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Abstract-A programming language can provide much better support for interprocess communication 
than a library package can. Most message-passing languages limit this support to communication between 
the pieces of a single program, but this need not be the case. Lynx facilitates convenient, typesafe message 
passing not only within applications, but also between applications and among distributed collections of 
servers. Specifically, it addresses issues of compiler statelessness, late binding, and protection that allow 
run-time interaction between processes that were developed independently and that do not trust each 
other. Implementation experience with Lynx has yielded important insights into the relationship between 
distributed operating systems and language run-time support packages and into the inherent costs of 
high-level message-passing semantics. 

Distributed programming languages Message passing Remote procedure call Late binding 
Server processes Links 

1 .  INTRODUCTION 

A programming language has clear advantages over a library package for communication between 
processes in a distributed environment.! These advantages include the possibility of special syntax 
(more than just a set of subroutine calls), direct use of program variables and types in 
communication statements, message type checking, exception handling, and support for concurrent 
conversations. Unfortunately, most existing distributed languages are better suited to communi- 
cation between the processes of a single application than they are to communication between 
processes that are developed independently. Such independent development is characteristic both 
of the systems software for multicomputers and of the applications software for geographically- 
distributed networks. Lynx [I, 21 is a message-passing language designed to support both 
application and system software in a single conceptual framework. It extends the advantages of 
language-based communication to processes that are designed in isolation, and compiled and 
placed in operation without knowledge of their peers. This paper provides an overview of Lynx, 
from the problems that led to its creation through the experience resulting from its implementation 
and use. 

Motivation for Lynx is discussed in Section 2. Lynx was developed at the University of 
Wisconsin, where it was first implemented on the Charlotte multicomputer operating system [3,4]. 
Charlotte was designed without Lynx, but experience with a conventional library interface to the 
kernel suggested that language support for communication could make the programmer's life much 
easier. Particularly troublesome was the construction of operating system server processes, which 
needed to communicate conveniently, safely, and efficiently with an ever-changing pool of clients, 
most of whom could be expected to have been written long after the server was placed in operation. 
Lynx was designed to provide a high degree of support for dynamic changes in interconnection 
topology, protection from untrusted processes, and concurrent, interleaved conversations with an 
arbitrary number of communication partners. To facilitate the construction of servers, Lynx was 
designed to provide these benefits without depending on any sort of global information at compile 
time. 

The Lynx compiler is a pure translator: it requires no input other than a source program and 
produces no output other than an object program. In particular, it does not depend on a database 

fThroughout this paper, the term "process" is used to denote a heavyweight entity with its own address space, supported 
by the operating system. Active entities in the same address space will be called lightweight threads of control. 
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of type definitions or interface descriptions, in order to enforce type consistency for messages. A 
novel application of hashing [5] provides efficient run-time type checking at negligible cost and at 
a very high level of confidence. 

A description of language features appears in Section 3. This is followed in Section 4 by a pair 
of example applications: a file system server and a game-playing program. Section 5 provides a 
more detailed rationale for the language design, and relates it to previous work. Within the context 
of independent compilation, Lynx supports topology changes and protection with a virtual-circuit 
abstraction called the link. It maintains context for multiple conversations by combining message 
passing with the scheduling of lightweight threads of control. A link is a symmetric two-directional 
channel, like a pair of tin cans connected by string. The cans themselves (link ends) are first-class 
objects that can be created, destroyed, stored in data structures, and passed in messages. It is by 
passing them in messages (dragging the strings behind them) that the process connection graph is 
changed. Threads are a program structuring tool that allows a sequential execution path to be 
associated with each logically separate conversation. A file server, for example, might have a 
separate thread of control for each of its open files. Each thread could then use straight-line code 
to perform operations on behalf of a client. Special operations (e.g. seeks), could be performed by 
nested threads that share file-specific data structures. Lynx allows these threads to be created 
automatically, in response to incoming requests. 

At the University of Rochester, Lynx has been ported to the BBN Butterfly multiprocessor and 
its Chrysalis operating system. Designs or partial implementations have been developed for four 
additional systems. Experience with these implementations has led to important insights into the 
relationship between a language run-time package and the underlying operating system [6]. A 
detailed performance study of the Chrysalis implementation has helped to provide a deeper 
understanding of the inherent costs of message-passing systems [7]. These lessons are summarized 
in Section 6. 

2.  MOTIVATION 

Motivation for Lynx grew out of experience with the Charlotte distributed operating system 
[3,'4]. Like many other systems developed in the 1970s and early 1980s, Charlotte was designed 
to provide many of its services in user-level processes, rather than in the kernel.! The first 
generation of Charlotte servers was written in a conventional sequential language (Modula-1 [8], 
sequential features only), augmented with procedure calls to access kernel message-passing 
primitives. Problems with this approach soon became apparent, and suggested the need for a special 
programming language. Section 5 discusses these problems in detail, considering candidate 
solutions and justifying the Lynx approach. The remainder of this section enumerates the major 
issues, to establish context for the upcoming language description. 

Problems encountered in the construction of Charlotte servers were of three main types, all of 
which stem from invoking communication primitives through a subroutine library interface: 

Type checking and the marshalling of message parameters 
Charlotte kernel calls specify messages in the form of a location and a length. Buffer management 
is the programmer's problem, and the data sent in messages must be gathered and scattered 
explicitly, generally by using casts to overlay a record structure on an array of bytes. The code 
is awkward at best and depends for correctness on programming conventions that are not enforced 
by a compiler. 

Error handling 
Every Charlotte kernel call returns a status value that indicates whether the requested operation 
succeeded or failed. Different sorts of failures result in different values. A well written program 
must inspect every status and be prepared to deal appropriately with every possible value. It is not 
unusual for 30% of a carefully written server to be devoted to error checking and handling. Even an 
ordinary client process must handle errors explicitly, if only to terminate when a problem occurs. 

fcharlotte servers include a process and memory manager (the starter), a server-like front-end for the kernel (the kernjob), 
a command interpreter, a process connection facility, two kinds of file servers, a name server (the switchboard), and 
a terminal driver. 
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Conversation management 
Conversations between servers and clients often require a long series of messages. A typical 
conversation with a file server, for example, begins with a request to open a file, continues with 
an arbitrary sequence of read, write, and seek requests, and ends with a request to close the file. 
The flow of control for a single conversation could be described by simple, straight-line code 
except for the fact that the server cannot afford to wait in the middle of that code for a message 
to be delivered-it must be able to attend to other conversations. Charlotte servers therefore 
adopt an alternative program structure in which a single global loop surrounds a case statement 
that handles arbitrary incoming messages. This explicit interleaving of separate conversations is 
very hard to read and understand. 

Users of distributed systems other than Charlotte have encountered similar problems. As a result, 
most of the message-based operating systems still in use employ stub generators that augment the 
kernel call interface with a customized "wrapper" routine for each type of message in a program. 
Birrell and Nelson's Lupine stub generator [9] and the Accent Matchmaker [lo] are particularly 
worthy of note. Stubs can eliminate many of the problems with straightforward use of a kernel 
call library, but they still limit communication to a procedural interface, and they address the 
second and third problems above only in the context of a host language with well-designed 
mechanisms for exception handling and internal concurrency, something not available in the 
context of the Charlotte project. 

Upon surveying the state of the art in distributed programming languages [Ill, it became 
apparent that most existing notations had been oriented toward communication among the 
processes of a single distributed program, and that new problems would arise when attempting to 
communicate across program boundaries-with servers, for example. A language for inter-program 
communication needs to 

(1) perform type checking on messages, even when the identities of communication partners 
are not known at compile time; 

(2) support dynamic configuration of the connections between processes, even when some of 
the parties participating in the configuration are not aware of the use to which a connection 
will be put; 

(3) protect processes from each other, allowing them to choose their communication partners 
and the extent to which they trust them; and 

(4) provide a lightweight thread mechanism as a conversation structuring tool (as opposed to 
a means of expressing genuine parallelism), with a careful integration of the primitives for 
thread management and interprocess communication. 

These issues guided the development of Lynx, and are woven throughout the material contained 
in the following section. 

3 .  LANGUAGE DESIGN 

Links give Lynx its name, and constitute the channels over which messages travel between 
processes. Implicit receipt of messages provides the principal mechanism for creating threads of 
control within a process. These two concepts are discussed in the first two subsections below, and 
are followed by a more detailed description of the mechanisms for dynamic configuration of the 
connections between processes and for checking message types. The integration of communication 
and thread management facilities forms the subject of the last two subsections, which address 
scheduling and referencing environments. 

