
P.oce.e.J 1\~jS &-P +he... Sect)V\d W/.wk shop c9Vl Wc9rkstat, \9i1 

Ope.f'O-j,'>lj Sjs+eVl\~j f~C:I~''c.. 0f'CJve; c.A j Sept. lCf'?{Cf) Ff 12S-12Q 

A Multi-User, Multi-Language 
Open Operating System 

(extended abstract) 

Michael L. Scott 
Thomas J. LeBlanc 

Brian D. Marsh 

University of Rochester 
Department of Computer Science 

Rochester, NY 14627 

April 1989 

ABSTRACT 

An open operating system provides a high degree of programming flexibility 
and efficiency. At the same time, it generally requires that all programs be written 
in a single language, and provides no protection other than that which is available 
from the compiler. These limitations may be tolerated by the user of a personal 
computer, but they become unacceptable on a workstation that must run untrusted 
software written in many different languages. Psyche is an operating system 
designed to make the most effective possible use of shared-memory multiprocessors 
and uniprocessor machines. It combines the flexibility of an open operating system 
with the ability to write in multiple languages and to establish solid protection boun
daries. It also provides the efficiency of an open operating system for programs that 
do not require protection. 

1. Introduction 

An open operating system can be defined as one in which system services can be directly 

accessed, modified, and replaced by user-level code. More loosely (and less accurately), the tenn 

has come to be used for any operating system that operates without protection boundaries. The 

essence of openness is really a consequence of this lack of protection: independently-developed 

software modules may interact in a direct and easy fashion. 

For a personal computer, openness offers two compelling advantages: flexibility and 

efficiency. Flexibility stems from the opportunity to modify, invoke, or build upon existing 

pieces of code. Efficiency stems from the lack of heavyweight context switches, data movement 

across narrow interfaces, or unnecessary layers of abstraction. Research results from the Pilot [4] 

and Cedar [6] projects at Xerox PARC testify to the usefulness of open systems. Clark's 

This work was supported in part by NSF CER grant number DCR-8320136, Darpa ETL contract 
number DACA76-85-C-OOOI, and an mM Faculty Development Award. 



2 

experience with Swift [2] testifies to their efficiency. Open systems have attracted the attention 

oflanguage designers as well [1,7], and are an important part of the commercial market for per

sonal computers. 

Unfortunately, the flexibility and efficiency of open operating systems is obtained at a seri

ous price. Protection is available only to the extent that it is provided by high-level language 

compilers. With multiple compilers (as on a commercial PC) there is no protection whatsoever. 

With a single available language there is little opportunity to use most pre-existing software. 

There is also no opportunity to employ programming styles or paradigms unsupported by the pro

gramming language. One is generally unable, for example, to program simultaneously in Cedar, 

Smalltalk, and Lisp within a single open system. 

On a multiprocessor workstation, the use of a single language also constrains the choice of 

parallel programming models. A traditional closed operating system enforces the use of a single 

notion of process, communication, and sharing. An open operating system removes this restric

tion at the level of the operating system, but reinstates it at the level of the programming 

language. In a single-language system one cannot, for example, program simultaneously with 

actors, futures, parallel DO loops, and processes with monitors. One certainly cannot write a sin

gle program that uses different models in different sections of the code. 

2. The Psyche Approach 

Psyche [5] is an operating system under development at the University of Rochester. Its 

primary goal is to support efficient, flexible use of large-scale shared-memory multiprocessors. 

At the same time, it offers what we believe to be an ideal environment for small-scale multipro

cessors and workstations. Specifically, Psyche combines the flexibility of an open operating sys

tem with the ability to write in multiple languages and to establish solid protection boundaries. It 

accomplishes this without forfeiting the performance available to programs in an open operating 

system. 

Psyche can be described as an "open system by default." Its user-level programs occupy a 

uniform address space in which the sharing of code and data is natural and easy. Within this 

address space the user can, if desired, establish protection domains such that access across the 

boundary of a domain requires kernel intervention, with kernel checking of access rights. With 

compiler-enforced protection, no boundaries may be needed. On a workstation (particularly one 

that is programmed in multiple languages) boundaries can guarantee that mutually-suspicious 

programs are unable to damage each other. 

The kernel itself is protected but minimal. It is the one part of Psyche that cannot be 

modified by users. Its principal purpose is to protect hardware resources and to establish 



3 

protection boundaries in user space. Most traditional operating system functions are provided 

outside the kerneL As in an open operating system, user-modifiable code is responsible for pro

cess creation, destruction, and scheduling, inter-process and network communication, local and 

remote file systems, program loading, and the management of virtual memory backing store. 

Protection in Psyche is organized on the basis of data abstractions called realms. Each 

realm contains data and may contain code. Realms are created by invoking a kernel operation 

that returns an empty shell. In addition to filling in the contents of the shell, the creator can also 

specify that the realm should be used as the "root" of a protection domain, and that a given 

number of "virtual processors" should be devoted to executing processes in that domain. These 

virtual processors are known as activations of the domain. On a multiprocessor, they will be 

scattered across the nodes of the machine. The kernel timeslices between activations on each 

individual node. 

Processes are the active entities that execute user programs. As in an open operating system 

a process can attempt to execute a subroutine anywhere in user space simply by addressing it. It 

is not guaranteed, however, that the access will succeed. Each process executes in a single pro

tection domain at a time. If it attempts to touch a realm that is not in the view (Le. the memory 

map) of the current protection domain, an access fault occurs and the virtual processor executing 

the process traps into the kerneL The kernel then checks access rights. 

