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Abstract 

Parallel computers with non-parallel file systems find 
limited by the performance of the processor 

running the file system. We have designed and imple-
mented a parallel file system called Bridge that eliminates 
this problem by spreading both data and file system com-
putation over a large number of processors and disks. To 
assess the effectiveness of Bridge we have used it as the 
basis of a parallel external merge sort, an application re-
quiring significant amounts of interprocessor communica-
tion and data movement. A detailed analysis of this appli-
cation indicates that Bridge can profitably be used on con-
figurations in excess of one hundred processors with disks. 
Empirical results on a 32-processor implementation agree 
closely with the analysis, providing us with a high degree 
of confidence in this prediction. Based on our experience, 
we argue that file systems such as Bridge will satisfy the 
1/0 needs of a wide range of parallel architectures and ap-
plications. 

1. Introduction 

Parallelism is a widely-applicable technique for maximiz-
ing computer performance. Within limits imposed by 
algorithms and interprocessor communication, the com-
puting speed of a multiple-processor system is directly 
proportional to the number of processing nodes, but for 
all but the most compute-intensive applications, overall 
system throughput cannot increase without corresponding 
improvements in the speed of the I/O subsystem. 

Internally-parallel I/O devices can provide a conven-
tional file system with effectively unlimited data rates 
[Manuel and Barney 1986], but a bottleneck remains if the 
file system software itself is sequential or if interaction 
with the file system is confined to only one process of a 
parallel application. Ideally, one would write parallel pro-
grams so that each individual process accessed only local 
files. Such files could be maintained under separate file 
systems, on separate processors, with separate storage 
devices. Unfortunately, such an approach would force the 
programmer to assume complete responsibility for the 
physical partitioning of data among file systems, destroy-
ing the coherence of data logically belonging to a single 
file. In addition, frequent restructuring might be required 
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if the same data were to be used in several applications, 
each of which had its own idea about how to organize ex-
plicit partitions. 

We believe that it is possible to combine convenience 
and performance by designing a file system that operates 
in parallel and that maintains the logical structure of files 
while physically distributing the data. Our approach is 
based on the notion of an interleaved file, in which con-
secutive logical records are assigned to different physical 
nodes. We have realized this approach in a prototype sys-
tem called Bridge [Dibble et al. 1988]. 

To validate Bridge, we must demonstrate that it can 
provide most I/O-intensive applications with significant 
speedups on a significant number of processors. We have 
therefore implemented several data-intensive applications, 
including utilities to copy and sort sequential files and to 
transpose image bitmaps. Sorting is a particularly signifi-
cant example; it is important to a large number of real-
world users, and it reorganizes files thoroughly enough to 
require a large amount of interprocessor communication. 

We have analyzed and implemented a parallel external 
merge sort on Bridge. Our analysis suggests that the paral-
lel portions of the algorithm, especially disk I/O, will 
overlap the sequential portions under reasonable assump-
tions regarding the number and speed of processors and 
disks and the speed of interprocessor communication. Not 
until disks are attached to over a hundred different proces-
sors will the system become CPU or communication-
bound. In an attempt to confirm this analysis, we have 
measured the merge sort on a 32-processor prototype of 
Bridge. The results are within three percent of the analyti-
cal predictions. 

2. Parallel Interleaved Files 
An interleaved file can be regarded as a two-dimensional 
array. Each of p disk drives (or multi-drive subsystems) is 
attached to a dfstinct processor, and is managed by a sepa-
rate local file system (LFS). Files span all the disks, 
interleaved with a granularity of logical records. For 
example, the lines in a text file would be distributed such 
that consecutive lines would be located on logically adja-
cent disks. The main file system directory lists the names 
of the constituent LFS files for each interleaved file. This 
information suffices to map an interleaved file name and 
record number to the corresponding local file name and 
record number. Formally, with p instances of the LFS, 
numbered 0 ... p-I. record R of an interleaved file will be 
record (R div p) in the constituent file on LFS 
(R mod pl. The part of the file located on node x con-
sists of records {y I y mod p = x I. Round-robin 
interleaving guarantees that programs can access p 
consecutive records in parallel. For random access, it 
scatters records at least as well as any other distribution 
strategy. 
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Our approach to data distribution resembles that of 
soveral other researchers. At the file system level, disk 
sf/";I,illg can be used to interleave data across the disks 
comprising a sequential file system [Salem and Garcia-
Molina 1986[. In the second-generation Connection 
Machine [Thinking Machines Inc. 1987], data is inter-
leaved across processors and disks at the level of individual 
bits. At the physical device level. storage arrays encapsu-
late multiple disks inside a single logical device. Work is 
underway at Berkeley to construct such arrays on a very 
large scale [Patterson et al. 1988]. Our work is distin-
guished by its emphasis on the design and use of parallel 
file system software, particularly its use of tools to 
dynamically add high-level operations to the file system. 