3.1. Links 

Processes in Lynx are assumed to be independent and autonomous. Each process is separately 
compiled. At run time, processes communicate only by sending messages to each other over 
two-directional communication channels called links. Each process begins with an initial set of 
arguments, presumably containing at least one link to connect it to the rest of the world. Each link 
has a single process at each end. As an example of a simple application, consider a producer process 



that creates data of some type and sends that data to a consumer. Each process begins with a link 
to the other. The producer looks like this: 

process producer (consumer : link); 
type data =whatever; 
entry transfer (info : data); remote; 
function produce: data; 
begin 

-whatever 
end produce; 
begin-producer 

loop 
connect transfer (produce I )  on consumer; 

end; 
end producer. 

The word "entry" introduces a template for a remote operation. The general syntax is 

entry opname (request-parameters) : reply-parameter-types ; 

In this case, the transfer entry has no reply parameters. 
An entry header can be followed by a body of code, or by the word "remote." In our case, we 

have used the latter option because the code for transfer is in another process. Like the word 
"forward" in Pascal, "remote" can also indicate that the code will appear later in the current 
process, either as a repeated entry declaration or as the body of an accept statement, as in the 
consumer below.? 

The connect statement is used to request a remote operation. The vertical bar in the argument 
list separates request and reply parameters. 

connect opname (expr-list \var-list) on linkname; 

The current thread of control in the sending process is blocked until a reply message is 
received, even if the list of reply parameters is empty. Our producer has only one thread of 
control (more complicated examples appear below), so in this case the process as a whole is 
blocked. 

The consumer looks like this: 

process consumer (producer: link); 
type data = whatever; 
entry transfer (info: data); remote; 
procedure consume (info: data); 
begin 

-whatever 
end consume; 
var buffer: data; 
begin-consumer 

loop 
accept transfer (buffer) on producer; reply; 
consume (buffer); 

end; 
end consumer. 

The accept statement is used to provide an operation requested by the process at the 
other end of a link. In our example, the producer uses a connect statement to request a transfer 

-- - 

?This overloading of the word "remote" has proven confusing to users, and is probably a mistake. 
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operation over its link to the consumer, and the consumer uses an accept statement to provide this 
operation. 

accept opname (var-list) on linkname; 
. . . 

reply (expr-list ); 

The reply clause at the end of the accept statement returns its parameters to the process at the other 
end of linkname and unblocks the thread of control that requested the operation opname. The 
parameter types for opname must be defined by an entry declaration. The accept and reply portions 
of  the statement are syntactically linked. Arbitrary statements can be nested inside, including 
additional accept-reply pairs. In our example, the consumer has nothing it needs to do before 
replying. 

A link can be thought of as a resource. In our example neither the consumer nor the producer 
can name the other directly. Each refers only to the link that connects them. The consumer, having 
received all the data it wants, might pass its end of the link on to another process. Future transfer 
operations would be provided by the new consumer. The producer would never know that anything 
had happened. 

A variable of type link really identifies a link end. Link ends are created in pairs, by a built-in 
routine called newlink. Our producer/consumer pair could be created with the following sequence 
of statements: 

var L:link; 
begin 

startprocess ("consumer", newlink (L)); 
startprocess ("producer", L); 

To make it easy to write sequences of code such as this one, newlink returns one of the link ends 
as its function value (here passed on immediately to the consumer) and the other through a 
reference parameter (here saved temporarily in L so that it can be passed to the producer in the 
second call to startprocess). 

Since messages are addressed to links, not processes, it is not even necessary to connect the 
producer and consumer directly. An extra process could be interposed for the purpose of filtering 
or buffering the data. Neither the producer nor the consumer would know of the intermediary's 
existence. 

startprocess ("consumer", newlink (L) ); 
startprocess ("buffer", L, newlink (M)); 
startprocess ("producer", M); 

Code for a buffer process appears in Section 3.5. 

3.2. Implicit receipt 

In our producer/consumer example, each process contains a single thread of control. In the 
consumer, this thread accepts its transfer requests explicitly. It is also possible to accept requests 
implicitly, and the choice between the two approaches depends largely on whether we view the 
consumer as an active or a passive entity. 

If we think of the producer and consumer as active peers, then it'makes sense for the consumer 
to contain a thread that "deliberately" waits for data from the producer. If we choose, however, 
to think of the consumer as a server (a spooler for a printer, perhaps), then we will most likely 
want to write a more passive version of the code-one that is driven from outside by the availability 
of data. Since a demand-driven spooler is likely to have multiple clients, it also makes sense to give 



each incoming request to a separate thread of control, and to create those threads automatically. 
Our consumer can be re-written to use implicit receipt as follows: 

process consumer (producer: link); 
type data =whatever; 
procedure consume (info: data); 
begin 

-whatever 
end consume; 
entry transfer (info: data); 
begin 

reply; -allows producer to continue 
consume (info); 

end transfer; 
begin-consumer 

bind producer to transfer; 
end consumer. 

Here we have provided a begin.. .end block for the transfer entry procedure, instead of declaring 
it remote. Each connect to transfer will create a new thread of control in this version of the 
consumer. As with the reply portion of an accept statement, the reply statement of the entry causes 
the run-time support package to unblock the thread of control (in the producer) that requested 
the current operation. The replying thread continues to exist until it runs off the end of its entry. 
The run-time system is required to detect a thread that attempts to reply twice, or erroneously 
terminates before replying. The producer shown above can be used with either version of the 
consumer, without modification. 

The bind statement serves to create an association between links and entry procedures: 

bind link-list to entry-list; 

Only those operations provided by accept statements and bindings to entries can be requested by 
the process at the far end of a link. Connect statements that request a non-existent operation will 
cause an Ada-like exception in the requesting thread of control. 

Bindings can be broken as well as made: 

unbind link-list from entry-list ; 

The ability to manipulate bindings at run time is a powerful mechanism for access control. Each 
process has complete control over which of its communication partners can invoke which 
operations at which points in time. Reference [l] contains a Lynx solution to the classic 
readerslwriters problem. This solution permits a client to obtain read and/or write access to a 
resource and perform an arbitrary sequence of operations before relinquishing that access. The 
sequence of operations need not be known at the time that access is obtained; a client can, for 
example, obtain read access, read an index, and read a location calculated from that index in one 
protected session. Solving the same problem in Ada [12] requires a complicated system of 
unforgable keys, implemented in user code. 

It is the ability of a server to refer to links by name that permits it to implement access control. 
A server can, if desired, consider clients as a group by gathering their links together in a set and 
by binding them to the same entries. It is never forced, however, to accept a request from an 
arbitrary source that happens to know its address. Of course, a server has no way of knowing which 
process is attached to the far end of a link, and it has no way of knowing when that far end moves, 
but this is in keeping with the concept of process autonomy. A link to a client represents an 
abstraction (a connection over which to provide a service) every bit as much as a link to a server 
represents a connection over which a service is provided. In fact, it is entirely possible for two 
processes to act as servers for each other, with a single link between them. A file server, for example, 
might use a link to a sort utility in order to maintain indices. The sort utility for its part might 
use the file server as a place to store large data sets. 
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Symmetric, two-directional links strike a compromise between absolute protection on the one 
hand and simplicity and flexibility on the other. They provide a process with complete run-time 
control over its connections to the rest of the world, but limit its knowledge about the world to 
what it hears in messages. A process can confound its peers by restricting the types of requests it 
is willing to accept, but the consequences are far from catastrophic. Exceptions are the most serious 
result, and exceptions can be caught. Even an uncaught exception has only a localized effect: it 
kills the current thread. In a server, this serves to terminate the conversation with the client whose 
communication failed. 

3.3. Link movement 

To move a link end in Lynx, a process need only enclose it in a message (via connect, 
accept, reply, or startprocess). Once the message is received, the sending process can no longer 
use the transferred link, but the receiving process can. The compiler provides the run-time 
system with enough information about types that this transfer is guaranteed to work for 
messages containing arbitrary data structures (including variant records) that might have links 
inside. 