If the process does not have the right to access the target realm, the kernel informs the vir

tual processor that an error has occurred. If the process possesses a key that allows" optimized" 

access to the target realm, that realm is added to the memory map of the protection domain and 

the faulting instruction is restarted. We say that the realm has been opened for optimized access 

from this domain. If the process possesses a key that allows "protected" access to the target 

realm, the kernel moves the process. It finds the protection domain rooted by the target realm, 

informs some virtual processor of that domain that the process has arrived, and informs the 

current virtual processor that the process has departed. 

Communication from the kernel to the virtual processors takes the form of signals, or 

upcal/s, that resemble software interrupts. Upcalls occur when a process moves to a new protec

tion domain, when it returns, and whenever an error occurs. In addition, user-level code can 

establish upcall handlers for wall time and interval timers, and can arrange to receive a warning 

in advance of virtual processor preemption. 

The kernel keeps track of which processes are in which protection domains (in order to help 

them return after executing protected subroutines), but its help is not required to create or destroy 

processes or to perform context switches between them. When a virtual processor traps into the 



4 

kernel it is likely to be executing a different process than it was the last time it returned into user 

space. Processes in the same protection domain share the same memory map and are vulnerable 

to each other's mistakes. It is likely, therefore, that programmers will choose to implement them 

in a common style. In one domain, they may be appear as Cedar processes. In another, they may 

be Ada tasks. A Psyche process is likely to change representations as it moves between domains. 

Within a single domain, context switching between processes occurs entirely in user mode, and is 

as lightweight and efficient as a simple coroutine transfer. 

If domains were entirely disjOint, Psyche would behave like a collection of open operating 

systems connected together by remote procedure calls. It is expected, however, that realms will 

frequently belong to more than one domain. A message buffer realm, for example, might be used 

for efficient communication between a pair of applications without exposing either to malicious 

or accidental damage by the other. To facilitate access to such realms, the Psyche kernel estab

lishes a convention for synchronization. Domain-specific routines for blocking and unblocking 

processes can be associated with each virtual processor. When an operation on a shared realm 

must block, the current process can leave the address of its own unblock routine in a data struc

ture of the realm. 

By relying on a uniform address space, and by using the same jump-to-subroutine instruc

tion to initiate both protected and optimized calls, Psyche has separated the issues of protection 

and performance from the semantics of realm operations. Users can determine which operations 

will be optimized and which will be protected simply by changing the distribution of keys or the 

contents of the access lists against which keys are matched. The flexibility and customizability of 

an open operating system can therefore be obtained without abandoning protection or the ability 

to program in multiple languages. The efficiency of an open operating system can be obtained in 

those cases where protection is not required. 

3. Project Status 

Our initial implementation of Psyche is written in C++ and runs on the BBN Butterfly Plus 

multiprocessor. We have completed the major portions of the kernel and are experimenting with 

user-level software. We have separated the machine-dependent and machine-independent por

tions of the implementation, so that Psyche can be ported to other machines. We are particularly 

interested in multiprocessor architectures such as the Berkeley SPUR, DEC Firefly, IBM ACE, or 

Xerox Dragon. 

To facilitate kernel development we have implemented a remote, source-level debugger in 

the style of the Topaz TeleDebug facility [3]. The front end for the debugger runs on a Sun 

workstation and communicates via UDP and serial lines with a low-level debugging stub that 



5 

underlies the Psyche kernel. The low-level debugger was the first piece of the kernel to be writ

ten, and has proven extremely valuable. 

In the context of large-scale multiprocessors, we are working with members of the com

puter vision and planning groups within our department to develop an integrated laboratory for 

real-time active vision and robotics. Psyche provides the foundation in this laboratory for high

level vision, planning, and robot control. Effective implementation of the full range of robot 

functions will require several different models of parallelism, for which Psyche is ideally suited. 

In addition, practical experience in the vision lab will provide feedback on the Psyche design. 

References 

[I] Brinch Hansen, P., Programming a Personal Computer, Prentice-Hall, Englewood Oiffs, 

NJ,1982. 

[2] Oark, D., "The Structuring of Systems Using Upcalls," Proceedings of the Tenth ACM 

Symposiwn on Operating Systems Principles, 1-4 December 1985, pp. 171-180. In ACM 

Operating Systems Review 19:5. 

[3] Redell, D., "Experience with Topaz TeleDebugging," Proceedings, ACM 

SIGPLANISIGOPS Workshop on Parallel and Distributed Debugging, 5-6 May 1988, pp. 

3544. InACM SIGPLAN Notices 24:1 (January 1989). 

[4] Redell, D. D. and others, "Pilot: An Operating System for a Personal Computer," CACM 

23:2 (February 1980), pp. 81-92. 

[5] Scott, M. L., T. J. LeBlanc, and B. D. Marsh, "Design Rationale for Psyche, a General

Purpose Multiprocessor Operating System," Proceedings of the 1988 International 

Conference on Parallel Processing, 15-19 August 1988, pp. 255-262, vol. II - Software. 

[6] Swinehart, D., P. Zellweger, R. Beach, and R. Hagmann, "A Structural View of the Cedar 

Programming Environment," ACM TOPLAS 8:4 (October 1986), pp. 419-490. 

[7] Wirth, N., "From Programming Language Design to Computer Construction," CACM 

28:2 (February 1985), pp. 159-164. The 1984 Turing Award Lecture. 