2.1 The Bridge File System 
Bridge is an implementation of a parallel interleaved file 
system on the BBN Butterfly Parallel Processor [BBN 
Laboratories 1986]. Bridge has two main functional lay-
ers. The lower layer consists of a Local File System 
(LFS) on each of the processors with disks. The upper 
layer is called the Bridge Server; it maintains the integrity 
of the file system as a whole and provides the initial inter-
face to user applications. Except for a few functions that 
act on the state of the server itself, the Bridge Server 
interprets I/O requests and dispatches them to the appro-
priate LFSs. 

An LFS sees only one column sliced out of each 
interleaved file, but this column can be viewed locally as a 
complete file. The LFS instances are self-sufficient, fully-
competent file systems. They operate in ignorance of one 
another. LFSs can even maintain local files outside the 
Bridge file system without introducing any problems. Our 
LFS implementation is based on the Elementary File 
System developed for the Cronus distributed operating 
system [Gurwitz et al. 1986]. Since our goal is simply to 
demonstrate the feasibility of Bridge, we have not pur-
chased real disk drives. Instead of invoking a device driver. 
the lowest level of the LFS maintains an image of the 
disk in RAM and executes an appropriate delay with each 
I/O request. 

In order to meet the needs of different types of users. 
the Bridge Server implements three different system 
views. Two of tile views hide significant amounts of the 
underlying parallel structure. These are designed for appli-
cations where a familiar interface is more important than 
I/O performance. The third view of Bridge reveals the 
interleaved structure of files to I/O-critical applications. It 
is based on the concept of tools. discussed in the follow-
ing section. 

2.2 Bridge Tools 

Pamllel interleaved files effectively address any I/O boule-
necks at the LFS level of the file system or below. 
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Between the file system and the application, interprocessor 
communication remains a potential bottleneck. It can be 
addressed by reducing communication to the minimum 
required for each file operation-by exporting as much 
functionality as possible out of the application. across the 
communication medium, and into the processors that run 
the LFS. 

Bridge tools are applications that become part of the 
file system. A standard set of tools (copy. sort. grep. etc.) 
can be viewed as part of the top layer of the file system. 
but an application need not be a standard utility program 
to become a tool. Any process that requires knowledge of 
the LFS structure may be written as a tool. Tools com-
municate with the Bridge Server to obtain structural 
information from the Bridge directory. Thereafter they 
have direct access to the LFS level of the file system. All 
accesses to the Bridge directory (Create. Delete. and Open) 
are performed by the Bridge Server in order to ensure con-
sistency. In essence, Bridge tools communicate with the 
Server as application programs. but they communicate 
with the local file systems as if they were the Server. 

Our simplest tool copies files. It requires communi-
cation between nodes only for startup and completion. 
Where a sequential file system requires time 0(11) to copy 
an II-block file, the Bridge Copy Tool can accomplish the 
same thing in time O(II/p). plus O(log(p)) for startup and 
completion. Any one-to-one filter will display the same 
behavior; simple modifications to the Copy Tool would 
allow us to perform a large number of other tasks. includ-
ing character translation, block encryption. or lexical 
analysis. By returning a small amount of information at 
completion time. we could also perform sequential 
searches or produce summary information. 

Other tools can be expected to require non-trivial 
communication between parallel components. We focus 
in this paper on the problem of sorting, first because it is 
an important operation in practice (files are frequently 
sorted), and second because it is in some sense an inher-
ently hard problem for interleaved files. 