There are many reasons to change the connections between processes at run time. A link 
between a server and a client can be passed on to a new client when the first one does not 
need it any more. It can also be passed on to a new server (functionally equivalent to the old 
one, presumably) in order to balance work load or otherwise improve performance. In a large 
distributed environment, many servers are likely to be implemented by dynamic squads of 
processes [13]. These processes may move their end of a client link frequently, in order to 
connect the client to the member of their group best able to serve its requests at a particular point 
in time. 

Certainly a newly-created process must be connected to existing processes that can provide it 
with input and output. In a single, large application, it is also common for computation to move 
through a series of distinct phases, each of which requires a different set of processes and 
connections. In a robust, geographically distributed system, a process that is unable to obtain a 
service from its usual source (because of hardware failures, for example, or overloaded communi- 
cation lines) may wish to connect to an alternative server. 

One of the most common uses of link movement is shown in Fig. 1. A name server process, or 
switchboard, maintains a registry of server names and links. Clients in need of a particular service 
can ask the name server for a link on which to request that service. The command interpreter, or 
shell, is likely to provide each newly-created process with a link to the switchboard, from which 
it can obtain links to whatever other servers it may need. 

To find, for example, a line-printer spooler, client C would send a message to the switchboard: 

connect find-server ("Ip-spooler" 1 spooler-link) on switchboard-link; 

Fig. 1 .  Querying the switchboard. 



Upon receiving this request, the switchboard would scan its registry for a server that has advertised 
the name "lp-spooler". Assuming such a server exists, the switchboard would create a new link, 
pass one end on to the server in a newclient message, and return the other end to the client: 

entry find-server (server-name: string) : link; 
var server, rtn : link; 
begin 

server:= lookup (server-name); 
if server = nolink then reply (nolink); 
else connect newclient (newlink (rtn) I )  on server; reply (rtn); 
end; 

end find-server; 

Newlink returns one link end as its function return value (which here becomes a parameter to the 
newclient operation) and the other through a reference parameter. Each server that wishes to accept 
new clients must provide the switchboard with a link over which it is willing to accept newclient 
requests. 

3.4. Type checking 

To a large extent, links are an exercise in delayed decision making. Since the links in 
communication statements are variables, requests are not bound to communication paths until the 
moment they are sent. Since the far end of a link can be moved, requests are not bound to receiving 
processes until the moment they are received. Since the set of valid operations depends on 
outstanding bindings and accepts, requests are not bound to receiving threads of control until after 
they have been examined by the receiving process. Only after a thread has been chosen can a request 
be bound to the types it must contain. Checks must be performed on a message-by-message basis. 

Run-time type checking of messages provides three distinct advantages over compile-time 
checking of connections: 

(1) A process can hold a large number of links without knowing what types of messages they 
may eventually carry. A name server, for example, can keep a link to each registered 
process, even though many such processes will have been created long after the name server 
was compiled and placed in operation. 

(2) A process can use the same link for different types of messages at different times, or even 
at the same time. It need not declare a conservative superset of those types at compile time, 
nor ever worry about receiving a message of a currently-inappropriate type at run time. 

(3) With an appropriate choice of semantics for type equivalence, the compiler can be designed 
to work without a global database of types. Processes can be compiled in any order, at 
any site in a distributed environment, without requiring the compiler to maintain state 
between compile runs, or to keep that state consistent. 

Type checking in Lynx is based on structural equivalence. Two types are considered the same 
if they contain the same internal structure-the same set of primitive types composed with the same 
higher-level type constructors. The compiler can provide the run-time system with a "canonical" 
representation of each type, so that type checking becomes a simple comparison for equality of 
canonical forms. 

Since canonical forms can be of arbitrary length, run-time comparisons are potentially costly. 
To minimize this cost, the Lynx compiler uses a hash function to compress its type descriptions 
into 32-bit codes [5 ] .  Hashing reduces the cost of type checking to half a dozen instructions per 
remote operation. It introduces the possibility of undetected type clashes,? but with a good hash 
function the probability of this problem is less than one in a billion. 

A second potential problem with run-time checking is that programming errors that would have 
been caught at compile time in other languages may not be noticed until run time in Lynx. This 
cost, too, is small, and easily justified by the type system's simplicity and flexibility. As a practical 

fin the event of an undetected type clash, the sender and receiver of a message will apply incompatible interpretations to 
the data in a message, with unpredictable results. 
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matter, we tend to rely on shared declaration files to ensure that run-time clashes are rare. We catch 
most type errors at compile time and the rest (with high probability) at run time, much more easily 
than we could catch all of them at compile time. 

A final cost of the Lynx approach to types is the somewhat liberal checking implied by structural 
equivalence. Variables with the same arrangement of components will be accepted as compatible 
even if the abstract meanings of those components are unrelated. Lynx shares this form of checking 
with many other languages, including Algol-68, Smalltalk, Emerald, and many dialects of Pascal. 
We are happy with structural equivalence. No type system, no matter how exacting, can ensure 
that messages are meaningful. Type checking can be expected to reduce the likelihood of data 
misinterpretation, not to eliminate it. 

3.5. Thread management 

Though the implicit-receipt version of our consumer process will contain a thread for every 
invocation of the transfer operation, it is likely that only one such thread will exist at a time. For 
a slightly more complicated example, consider the buffer process mentioned above. Interposed 
between a producer and consumer, the buffer serves to smooth out fluctuations in their relative 
rates of speed. 

process buffer (consumer, producer : link); 
const size = whatever; 
type data = whatever; 
va r 

buf : array [I . .size] of data; 
firstfree, lastfree : [I . .size]; 

entry transfer (info: data); 
begin 

await firstfree() lastfree; -not full 
buf [firstfree] := info; 
firstfree := firstfree % size + 1 ; 
reply; 

end transfer; 
var info :data; 
begin 

firstfree:= 1 ; 
lastfree := size; 
bind producer to transfer; 
loop 

await lastfree % size + 1 ()firstfree; -not empty 
lastfree := lastfree % size + 1 ; 
info:= buf [lastfree]; 
connect transfer (info1 ) on consumer; 

end; 
end buffer. 

Every Lynx process begins with a single thread of control, executing the process's main 
begin.. .end block. New threads are created in response to incoming requests on links bound to 
entries, and may also be created explicitly by "calling" an entry locally. 

The threads of control within a single process do not execute in parallel; each process continues 
to execute a single thread until it blocks. The process then takes up some other thread where it 
last left off. If no thread is runnable, then the process waits for completed communication to change 
that situation. 

Threads may block (1) for communication (connect, accept, reply), (2) for completion of nested 
threads (when leaving a shared scope), (3) for a reply from a locally-created thread, and (4) for 
an explicitly await-ed condition. In the bounded buffer example, the await statement blocks the 
current thread until the buffer is non-empty or non-full, as appropriate. There is no need to worry 
about simultaneous access to buf, firstfree, or lastfree, because the coroutine-style semantics 



guarantee that only one thread can execute at a time. In the file server example of Section 4.1, the 
coroutine semantics also guarantee that threads are at predictable places in the code when an 
exceptional condition occurs. 

Of course, the mutual exclusion of threads in Lynx prevents race conditions only between context 
switches. In effect, Lynx code consists of a series of critical sections, separated by blocking 
statements. Since context switches can occur inside subroutines, it may not be immediately obvious 
where those blocking statements are, but the compiler can help by identifying them in listings. 
Experience to date has not uncovered a serious need for inter-thread synchronization across 
blocking statements. For those cases that do arise, a simple Boolean variable in an await statement 
performs the work of a binary semaphore. 

A link end may be bound to more than one entry. The bindings need not be created at the same 
time, nor are they incompatible with use of the link end in one or more outstanding accept 
statements. It is therefore possible for separate threads to carry on independent conversations on 
the same link concurrently. The run-time support package keeps track of the correspondence 
between requests and replies, routing each to the appropriate thread. As an example, suppose the 
run-time system implements the startprocess statement by sending a request to a process-creation 
server that is itself written in Lynx. Each such request might create a new thread of control within 
that server. The server would need a link to a file server, over which to read executable files; 
concurrent process-creation requests, managed by different threads, would share that link 
transparently. 

When all of a process's threads are blocked, run-time support routines attempt to receive 
a message on any of the links for which there are outstanding accepts or bindings, or on 
which replies are expected for outstanding connects. Incoming replies can only have been 
sent in response to an outgoing request. Each such reply can therefore be delivered to an 
appropriate thread of control. Incoming requests, by contrast, can be unexpected or unwanted. The 
operation name of a request is compared against those of the outstanding accepts and bindings 
for its link. If a match is found, then an appropriate thread can be made ready and execution can 
continue. If there are no accepts or bindings, then consideration of the message is postponed. If 
accepts or bindings exist, but none of them match the request, then the message is discarded and 
an exception is raised in the thread that executed the connect statement at the other end of the 
link. 

