrid’’ lock that can protect data structures manipulated both by
remote memory access and by interrupt-level RI. Nested_maskings is a per-processor private
counter. TAS is assumed to atomically test and set a flag bit in the lock. If contention is expect-
ed to be high, one should instead use a version of the algorithm that spins only on local locations
[28].

Procedure-based Message-based

Figure 2: Alternative kernel organizations. Shaded boxes represent processes; unshaded boxes
represent data abstractions.



28

Local Access Remote Access Remote Inv.*

Operation locking locking locking
on off on off on off

enqueue+dequeue 42.4 21.6 247 154 197 174
find last in list of 5 (µs) 25.0 16.1 131 87.6 115 96.7
find last in list of 10 40.6 30.5 211 169 125 105
create segment 6.20 5.69 14.8 13.1 7.42 6.88
map segment (ms) 0.96 0.86 3.05 2.62 1.94 1.77
create process 1.43 1.35 3.30 3.04 1.89 1.75

Table 1: Latency of kernel operations.
* Interrupt-level remote invocation is used for low-latency operations (top half of table);
process-level remote invocation is used for high-latency operations (bottom half of table).

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhLAhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhRAenqueue+dequeue hhhhhhhhhhhhhh
hhhhhhhhhhhhhhRI
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhLAhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhRAfind last of 5 hhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhRI
hhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhLAhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhRAfind last of 10 hhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhRI
hhhhhhhhh
hhhhhhhhhLAhhhhhhhhhhhh
hhhhhhhhhhhhRAcreate segment hhhhhhhh
hhhhhhhhRI
hhhhhhhhhhh
hhhhhhhhhhhLAhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhRAmap segment hhhhhhhhhh
hhhhhhhhhhRI
hhhhhhh
hhhhhhhLAhhhhhhhhh
hhhhhhhhhRAcreate process hhhhhhhh
hhhhhhhhRI

10 20 30 40

Figure 3: Percentage of latency due to explicit locking, for local access (LA), remote access
(RA), and remote invocation (RI).



29

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhLhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhNLenqueue+dequeue
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhLhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhNLfind last of 5
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhLhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhNLfind last of 10
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhLhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhNLcreate segment
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhLhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhNLmap segment
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhLhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhNLcreate process

20 40 60 80

Figure 4: Remote access penalty for kernel operations, with (L) and without (NL) locking.

hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhRAhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhBenqueue+dequeue hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhN
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhRAhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhBfind last of 5 hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhN
hhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhRAhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhBfind last of 10 hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhN
hhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhRAhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhBcreate segment hhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhN
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhRAhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhBmap segment hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhN
hhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhRAhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhBcreate process hhhhhhhhhhhhhhhhhhhhhhhhhhhhhh
hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhN

25 50 75

c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c
c

100

Figure 5: Remote invocation time as a percentage of remote memory access time, with locking
in the case of the latter (RA), both (B), or neither (N).