3. Sorting Parallel Interleaved Files 

Several researchers have addressed the problem of parallel 
external sorting [Bitton et al. 1984; Kwan 1986[. In a 
recent paper. Beck. Bitton. and Wilkinson [19881 detail 
their construction of a functional parallel external sort. 
They chose an algorithm consisting of local quicksort tol-
lowed by parallel mergesort. Since they used compara-
tively few processors (five). they were able to pipeline the 
entire multi-phase merge with one disk read and one write. 
This gives them excellent performance. but poor speedup 
past three processors and no speedup of the merge stage in 
the worst case. We chose a straightforward parallelization 
of the most conventional merge sort algorithm. 



A sequential external merge sort makes no unusual 
demands on the file system (no random access, indexing, 
etc.) runs," O(n log n) time. Given a parallel merge 
algonthm, a log-depth parallel merge sort is easy to write. 
With p processors and N records a parallel merge sort con-
currently builds p sorted runs of length NIp. It then 
merges the sorted runs in a log p depth merge tree. 
Pseudo-code for this algorithm appears in Figure I. The 
first phase of the algorithm sorts the records on each LFS 
iodependently. The second phase merges the sorted records 
in neighboring pairs of LFSs. Assuming for the sake of 
simplicity that p is a power of two, the final phase 
merges the records from two collections of LFSs, each 
consisting of p/2 processors. 

3.1 Merging Parallel Interleaved Files 

An interleaved file can be viewed as a whole or, at the 
other extreme, as p sub-files, each local to a node. It may 
also be regarded as some intermediate number of sub-files, 
each of which spans a non-trivial subset of the file system 
nodes. The merge algorithm takes two sub-files, each 
spread across k nodes, and produces a single sub-file spread 
across 2k nodes. To do so it employs two sets of reading 
processes (one set for each of the source sub-files, one 
process per node) and one set of writing processes (again, 
one process per node). 

The algorithm passes a token among the reading pro-
cesses of the two source sub-files. The token contains the 
least unwritten key from the other source sub-file and the 
location of the process ready to write the next record of the 
output sub-file. When a process receives the token it 
compares the key in the token to the least unwritten key 
among its source records. If the key in the token is 
greaterthan or equal to its local key, the process writes an 
output record and forwards the token to the next processor 
in its sub-file. If the key in the token is less than the 
local key, the process builds a new token with its own 
key and address, and sends that token back to the origina-
tor of the token it received. 

Special cases are required to deal with termination, 
but the algorithm generally follows the outline in 

In parallel perform local external sorts on each LFS 
Consider the resulting files to be "interleaved" 

across only one processor 
x:= 2 
while (x <= p) 

Merge pairs of files in parallel 
Consider the new files to be interleaved 

across x processors 
Discard the old files in parallel 
x := 2 * x 

Figure 1 Merge Sort 
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Figure I. Figure 2 contains pseudo-code for an individ-
ual reader process. 

The parallelism of the merge algorithm is limited by 
sequential forwarding of the token. On at least every other 
hop, however, the process with the token initiates a disk 
read and write at the same time it forwards the token. For 
disk sorting on a machine like the Butterfly multiproces-
sor, we will show that the token can undergo approxi-
mately one hundred sixty hops in the time required for the 
parallel read and write. This implies that the sequential 
component will be entirely hidden by VO latency on con-
figurations of well over 100 processors. Performance 
should scale almost linearly with p within that range. 

3.2 Analysis 

Merge 

The parallel merge algorithm is a close analog of the stan-
dard sequential merge. The token is never passed twice in a 
row without writing, and all records are written in nonde-
creasing order. The program therefore writes all of its 
input as sorted output and halts. 