3.6. Stack management 

The syntax of Lynx allows entries to be declared at any level of lexical nesting. Non-global data 
may therefore be shared by more than one thread of control. The file server example in the 
following section uses one thread of control for every open file. Additional, nested threads 
implement writeseek, stream, and readseek operations. This sharing of non-global data can be 
conceptualized as a so-called cactus stack. 

A cactus stack is actually a collection of stacks, prefixes of which may be shared. Figure 2 
illustrates a situation in which two threads have been created in entry A, and one of them has nested 
threads in entries B and C. Both of the threads executing A will have access to global variables. 
They will, of course, have access to their own local variables as well. If entry A serves to implement 

process G ... 
B C entry A ... 

entry B ... 
entry C ... 

begin -- A ... 
A1 A2 bind clientlink ^ /  to B, C; 

G 

Fig. 2. A cactus stack. 
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process f i l e s e r v e r  (switchboard : l i n k ) ;  
type  s t r i n g  - whatever; bytes - whatever; 

en t ry  open (filename : s t r ing;  readflag,  wr i te f lag ,  seekflag : Boolean) : l ink;  
va r  f i l e l n k  : l ink;  readpt r ,  wr i t ep t r  : integer;  
exception seeking; 

procedure put (data : bytes; filename : s t r ing;  wr i t ep t r  : i n t ege r ) ;  
ex terna l  ; 

function ge t  (filename : s t r ing;  readptr  : in teger)  : bytes; external;  
function avai lab le  (filename : s t r i ng )  : Boolean; external;  

en t ry  writeseek (newptr : in teger)  ; 
begin 

wr i t ep t r  :- newptr; reply; 
end writeseek; 

en t ry  stream (data : bytes)  ; 
begin 

put (data,  filename, wr i t ep t r ) ;  wr i t ep t r  +:- 1; reply; 
end stream; 

ent ry  readseek (newptr : i n t ege r ) ;  
begin 

readpt r  := newptr; announce seeking; reply; 
end readseek; 

begin -- open 
i f  ava i l ab l e  (filename) then 

reply (newlink ( f i l e l n k )  ) ; -- r e l ea se  c l i e n t  
readpt r  :- 0; wr i t ep t r  :- 0; 

i f  wr i t e f l ag  then 
i f  seekflaq then bind f i l e l n k  t o  writeseek; end; 
bind f i l e l n k  t o  stream; 

end; 

i f  readflag then 
i f  seekflag then bind f i l e l n k  t o  readseek; end; 
loop 

begin 
connect stream (get  (filename, readpt r )  1 ) on f i l e lnk ;  
readpt r  +: - 1; 

when seeking do 
-- nothing; t r y  again a t  new loca t ion  

when REMOTEDESTROYED do 
e x i t ;  -- leave loop 

end; 
end; -- loop 

end; -- i f  readf lag  
e l s e  -- not ava i l ab l e  

reply (nolink) ; -- re lease  c l i e n t  
end; 
-- cont ro l  w i l l  not  leave 'open' u n t i l  nested e n t r i e s  have died 

end open; 

en t ry  newclient ( c l i e n t  : l i n k ) ;  
begin 

bind c l i e n t  t o  newclient, open; reply; 
end newclient; 

begin -- main 
bind switchboard t o  newclient; 

end f i l e s e r v e r .  

Fig. 3. Stream-based file server in Lynx. 

a non-trivial service, an instance of A (call it A2) may provide its client with a call-back 
facility by binding a link to nested entries. Incoming requests for those entries will create 
concurrent threads inside the context of A2. These threads will share access to A2's local 
variables. 



In the illustration, each segment of the cactus stack represents a subroutine or entry activation. 
Each branching point corresponds to the creation of a nested thread of control. There is, therefore, 
one thread per leaf of the structure, and one thread for every internal segment (other than the root) 
that lies at the top of a trunk. From the point of view of any one thread, the path back down to 
the root looks like a normal stack. 

A Lynx thread blocks if it reaches the end of a scope in which nested threads or bindings are 
still active. This rule ensures that segments never "disappear" out of the middle of the structure. 
In Fig. 2, a thread executing entry A will be suspended automatically when it reaches the end of 
its scope, continuing only when there is no further possibility of creating threads in entries B and 
C (e.g. when clientlink is destroyed). 

4.  EXAMPLES 

4.1. A simple stream -based file server 
A realistic example of the use of threads and links can be seen in Fig. 3, which contains simplified 

code for a file server process under Charlotte. The original Charlotte file server was written in a 
sequential subset of Modula, with library calls for communication. It comprised just under 1000 
lines of code, and was written and rewritten several times over the course of a 2-year period. It 
was a constant source of trouble. By comparison, the Lynx fileserver is just over 300 lines, and 
was written in only 2 weeks. It would have required even less time if it had not been undertaken 
concurrently with debugging of the language implementation. 

Each of the problems described in Section 2 appeared in the original server. Buffers were 
sometimes modified while the kernel was still busy sending them, or read before the kernel had 
finished receiving them. Changes to the server interface introduced undetected incompatibilities 
with existing clients, leading to mysterious behavior due to incorrect interpretation of messages. 
Equally mysterious behavior resulted when kernel call failures went unnoticed due to lack of return 
code checking. Changes that required the fileserver to communicate with another server were very 
hard to make: the easy alternative was to block the entire fileserver while the request completed; 
the better approach often required major reorganization of the code to get back into the central 
message dispatch loop in the middle of a deeply nested function. The Lynx fileserver, in contrast, 
is easy to read and maintain. 

The code of Fig. 3 employs the newclient convention of Section 3.3. We have written the server 
to take a single initial argument: a link to the switchboard name server. Additional clients are 
introduced by invocations of newclient over links from the switchboard or from clients. When 
a newclient request is received (line 48), the file server binds that link to an entry procedure for 
each of the services it provides. One of those entries, for opening files, is shown in this example 
(lines 3-47). 

Open files are represented by links. Within the server, each file link is managed by a separate 
thread of control. New threads are created in response to open requests. After verifying that its 
physical file exists (line 23), each thread creates a new link (line 24) and returns one end to its client. 
It then binds the other end to appropriate sub-entries. Among these sub-entries, context is 
maintained automatically from one request to the next. We have adopted the convention that data 
transfers are initiated by the producer (with connect) and accept-ed by the consumer. As we have 
seen, this asymmetry allows the transparent insertion of an intermediate filter or buffer. When a 
file is opened for writing the server plays the role of consumer. When a file is opened for reading 
the server plays the role of producer. 

In addition to a conventional mechanism for raising exceptions in a single thread of control, 
Lynx also permits one thread to cause an exception in another. In the file server example, this 
facility is used to handle seek requests in a file that is open for reading. Under the normal stream 
protocol, the file server will always attempt to transfer a block (with "connect stream.. .") as soon 
as the previous block has been received. In order to read blocks out of order, the client invokes 
a readseek operation. The thread that provides this operation uses an announce statement (line 
20) to interrupt the thread (line 36) that is trying to send the wrong block. 

Announce causes its exception to be felt in all and only those threads that have a matching 
handler on their current call chain. Because the seeking exception is declared inside the scope of 
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slaves 

Fig. 4. Checkers program structure. 

the open entry, there is a separate such exception for every open file. When the exception is 
announced, the sending thread retries its connect, using the updated file pointer. Since incoming 
requests (and readseek requests in particular) are received only when all threads are blocked, the 
thread that provides the readseek operation can be sure that the thread that is streaming data must 
be stopped at its connect statement. No race conditions can occur. 

To close an open file, a client need only destroy the link that represents the file.? Like an 
incoming message, destruction of a link by the process at the other end is noticed when all 
threads are blocked. Any thread currently attempting to use the destroyed link feels a 
REMOTEDESTROYED exception (caught at line 38 in the file server). Bindings for a destroyed 
link are broken automatically. These mechanisms suffice in this example to clean up the context 
for a file. 

4.2. A distributed game -playing program 

Using an implementation of Lynx on the BBN Butterfly multiprocessor, we have created a 
distributed program that plays the game of checkers (draughts). Since our principal goal was to 
evaluate Lynx and not to investigate the design of parallel algorithms, we adopted an existing 
parallelization of alpha-beta search [14]. 

The basic idea behind the algorithm can be seen in Fig. 4. There are three different kinds of 
processes. One process (the "master") manages the user interface (in our case, this is a graphic 
display under the X window system). A second process (the "midling") manages the parallel 
evaluation of possible moves. A third kind of process (the "slave") performs work on behalf of 
the midling. There is only one master and one midling. Performance is maximized when there is 
one slave for every available processor. 

Within the midling, one thread of control explores the first few level of the game tree. It 
constructs a data structure describing all of its possible moves, all of the possible subsequent moves 
by its opponent, all of its possible moves after that, and so forth. At a given depth in the tree 
(typically four or five levels), it enters board positions into a queue of work to be performed by 
slaves. 

?Destroy is a built-in procedure that takes a single parameter of type link. Variables accessing either end of a destroyed 
link become dangling references. Future attempts to use them may result in an exception or, depending on the 
implementation, use of an unintended link. 
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Each slave is represented by a separate thread in the midling. That thread repeatedly removes 
an entry from the work queue, sends it to a slave, and waits for the result. When that result comes 
back it updates the game tree, performs any necessary pruning (to throw away moves that are now 
known to be sub-optimal), and obtains a new entry from the queue. In order to avoid storing all 
of the top few levels of the (very large) game tree at once, the thread that creates the data structure 
blocks when the work queue is full. Game tree nodes are thus created on demand. Likewise, the 
threads that dispatch work to slaves will block when the work queue is empty. Despite the fact 
that the checkers player is a self-contained program, the midling bears a strong resemblance to a 
server. It would have been significantly more difficult to write the midling with a single thread of 
control. 

One consequence of the communication semantics of Lynx is that a process does not notice 
incoming messages until all of its threads are blocked. There is no way to receive a message 
asynchronously or to allow a high-priority message to interrupt the execution of lower-priority 
"background" computation. In the checkers program, performance is likely to improve if a slave 
can be interrupted when the midling discovers that its subtree has been pruned, or perhaps when 
it discovers new information that will help the slave do more pruning internally. For cases such 
as this, Lynx provides a low-cost polling function that can be used to determine if messages are 
pending. Slaves execute the statement 

await idle; 

at the top of an outer loop. Update messages from the midling are therefore received within a 
reasonable amount of time. 

Informal experiments with various problem parameters (number of tree levels in the midling, size 
of subtrees evaluated by slaves, frequency of update messages, etc.) have produced 10-20-fold 
speedups with 100 working slaves. The primary limiting factor appears to be that many of the 
subtrees that are evaluated in parallel would have been pruned off and never explored by the 
standard sequential algorithm. 

5 .  DISCUSSION 

As described in Section 2, motivation for Lynx grew out of experience with Charlotte, and in 
particular with three types of problems that arose in that experience. Section 5.1 attributes these 
problems directly to the use of subroutine libraries for interprocess communication. It notes that 
similar problems do not arise (at least not to such an extent) in procedural interfaces to more 
traditional kernel services, and explains how communication mechanisms can be improved by 
programming language support. Section 5.2 then argues that existing distributed languages are best 
suited to communication among the processes of a single parallel program, and discusses the 
techniques used in Lynx to extend the advantages of language-supported communication into a 
broader context. 

5.1. Message -passing languages 

Subroutines provide the natural mechanism for trapping into an operating system kernel for 
service, and for most services this mechanism works well. Experience suggests, however 
[4,9, 10, 151, that users do not find it acceptable for interprocess communication. The crux of the 
problem is that communication is significantly more complicated, from the user's point of view, 
than are most other kernel services. Recall the problems cited in Section 2: 

Type checking and the marshalling of message parameters 
Like file system read and write operations, library-based communication primitives generally 
transfer uninterpreted streams of bytes. The desire to impose structure on those bytes has often 
been a motivation for language-level file system interfaces, and that motivation applies even more 
strongly to messages. Communication statements in a language can make direct use of program 
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variables, eliminating the need to think about message buffers. The compiler for a message-pass- 
ing language can generate code to gather and scatter parameters. It can enforce type consistency 
with mechanisms used for separate compilation. 

Error handling 
Interprocess communication is more error-prone than other kernel operations. Message oper- 
ations may fail due to hard errors or to program bugs in a communication partner (failure to 
set appropriate permissions, for example, or to receive within an expected time frame). 
Fault-tolerant algorithms may allow a process to recover from many kinds of detectable failures, 
but it can be awkward to deal with those errors in line by examining kernel call return codes. 
A programming language can provide facilities for exception handling outside the normal flow 
of control. A single exception handler can protect a large number of communication statements. 
Certain kinds of errors may even be handled in the run-time support package, without ever 
becoming visible to the programmer (a process may have moved, for example, and the run-time 
package can obtain a forwarding address). 

Conversation management 
While a conventional sequential program rarely has anything interesting to do while waiting for 
a kernel call to complete, a process in a distributed environment is much more likely to be 
budgeting its time among multiple activities. A server, for example, may be working on behalf 
of multiple clients at once. It cannot afford to be blocked while waiting for a particular client 
to respond. The kernel can help by providing non-blocking sends and receives, but then the server 
begins to resemble a state machine more than it resembles straight-line code. The inevitable 
interleaving of separate conversations leads to very obscure programs. With appropriate facilities 
for concurrency, a programming language can allow separate conversations to be handled by 
separate threads of control. The run-time support package can be designed to include a dispatcher 
routine that examines each incoming message and makes it available to the appropriate thread 
automatically. 

In a more general sense, a message-based programming language can ease the life of the 
programmer by providing special communication syntax or by implementing useful side effects for 
communication statements. It would be difficult, for example, to provide the functionality of an 
Ada select statement [16] without its distinctive syntax. The select system call of Berkeley Unix, 
for example, is much less convenient to use. A less widely appreciated feature of Ada is its 
carefully-designed semantics for data sharing between tasks. The language reference manual 
requires a "shared" variable to have a single, consistent value only at the times when tasks exchange 
messages. An Ada implementation can choose to replicate variables at multiple sites and can allow 
the copies to acquire inconsistent values, so long as it reconciles the differences before the 
programmer can detect them-i.e. before the variables can be compared to a value in a message. 
In a similar vein, the compiler for NIL [17] tracks the status of every program variable and treats 
a variable that has just been sent in a message as if it were uninitialized. This facility allows the 
run-time system to implement message passing on a shared-memory machine by moving pointers, 
without worrying that a sender will subsequently modify the variables it has "sent". In Argus [18], 
one can send messages between processes that use completely different implementations of a 
common abstract type. The compiler inserts code in the sender to translate data into a universal, 
machine-independent format. It  inserts code in the receiver to translate that data back into an 
appropriate local version of the abstraction. Argus also arranges for each remote operation to be 
executed as a nested atomic transaction. 

The advantages of language-level communication can be realized either by desiging a language 
from scratch or by augmenting an existing language. Stub generators typify the latter approach. 
Stubs can diminish or eliminate several of the problems noted above, but they lack the full power 
of a language-based approach. Non-procedural syntax and special side effects are not available. 
Type checking requires an external mechanism (outside the compiler and the stub generator) to 
ensure that communication partners are compiled with respect to the same typed interface 
description. Errors of interest to the programmer can be propagated out of stub routines cleanly 
only with the help of a good exception-handling mechanism, which many host languages lack. 
High-quality conversation management requires both a lightweight thread facility (either in the 



host language or as part of a library package) and an appropriate synchronization mechanism.! 
Each of these problems is easy to address when designing a language from scratch. 

5.2. Inter -Program Communication 
The bulk of the literature on distributed languages focuses on the needs of distributed 

programs~collections of processes that are designed to work together and that constitute the pieces 
of a single, coherent whole. There are equally important scenarios, however, in which communi- 
cation must occur between processes that were developed independently. Distributed systems 
software provides one class of examples. Large-scale distributed applications provide another. 

In a distributed operating system the communication activity of a server process is at least as 
complicated, and often more complicated, than that of any user application. Furthermore, the 
presence of servers means that even the most self-contained of programs is likely to need to 
communicate occasionally with an independently-developed process about which it knows very 
little. Language support can make this communication much more convenient and safe, particu- 
larly if it matches the style of communication used within the program. In fact, the more one moves 
away from the centralized model of a traditional operating system and toward a distributed 
collection of servers, the harder it becomes to draw the line between one program and the next. 