For the purposes of this analysis, let p be the number 
of nodes across which the output sub-file is to be inter-

token (WriteAII, Key, Source, Numberl 

Setup for the merge k I 
Read a record 
If this process initiates the merge 

Read a record 
Build a token (false, key, MyName, 0 I 

where key is the first key in the local file 
Send the token to the first process for the other file 

Loop 
Receive token k2 
If (token. Key file key and not EOF) or 

token.WriteAII 
Increment token.Number k3 
Pass token to next process for this source file 
Send a write-request message to 

Write-Process[token.Number-1 mod p} k4 
Send a read-request message to the local LFS kj 

Else 
Build a token (EOF, file key, 

MyName, token. Number J ko 
Send the new token to token.Source 

While not EOF 

If (not token.WriteAII) k7 
Build a token (true, MAXKEY, 

MyName. token.Number I k6 
Send the token to old token.Source 

Figure 2 Merge Pseudo-Code 



leaved and let N be the number of records in this file. Let 
us also refer to source and destination sub-files simply as 
files. Each source file will of course be interleaved over 
half as many nodes as the destination file, and will consist 
of half as many records. Moreover, the merge steps that 
make up an overall merge sort will often manipulate sig-
nificantly fewer records than comprise the entire file, and 
will use significantly fewer nodes. 

We will call the sequential part of the algorithm its 
limiting section. The rest of the code can execute in paral-
lel with disk I/O. The critical code comprises the loop in 
Figure 2. 

There are two cases in the loop, one taking time 
Tact = k2+k3 and the other taking time Tpass = k2+k6· 
Since the first case will be executed N times before all the 
records are written and the algorithm tenninates, the total 
time used by that code will be TaetN. The second case is 
executed whenever the token passes from one file to the 
other. 

A run is a string of records merged from the same 
file. A crossover stands between runs. If C is the number 
of crossovers in the merge, the total time used by case 2 
is T passe. 

To analyze the behavior of the algorithm as a whole, 
we must consider the extent to which the limiting section 
can execute in parallel with disk I/O. The second case of 
the loop has no parallel part, but case I includes both a 
read and a write: Tread = k5 and T write = k4. The limit-
ing section has the potential to become significant when a 
process of a source file finishes reading its next record 
before the token returns, or when a process of the destina-
tion file finishes writing a record before being given 
another one. The time required for the token to return to 
the same reading process can be as small as T aetp!2, or as 
large as Taet(P/2+NI2) + Tpassmin(C, p12), since it is 
possible for the entire other source file to be traversed 
before returning. Similarly, the time that elapses between 
writes to the same output process can be as small as 
Taetp, or as large as Taetp + Tpassmin(C, pl. On aver-
age, the time to complete either a read or a write "circuit" 
should be p(T act + T passCIN). The extent to which in-
dividual circuits deviate from the average will depend on 
the uniformity of the distribution of crossovers. 

We want to discover the number of processors that 
can be used effectively to sort. We must therefore deter-
mine the point at which I/O begins to wait for the sequen-
tial token passing. Average case behavior can only be used 
with care because an unusually brief circuit saves no time 
(I/O is still the limiting factor), whereas an unusually 
long circuit loses time by allowing the sequential compo-
nent to dominate. Fortunately, we can make the fluctua-
tions negligible in practice by allowing source file pro-
cesses to read ahead and write behind. 
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Since the output file is interleaved across the same 
disks as the input files, we will obtain linear speedup so 
long as every disk is kept continually busy reading or 
writing useful records. A source file process whose disk 
has nothing else to do should simply read ahead. Finite 
buffer space will not constitute a problem until the limit-
ing section begins to dominate overall. In our implemen-
tation, the timing anomalies caused by uneven crossover 
distribution (on random input data) are rendered negligible 
with only one record of read ahead. 

Execution time for the merge algorithm as a whole 
can be approximated as 

(I) 

where T disk = Tread + T write. and Tf;xed is overhead 
independent of p. Each pass of the merge sort algorithm 
should delete its temporary files; since the delete operation 
for our LFS takes time klQ per record, T delete = klQ. 
Tfixed includes the time required within each process for 
initialization and finalization. It also includes the time 
Teofrequired in one of the token circuits to recognize the 
end of the first source file and build a WriteAII token. Per-
phase initialization time is kl· Teof= k2 + k7 + k6. 
If we let kll he per-phase termination time, we have 
Tfixed= kl + (k2 + k7 + k6) + kll· 