Consider a large-scale application that spans a geographically distributed collection of machines. 
An airline reservation system is an obvious example. It is possible to conceive of such an application 
as a single distributed program, but the concept wears thin when one considers the large number 
of institutions involved. It is one thing to talk about a program developed by a single organization 
(the airline, say) and running on machines owned and operated by that organization. It is quite 
another to talk about a program that has pieces under the control of a thousand different travel 
agencies, possibly written in different languages and running on different types of hardware. If we 
consider the subject of automatic teller machines and the electronic transfer of funds between 
competing, autonomous banks, the concept of a single distributed program breaks down 
altogether. As internets proliferate, the software required for network management and routing is 
also developing into a multi-program distributed application. Further examples can be found in 
the Defense Department's need for global information gathering and communication, and in 
similar applications in weather forecasting and ground control for spacecraft. 

When compared to a multi-process program, the pieces of a multi-program application have 
unusually stringent needs for compile- and run-time flexibility, protection, and conversation 
management. 

Flexibility 
As noted in Section 3.4, run-time checking of message types allows a process to hold and 

manipulate links even when it does not know what types of messages they may carry. It also allows 
a link to be used for more than one type of message without compromising the quality of type 
checks. The compile-time alternative would lead to coarser checking by associating a type with each 
link, rather than each message. 

Regardless of whether type checking occurs at compile time or run time, server processes must 
be able to communicate with clients that did not exist when the server was designed. The obvious 
way to specify types for this communication is to create for each server an interface description 
that can be used when constructing clients. Unfortunately, maintaining a consistent set of interface 
descriptions across distributed sites becomes a non-trivial database management problem as soon 
as there is a significant number of servers or sites. If the compiler insists that a client be compiled 
with exactly the same set of declarations that were used to compile the server (this amounts to 
insisting on name equivalence for types), then the database problem becomes particularly severe: 
it requires unforgable, globally consistent version numbers that change when the data changes but 
not when it is copied. 

?Not all concurrent languages provide good facilities for writing a dispatcher. If the variety of messages for which a thread 
might be waiting is not fixed at compile time (if, for example, threads are able to wait for a message from a specific sending 
process, or with contents that satisfy some predicate), then the number of synchronization conditions on which a thread 
can wait must also be unlimited, or (equivalently) it must be possible to maintain a table of threads and desired message 
types and then unblock specified threads by name. A static set of synchronization conditions (as, for example, in Modula-1 
[a]) does not suffice. 
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Upward compatibility is also a problem. If a new comment is added to the interface description 
for the file server, we will certainly want to avoid recompiling every process that uses files. If a 
new routine is added without changing the behavior of the rest of the interface, we should also 
avoid recompilation. If changes are made to certain routines but not others, we should recompile 
only those processes whose behavior would otherwise be incorrect. It is possible to build a compiler 
that incorporates a formal notion of upward compatibility [19]. Such a compiler could implement 
run-time checking of name equivalence for types, but its construction would not be easy (even in 
the absence of multiple sites), and its checking would likely be costly. Lynx side-steps these 
problems by using structural type equivalence: no central database of types is needed, upward- 
compatible programs run without recompilation or sophisticated version tracking, and hashing 
makes run-time checks cheap. 

To facilitate run-time changes in interconnection topology, Lynx makes the link an explicit 
first-class object, and provides variables that name a link end. A link end can be used to represent 
an abstract resource that is distinct from both the process(es) that implement it and the operations 
it provides. Examples of resources include a file, a bibliographic database, a print spooler, and a 
process creation facility. 

Most other languages that allow connections to be reconfigured use variables that name 
processes or remote operations. The problem with naming processes is that a resource may be 
provided by a collection of processes; a distributed server may prefer that a user communicate with 
different constituent processes at different times, in order to balance workload or minimize 
communication costs. If users address their messages to processes, then the server cannot effect 
topology changes without informing the user; this violates abstraction. The problem with naming 
remote operations is that a resource may provide different sets of operations to different clients, 
or at different points in time. Even with facilities for bundling related operations (such as the 
resource and operation capabilities of SR [20]), the set of operations provided by an abstraction 
must be known to every client; servers cannot change the set of available operations to reflect 
changes in the state of the abstraction or to implement access control. If the resource is passed 
among clients, the desire for information hiding suggests that each client should be aware of only 
the operations it needs. 

Protection 

Pieces of a multi-program application cannot afford to trust each other. Even if malice is 
not an issue (as a result, let us say, of external administrative measures), each process must be 
able to recover from arbitrary errors on the part of its communication partners. Lynx provides 
such protection by incorporating message passing into a general-purpose exception-handling 
mechanism, with a built-in exception for each type of system-detectable error. It will always be 
possible, of course, for a process to send messages with incorrect data, but no language could 
prevent it from doing so. Errors propagated to the user in Lynx include type clashes, requests for 
an unavailable operation, termination of a communication partner, or destruction of a link that 
is currently in use (this latter error subsumes both hardware failures and software-requested 
destruction). 

The concept of an unavailable operation arises from run-time type checking and from the ability 
of a server to control the set of operations that are available over each individual link at every 
point in time. As noted in Section 3.2, the ability to provide different operations over different links 
allows a server to differentiate between clients-to provide them with differing levels of service or 
extend to them differing levels of trust. In addition, the ability to change the set of operations 
available over a given link at different points in time allows a server to implement access control 
by restricting or amplifying rights. Languages in which processes can send messages to arbitrary 
destinations, or in which a process is unable to specify the senders from whom it is willing to receive 
must generally resort to user-level mechanisms for probabilistic protection (e.g. with keys drawn 
randomly from a sparse set). Linda [21] is in some sense at the opposite extreme from Lynx. Its 
tuple space mechanism provides the equivalent of a completely-connected communication graph, 
freeing the programmer from all concern with links or their equivalent. At the same time, however, 
it sacrifices both message type checking and the access control so important to communication 
between untrusted programs. 



Conversation management 

In a language with multiple threads of control, the concurrency between threads can be used for 
two quite different purposes. It can serve to express true parallelism, for the sake of enhanced 
performance, or it can serve as a program structuring tool to simplify the exposition of certain kinds 
of algorithms. In a server process the latter purpose is particularly important; it captures the 
existence of independent, partially-completed conversations with multiple clients. Unless the 
hardware permits physical parallelism within an individual server process, the goal of running 
threads in parallel may not be important at all. It is of course attractive to have a lightweight thread 
mechanism that addresses both goals at once, but even the appearance of genuine parallelism 
introduces the need for fine-grained synchronization on data that is shared between threads. In a 
monitor-based language with a stub generator (e.g. Cedar [22]), the programmer must keep track 
of two very different forms of synchronization: monitors shared by threads in the same address 
space and remote procedure calls between threads in different address spaces. Dissatisfaction with 
a similar approach in Washington's Eden project [15] was a principal motivation for the 
development of the Emerald language [23]. Emerald provides an object-oriented model that 
eliminates the distinction between local and remote invocations, but it still requires monitors to 
synchronize concurrent invocations within a single object. SR [20] takes a different approach to 
unifying remote and local invocations, but still requires semaphores for certain kinds of local 
synchronization. 

No matter how elegant the synchronization mechanism, its use is still a burden to the 
programmer. In an implementation without true parallelism, pseudo-concurrent semantics for 
threads create the appearance of race conditions that should not even exist. They force the use of 
explicit synchronization on even the most simple operations.! Lynx abandons the possibility of true 
parallelism within processes in favor of simpler semantics. Threads in Lynx, like coroutines, run 
until they block. They are purely a program structuring tool. 

In either case, whether threads are said to run in parallel or not, a process that is communicating 
with several peers at once can benefit tremendously from a careful integration of thread 
management with the facilities for passing messages. Implicit receipt of messages, for example, 
allows a new thread of control to be created automatically in response to certain kinds of incoming 
messages, making it easier to associate a separate thread with each conversation with a client. 
Implicit receipt is characteristic of concurrent languages with stub generators, and is also found 
in Argus, Emerald, and SR. In Lynx it is extended to permit the creation of threads in a nested 
lexical context, so that related threads can share state. Because communication results in 
unpredictable delays, communication statements also constitute an obvious place at which to 
re-schedule threads. Because a process executes a different thread when the current one sends or 
receives, Lynx is able to provide the conceptual clarity of remote procedure calls between threads 
while allowing a process to appear from the outside as if it were using asynchronous, non-blocking 
messages. 