The merge algorithm will display linear speedup with 
p so long as p is small enough to keep the minimum 
token-passing time below the 1/0 times; in other words, 
so long as 

p pmax = min (2Tread. T write-) 
Tact Tact (2) 

If crossovers are close to uniformly distributed, the algo-
rithm should actually display linear speedup so long as p 
is small enough to keep the al'erage token-passing time 
below the I/O time; in other words, so long as 

(3) 
The expected value of Ccan be shown to be NI2, so 

and 

Tmerf.:C = T/ixcd + tlTdl'/ete 
p 

+ max (NT"" + 

which we will henceforth use as our value for T merge-
(4) 



Merge Sort 

The local external sorts in the first phase of the merge sort 
are ordinary external sorts. Any external sorting utility 
will serve for this phase. Standard external sorts will run 
(in parallel with each other) in time O«Nlp) log (NIp». 
We can approximate this as 

= Cloc·al N (I + 10glL) 
p pB 

where B is the size in records of the in-core sort buffer. 
The I inside the parentheses accounts for one initial read 
and write of each record, used to produce sorted runs the 
size of the buffer. Internal sort time is negligible com-
pared to the cost of 1/0 for merging. 

Referring back to Figure I, there are log p phases of 
merge, for x = 2, 4, 8, ... , p (again assuming that p is a 
power of two). Phase x runs pIx merges, each of which 
uses x processors to merge Nxlp records. The expected 
time for phase x is therefore 

Tx = + NTdelete + max (NXTocl + NXTpass. NTdisk) 
P P 2p P 

If Tcreate is the time required to create 2p processes and to 
verify their termination, then the expected time for the 
merge sort as a whole is 

T sort = Tcreau + Tlocal + L Tx 
x=2.4,8 •... .,p 

= Tcreat,,+ T/m:ui + logp (T/i.ted+ 

+ NT· + NXT +NxT. - disk k - act - pa" 
... i P xci P 2p 

p;;;;;;<xSp (5) 

If P is small enough that I/O always dominates, this is 

Tsarl = tcreate + Tlm:a/ + log p (Tfixed + + Tdl!'ft'U)) 

Otherwise our equation for T,'IOrt is 

T.tOr/ = Tcr(!'u/e + T/o{'U/ 

+ [log Pmaxl (Tfl"d + + Td"''')) 
+ + (2p - 2I'ngt>;;;;Di+') 

4. Empirical Results 

(6) 

We have measured the sort tool's perfonnance on our im-
plementation of Bridge. Actual and predicted performance 
figures are shown in Table I. The better-than-linear per-
formance "improvements" with increasing P in the local 
sort are not remarkable. They reflect the reduced local file 
size, n, with greater p, and the n log n local sort. 
Figure 4 displays our predicted results pictorially. The 
dashed line indicates the percentage of time spent in the 
merge phase. The graph clearly illustrates that merging 
becomes proportionally much more important with in-
creasing p, as work moves out of the local sort and into 
additional merges. 

Our local sort algorithm is relatively naive: a simple 
two-way external merge with 500-record internal sort 
buffers. It runs at about a quarter the speed of the Unix 
sort utility. 

Our predicted performance figures differ only slightly 
from measured performance between 2 and 32 processors 
(see Figure 3). A detailed examination of timing data 
suggests that the remaining inaccuracy stems from minor 
contention for the local file systems that is not accounted 
for in the analysis . 

Figure 3 plots predicted and actual performance fig-
ures up to 32 processors for the local sorts, the merge 
phases, and the overall sort tool. Figure 4 extends these 
graphs with predicted performance on larger numbers of 
nodes. The dashed line plots the percentage of total execu-
tion time devoted to parallel merge phases (as opposed to 

Table 1 Merge Tool Performance (10 Mbyte file. times in minutes) 

Merge Phases Local Sort Merge Sort Total 

Processors Measured Predicted Measured Predicted Measured Predicted Rate 
(kbytes/sec) 

2 7.8 7.68 19.6 19.58 27,4 27.26 6.26 
4 7.6 7.68 7.6 7.83 15.2 15.51 11.00 
8 5.7 5.76 2.7 2.94 8,4 8.70 19.62 

16 3.8 3.84 1.0 0.98 4.8 4.82 35,41 
32 2,4 2,40 0.3 0.24 2.7 2.65 64.52 
64 1.44 0.12 1.56 109.21 

128 0.84 0.06 0.90 189.28 
256 0.51 0.03 0.54 318.06 
5t2 0.33 0.02 0.35 491.29 
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local sorts). Speedup begins to taper off noticeably 
beyond the point where I/O ceases to dominate sequential 
token passing. Performance continues to improve, but at a 
slower rate. The merge phase that uses 256 processors to 
merge two files will run at its lPC speed. The earlier 
phases of the merge and the local sorts will, however, run 
with p-way parallelism. This causes the algorithm to 
show some improvement with thousands of processors 
even though (as shown in lhe following section) the last 
stages of the merge will reach a speedup of only about 
160. 

Values for Constants 

The figures in Table 2 were obtained by inserting timing 
code in the merge program. The measurement code 

700 
Local 80 

Merge Agreg.te • 65 • ., 
kbyta/tee 

e • 
• e • • e • Actual 

o Pred.i.<:ted 
0 32 0 32 0 2 p-

Figure 3 Predicted versus Actual Perfonnance 

,100% 
.... --.-----.-----------. I r I 

I I 
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• I 
kbytesfsee I I merge 

I time, 

processors 

Figure 4 Predicted Aggregate Performance 
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inevitably introduced overhead but not enough to make a 
difference in performance. The predicted times in Table I 
were calculated with equation 6 and the constants from 
Table 2. 

Perhaps the most important figure in Table 2 is the 
value for Pmax. With the [/0, communication, and com-
putation times found in our implementation (which we 
believe would be closely matched by a production-quality 
version of Bridge), and with fewer than 160 processors in 
use, there is no way for a process to complete an I/O 
operation before being asked to perform another one. 

5, Experiences 

5_1 Analysis 

OUf research is focussed more on systems issues than the-
ory, but we find nonetheless that the mathematical analy-
sis of algorithms can play an important role in this work, 
[n the case of the merge sort tool, our analysis has proven 
extremely successful. Informal analysis guided our initial 
choice of algorithm. Detailed analysis uncovered an im-

Table 2 Constant Values 

Constant Value Source 
k 1 - merge setup time 20000 J.1sec measured (avg.) 

Maximum 30951 J.1sec measured 
Minimum 116 J.1sec measured 
k II - tenninate a o J.1sec hidden in start 

men!e nhase of next phase 
k2 - receive token 253 J.1sec measured 

and fol",wing tests 
k3 - update token number 28 J.1sec measured 

and fOlWard token 
k4 write a record (TlI"l"ilr) 45000 J.l.sec measured 
ks - read a record (Tl"rat/) 25000 J.1sec measured 
k6 - build & send a token 31 J.l.sec measured 
k7 - simple if 45 Ilsec measured 
kg - start a process 48000 J.1sec measured 
k9 - end a process 300 J.l.sec measured 
klO - delete a record 20000 J.1sec measured 

Clonll 45900 J.1sec measured 
T disk 70000 J.1sec k + k 4 , 

Tact 2R 1 Ilsec + kJ 
T,ICI.'':S 2841lsec k:!. + k5 

T.fix/·(I 20300 J.l.sec k1+k:!.+kll 
+k7+ k 11 

I'max 160 see eqn. 2 
I'max 165 see eon. 3 



portant flaw in our implementation, and yielded a trust-
worthy estimate of the number of nodes that could be 
utilized effectively. 

An informal analysis of our sorting algorithm sug-
gested that it would parallelize well despite its sequential 
part. Further analysis confirmed that conclusion, but only 
a full analysis, including all constant factors, could show 
the range over which we could expect the algorithm to 
scale. The analysis played the role of a lower bound while 
we tuned our implementation of the algorithm. 

Our sorting algorithm is not parallel under asymp-
totic analysis. It is, however, simple and it is parallel 
over the range of parallelism that we have chosen to 
address. There are numerous truly parallel sorting algo-
rithms, but they don't have the simplicity of our merge 
sort. Some of these parallel algorithms would use more 
than (n log n)/p reads; others are too casual about access 
to non-local data. 