6 .  I M P L E M E N T A T I O N  E X P E R I E N C E  

An implementation of Lynx for Wisconsin's Charlotte operating system was completed in 1984. 
It was ported to a simplified version of Charlotte in 1987. Charlotte runs on a collection of VAXen 
connected by a token ring [24]. An implementation for the Chrysalis operating system on the BBN 
Butterfly multiprocessor was completed in 1986. Other designs exist for Unix (using TCPIIP) and 
for an experimental system known as SODA [25].  Implementation of the Unix design was begun 
but not completed; the SODA design exists on paper only. An implementation (based on the 
Chrysalis version) is being developed for the Psyche multiprocessor operating system [26]. In 
addition to providing a testbed for evaluating Lynx, our implementation experience has led to 

fTo increment a shared variable, for example, a Lynx thread need not worry about atomicity. It can assume that a context 
switch will not occur between its read and write. If we pretend that threads are truly parallel, then the program will 
not be "correct" unless we write code to specify that the physically atomic increment operation should also be 
semantically atomic. 
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unexpected insights into the relationship between a language run-time package and the underlying 
operating system [4,6], and also into the factors that contribute to message passing overhead [7]. 

6.1. The language /kernel interface 

A distributed operating system provides a process abstraction and primitives for communication 
between processes. A distributed programming language can regularize the use of the primitives, 
making them both safer and more convenient. The level of abstraction of the primitives, and 
therefore the division of labor between the operating system and the language support routines, 
has serious ramifications for efficiency and flexibility. Lynx is one of the few distributed languages 
that has been implemented on top of more than one operating system. 

Simply put, the implementation experience with Lynx is that the more primitive the operating 
system (within reason) the easier it is to build a language above it. When we set out to implement 
Lynx we did not expect to discover this result. Symmetric, two-directional links are directly 
supported by Charlotte. The original motivation for Lynx was to build a language around them. 
Yet despite the fact that Charlotte kernel calls provided links as a fundamental abstraction, the 
implementation of Lynx was extremely complicated and time-consuming. Several of the functions 
provided by the kernel were almost, but not quite, what the run-time package needed. For example, 
Charlotte's receive function provided no way to say that only reply messages were wanted (and 
not requests). A complicated protocol was required in the run-time package in order to reject and 
return unwanted requests. Similarly, the Charlotte send function allows links to be enclosed in 
messages, but only one at a time. Additional run-time protocol was required to packetize multi-link 
messages. 

By comparison, implementation of Lynx on top of Chrysalis was surprisingly easy, despite the 
fact that Chrysalis has no notion of a link or even of a message. What Chrysalis does provide are 
low-level facilities for creating shared memory blocks and for atomically manipulating flags and 
queues. The following section explains how links can be built from these primitives. The fact that 
Chrysalis supports shared memory is a significant but not deciding factor in it suitability for Lynx. 
Our paper implementation for the message-based primitives of SODA is equally simple. Our 
TCP/IP design lies somewhere in the middle. 

Like most distributed operating systems, Charlotte was designed with the expectation that 
programmers would invoke its primitives directly. This expectation appears to have been naive, 
but by no means unique. The proliferation of remote procedure call stub generators suggests that 
users of a wide range of message-passing operating systems have found their primitives too 
primitive to use. Unfortunately, the creation of interfaces that are almost usable for day-to-day 
programming has meant that substantial amounts of functionality and, consequently, flexibility, 
have been hidden from the user. Remote procedure calls may work, but alternative approaches to 
naming, buffering, synchronization, error recovery, or flow control are generally not available. 

Our experience with Lynx suggests that an operating system kernel should either be designed 
to support a single high-level language (as, for example, in the dedicated implementations of Argus 
[27], Linda [28], and SR [20]), or else should provide only the lowest common denominator for 
things that will be built upon it. A middle-level interface is likely to be both awkward and slow: 
awkward because it has sacrificed the flexibility of the more primitive system; slow because it has 
sacrificed its simplicity. We recommend low-level kernels because they can maintain flexibility 
without introducing costs. 

6.2. The significance of hints 

Within the Charlotte kernel, the implementation of link movement was a major source of 
complexity. A decision was made early in the design process that the kernel at each end of a link 
would know the location of the other end at all times. An efficient, symmetric protocol for moving 
links was eventually devised, but it was surprisingly subtle. It is possible for both ends of a link 
to be in motion at once, and the interaction of link movement with link destruction, message 
transmission, and the cancellation of send and receive requests complicates the situation further. 

In the Lynx implementation designed for SODA, processes keep only hints regarding the 
locations of the other ends of links. When moving a link end, a process sends an update notice 
to the suspected location of the other end, informing it of the move. With both ends of a link in 
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Fig. 5. Chrysalis link implementation. 

motion at once, update notices can be lost. A process that discovers its hint to be incorrect must 
resort to a broadcast mechanism for link-end location discovery. The resulting protocol is 
substantially simpler than the one employed in Charlotte. 

Previous papers have cited this experience as evidence that "hints can be better than absolutes" 
[6]. The caveat in this lesson is that the correctness of the overall algorithm must not depend on 
the hints. If the work they facilitate is important, it must be possible to detect when they fail, and 
there must be a fallback mechanism that can be counted on to work. 

A Lynx implementation on SODA could employ two levels of fallback, one utilizing unreliable 
hardware broadcast, the other a reliable but expensive broadcast protocol. In a Lynx implemen- 
tation for Unix, operation over potentially long-haul TCP connections would preclude the use of 
broadcast. Our Unix design therefore employs the Charlotte method of absolutes. It creates a single 
TCP connection between every pair of processes that share one or more links. A handshaking 
protocol implemented on top of this connection multiplexes as many links as necessary, moves their 
ends when required, and implements the requestlreply message screening that was unavailable in 
Charlotte. Send and receive requests are never cancelled. The basic request-reply protocol employs 
8 different message types, including negative and positive acknowledgments (This is the same set 
of messages types used in the Chrysalis implementation, described in the following section.) Link 
movement requires 3 more messages types, one of which is used only when passing a link to a new 
child process as a command-line argument. The link movement protocol employs 4 states and 9 
transitions; a link end can be valid, invalid, in transit, or "floating", which means that the link 
is moving at both ends. 

6.3. The Chrysalis and Psyche implementations 

The Chrysalis implementation of Lynx consists of a cross compiler that runs on a host machine 
and a run-time support package that implements links in terms of Chrysalis primitives. For 
compatibility reasons, and to simplify the implementation, the compiler generates C for "intermedi- 
ate code". Errors in the Lynx source inhibit code generation, so the output, if any, will pass through 
the C compiler without complaint. Programmers are in general unaware of the C back end. The 
compiler is internally conventional, comprising approx. 18000 lines of Pascal. The run-time support 
package comprises 5600 lines of C and 300 lines of assembler, the bulk of which is devoted to 
message passing, thread management, and exception handling. 

Special measures are required for stack management, to support the sharing of non-global data 
among threads. One approach would be to place each trunk of a cactus stack in single, contiguous 
array, allocated when its thread is created. This would require, however, that the space needs of 
a thread be known in advance, or estimated liberally, with considerable waste. An attractive 
alternative is to allocate each individual activation frame dynamically. A caching strategy for 
frames makes allocation relatively inexpensive, but further optimization is still desirable. As it 
parses its input files, the Lynx compiler keeps track of which subroutines contain statements that 
may cause a thread switch. Space for such routines must be allocated in the cactus stack, since 
returns needs not occur in LIFO order. For routines that cannot cause a thread switch, however, 
space may be allocated on an ordinary stack. In practice most subroutines (and particularly those 
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that are frequently called) can be seen to be sequential. The coroutine-like semantics of threads 
in Lynx allow these routines to be implemented at precisely the same cost as in conventional 
sequential languages. 

For message passing, every process in the Chrysalis implementation allocates an atomic queue 
(provided by the operating system) when it first begins execution. This queue is used to receive 
notifications of messages sent and received on any of the process's links. A link is represented by 
a block of shared memory, mapped into the address spaces of the two connected processes (see 
Fig. 5). The shared memory object contains buffer space for a single request and a single reply in 
each direction. Since dynamic allocation and re-mapping of message buffers would be prohibitively 
expensive, messages are limited to a fixed maximum length, currently 2000 bytes. Each process 
keeps an internal list of the threads that are waiting for buffers to be emptied or filled. 