Our analytical predictions accurately match the exper-
imental results we report in this paper, but our first exper-
iments fell well below the predicted performance. There 
were wide variations in read times and there was less paral-
lelism than expected. This cast doubt on our analysis. 
When we included a simple model of contention for disk 
drives in our analysis, we obtained a far better match with 
the experimental data. Unfortunately, the equations 
became much more complex than those in Section 3. We 
then collected more timing measurements, which con-
firmed that contention was a serious problem. Alerted to 
the problem, we were able to implement a simple read-
ahead scheme that eliminated almost all of the contention, 
thereby improving performance and matching the predic-
tions of the simpler version of the analysis. 

This approach to program optimization is too painful 
for us to recommend as a general practice. but it was a 
useful tool in this specific case and is likely to be so in 
others. The analysis plays the role of a lower bound on 
run time, providing a self-sufficient benchmark for com-
parison with experimental results. When experimental data 
fails to match the analysis, there is either a problem with 
one's understanding of the algorithm (as reflected in the 
analysis) or with one's realization of the algorithm in 
code. In our case, the problem was the latter. 

S.2 Bridge 

An application for a parallel interleaved file system is in 
some sense "trivially parallel" if the processing for each 
record of the file is independent of activities on other pro-
cessors. From OUf point of view. the most interesting 
problems for Bridge are those in which data movement and 
inter-node cooperation 3re essential. The critical observa-
tion is that algorithms will continue to scale so long as 
all the disks are busy all the time (assuming they are do-
ing useful work). In theory there is a limit to the paral-
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lelism that can be exploited in any algorithm with a 
sequential component, but the time scale difference be-
tween disk accesses and CPU operations is large enough 
that one can hope to run out of money to buy disks before 
reaching the point of diminishing returns. In the merge 
sort tool, the token is generally able to pass all the way 
around a ring of many dozen processes before a given pro-
cess can finish writing out its previous record and reading 
in the next. It is clear that the tool can offer "only" a 
constant factor of speedup, but this observation misses the 
point entirely. Constant factors are all one ever looks for 
when replicating hardware. 

This argument suggests that asymptotic performance 
may be the wrong way to think about I/O-intensive paral-
lel applications. It also suggests that the exporting of 
user code onto the processors local to the disks, as sup-
ported in Bridge, is essential to obtaining good perfor-
mance. It is precisely this exported code, embodied in a 
Bridge tool, that enables each disk to perform useful work 
as steadily as possible. Our experience with a variety of 
applications also suggests that the tool-based interface to 
Bridge is simple and convenient enough to be used for any 
application in which very high performance is important. 
There is no doubt that tools are harder to write than pro-
grams that use the more naive Bridge interfaces. At the 
same time, they are substantially easier than the alterna-
tive: explicit management of multiple files under multiple 
local file systems. They also allow separate applications 
to process the same data without worrying about compati-
ble use of subfiles. 

Round-robin interleaving for data distribution has 
proven to be both simple and effective. In the case of the 
merge sort tool, a process that produces a record to be 
written may need to write it to any disk in the system, 
depending on the distribution of runs. Though the records 
read from a particular source file or written to a particular 
destination file are always used in order, the records 
accessed by the application as a whole are more randomly 
distributed. Even so, a small amount of buffering allows 
each disk to remain busy almost all the time. We have 
observed this same phenomenon in other tools, such as 
those devised for file compression and image transposi-
tion. We have been unable to find a practical application 
for which round-robin interleaving does not suffice. 

The successful analysis and implementation of a sort· 
ing tool on Bridge supports our thesis that a parallel inter-
leaved file system can effectively address the I/O bottle-
neck on parallel machines. Intuitively, it seems fitting 
that parallel file system software should be used to solve a 
problem introduced by the parallel execution of applica-
tion code. Practically, our experience with the merge sort 
tool (together with similar experience with other tools) 
has shown that parallel interleaved file systems will scale 
well to very large numbers of nodes. 
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