In addition to message buffers, each link object also contains a set of flag bits and the names 
of the atomic queues for the processes at each end of the link. When a process gathers a message 
into a buffer or scatters a message out of a buffer into local variables, it sets a flag in the link object 
(atomically) and then enqueues a notice of its activity on the atomic queue for the process at the 
other end of the link. When all of the process's threads are blocked, it attempts to dequeue a notice 
from its own atomic queue. The Chrysalis kernel, which implements queue operations, blocks the 
process if the queue is empty and unblocks it when the first new notice is enqueued. 

The flag bits permit the implementation of link movement. Whenever a process dequeues 
a notice from its atomic queue it checks to see that it owns the mentioned link end and 
that the appropriate flag is set in the corresponding object. If either check fails, the notice is 
discarded. Every change to a flag is eventually reflected by a notice on the appropriate atomic 
queue, but not every queue notice reflects a change to a flag. A link is moved by passing the 
(address-space-independent) name of its memory object in a message. When the message is received, 
the sending process removes the memory object from its address space. The receiving process maps 
the object into its address space, changes the information in the object to name its own atomic 
queue, and then inspects the flags. It enqueues notices on its own queue for any of the flags that 
are set. 

The Psyche implementation of Lynx, currently in the planning stage, will resemble the Chrysalis 
version. The principal difference is that instead of using atomic queues, the Psyche version will rely 
on a protectedprocedure call mechanism that allows a process to invoke protocol operations in the 
run-time package of a communication partner directly, rather than enqueuing a notice indicating 
that the partner should perform the operation itself. If the partner process is blocked pending 
completion of a communication request, the protected procedure call mechanism will serve to 
unblock it. 

The principal advantage of this approach is that some of the work currently performed by the 
partner that reaches a rendezvous last (e.g. sends a message that is already wanted, or receives a 
message that was already sent) can in Psyche be performed by the partner that reaches the 
rendezvous first. This change should serve to reduce the latency of many message transfers. It does 
not constitute a security loophole because operations invoked in the run-time support of a 
communication partner execute in the partner's address space, using the partner's code. 

6.4. The cost of message-passing 

In our Butterfly implementation of Lynx, the simplest remote operations complete in < 2  ms. 
To place this figure in perspective, a call to an empty procedure takes 10 ps on an individual 
Butterfly node. An atomic test-and-set operation on remote memory takes 35 ps. An atomic 
enqueue or dequeue operation takes 80 us. In the following table, nullop is a trivial remote 
operation with no parameters. Bigop is the same as nullop, but includes 1000 bytes of parameters 
in each direction. Explicit receipt uses an accept statement; implicit receipt uses a binding to an 
entry. 

Explicit receipt: Implicit receipt: 
process nodes process nodes 

different same different same 
nullop 1.80 ms 2.58 ms 2.04 ms 2.76 ms 
big o p 3.45 ms 4.21 ms 3.72 ms 4.42 ms 



21% - actual communication 
Clearing and setting flag bits (12.4). postin notices on queues 
(7.3). calculating locations of message buffers (1.0). 

22% - thread management 
Thread queue management (4.8). queue searching (dispatcher) 
(3.1). context switches (6.4). cactus stack frame allocation (6.8). 
buffer acquisition (1.3). 

1 1% - bookkeeping 
Keeping track of which threads want which sorts of services and 
which threads are willing to provide them. 

18% - checking and exception handling 
Verifying link validity (3.2). verifying success of kernel calls 
(9.2). type checking (0.8). establishment of Lynx exception 
handlers (4.4). initialization of stack frame exception information 
(0.6). 

6% - protocol option testing 
Checking for link movement (2.0). asynchronous notifications 
(1.0). premature requests (1.6). optional acknowledgments (1.8). 

22% - miscellaneous overhead 
Timing loop overhead (0.6). dispatcher loop and case statement 
overhead (1.4), procedure-call linkage (14.7). caching of 
constants in registers (5.6). 

Fig. 6 .  Contributors to message-passing overhead (in % of total work performed). 

Inter-node operations finish more quickly than intra-node operations because the two processors 
can overlap their computations. Implicit receipt costs more than explicit receipt because of the need 
to create and destroy a thread. We have reason to believe that these times could be reduced by 
additional tuning, but it seems unlikely that the lowest figure would drop below a millisecond and 
a half. A remote invocation is thus two orders of magnitude more expensive than a local procedure 
call, a result that is consistent with most other well-tuned message-passing systems. 

Like many researchers, we found the cost of message passing to be both frustrating and puzzling. 
Not only did we wish that things worked faster, we also did not understand why they worked at 
the speed they did. In order to obtain a better explanation of "where the time goes", we profiled 
benchmark programs at the instruction level and assigned each individual instruction to one of 23 
different functional categories. The results of this profiling are summarized in Fig. 6. A timeline 
for a 2.0 ms remote operation appears in Fig. 7. The timeline indicates the amount of time devoted 
to each of the phases of a remote invocation, but provides relatively little insight into the expense 
of individual language features involved in message passing. 

Procedure call overhead and flag bit manipulation are the only single items in the profiling table 
that account for more than 10% of the total communication overhead. Small savings could 
undoubtedly be realized here and there, but there does not seem to be any way to achieve significant 
performance gains without eliminating language features. Work by other researchers tends to 
confirm the hypothesis that data transmission times do not dominate the cost of practical 
message-passing systems [29-321. High-level semantic functions such as addressing, dispatching, 
bookkeeping, testing and error handling are at least as significant, and often more so. One 
millisecond appears to be a nearly universal lower bound on round-trip communication times with 
mid-1980s microprocessor-based architectures, suggesting that it may be extremely difficult to 
provide attractive message-passing semantics in significantly fewer than 1000 instructions. 

Recent implementations of lightweight remote procedure call [33,34] have broken the 1000 
instruction barrier decisively by pre-computing significant portions of the invocation mechanism 
during an explicit connect-to-service operation. This technique requires extensive kernel support, 
however, and does not generalize in any obvious way to languages that must be implemented on 
a general-purpose operating system, or that lack a well-defined concept of connecting to a service. 

7 .  SUMMARY A N D  CONCLUSION 

Lynx is a programming language providing convenient, typesafe message passing among 
application and server processes in a distributed environment. Numerous programs have been 
written in Lynx over the course of the past 5 years, both as research projects and as coursework 



Lynx distributed programming language 

prepare request message 

520 
context switch to dispatcher 

601 
wait 

687 

context twitch to dispatcher 1771 
1812 

Â¥Mpcc reply 1853 

post REP-ACK 

- 7 5  context switch to saver - 756 
inspect request 

- 871 

post REQ-ACK 

prepare reply message 

post REP 

- 1845 
context switch to dispatcher 

- 1924 
wait 

- 2010 

Fig. 7. Timeline for a simple remote invocation. 

[35,36]. In comparison to programs that perform communication through library routines, Lynx 
programs are consistently shorter, easier to debug, easier to write, and easier to read. Much of the 
explanation is simply the difference between a language and the lack thereof; Ada, Argus, Linda, 
NIL, and SR can make similar claims. With a few exceptions, all these languages provide attractive 
syntax, secure type checking, error handling with exceptions, and automatic management of 
context for multiple conversations. 

Beyond these facilities, however, Lynx provides an unusual degree of run-time flexibility. 

Symmetric communication links provide abstraction and transparent reconfiguration 
without the restrictions of compile-time type checking. 



The ability to distinguish between clients provides access control and protection. 
Mutually-exclusive threads provide context for multiple conversations without the complex- 
ity of synchronizing access to memory. The integration of threads with communication 
combines the conceptual clarity of remote procedure calls with the performance of 
non-blocking messages. 

Each of these advantages can be of use in single-program applications. More important, however, 
they extend the advantages of language support to autonomous but interacting programs. 

Experience with several implementations of Lynx suggests that the interface between a 
distributed operating system and a distributed programming language should either be very low 
level (close to the hardware) or very high level (close to the language). Use of anything in between 
is likely to be both cumbersome and slow. Instrumentation of the Lynx implementation for the 
BBN Butterfly multiprocessor indicates that message passing owes its expense to the confluence 
of many smaller costs, with no single aspect of communication predominating. 
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