
External Sorting on a Parallel
Interleaved File System

Peter C. Dibble and Michael L. Scottt
Department of Computer Science

Abstract

Parallel computers with non-parallel file systems find
limited by the performance of the processor

running the file system. We have designed and imple-
mented a parallel file system called Bridge that eliminates
this problem by spreading both data and file system com-
putation over a large number of processors and disks. To
assess the effectiveness of Bridge we have used it as the
basis of a parallel external merge sort, an application re-
quiring significant amounts of interprocessor communica-
tion and data movement. A detailed analysis of this appli-
cation indicates that Bridge can profitably be used on con-
figurations in excess of one hundred processors with disks.
Empirical results on a 32-processor implementation agree
closely with the analysis, providing us with a high degree
of confidence in this prediction. Based on our experience,
we argue that file systems such as Bridge will satisfy the
1/0 needs of a wide range of parallel architectures and ap-
plications.

1. Introduction

Parallelism is a widely-applicable technique for maximiz-
ing computer performance. Within limits imposed by
algorithms and interprocessor communication, the com-
puting speed of a multiple-processor system is directly
proportional to the number of processing nodes, but for
all but the most compute-intensive applications, overall
system throughput cannot increase without corresponding
improvements in the speed of the I/O subsystem.

Internally-parallel I/O devices can provide a conven-
tional file system with effectively unlimited data rates
[Manuel and Barney 1986], but a bottleneck remains if the
file system software itself is sequential or if interaction
with the file system is confined to only one process of a
parallel application. Ideally, one would write parallel pro-
grams so that each individual process accessed only local
files. Such files could be maintained under separate file
systems, on separate processors, with separate storage
devices. Unfortunately, such an approach would force the
programmer to assume complete responsibility for the
physical partitioning of data among file systems, destroy-
ing the coherence of data logically belonging to a single
file. In addition, frequent restructuring might be required

t This work was supported in part by DARPA/ETL Contract
DACA76·85·C·OOOl, NSF/CER Gran. DCR-8320I36, Micro-
ware Systems Corporation, and an IBM Faculty Development
Award.

20

if the same data were to be used in several applications,
each of which had its own idea about how to organize ex-
plicit partitions.

We believe that it is possible to combine convenience
and performance by designing a file system that operates
in parallel and that maintains the logical structure of files
while physically distributing the data. Our approach is
based on the notion of an interleaved file, in which con-
secutive logical records are assigned to different physical
nodes. We have realized this approach in a prototype sys-
tem called Bridge [Dibble et al. 1988].

To validate Bridge, we must demonstrate that it can
provide most I/O-intensive applications with significant
speedups on a significant number of processors. We have
therefore implemented several data-intensive applications,
including utilities to copy and sort sequential files and to
transpose image bitmaps. Sorting is a particularly signifi-
cant example; it is important to a large number of real-
world users, and it reorganizes files thoroughly enough to
require a large amount of interprocessor communication.

We have analyzed and implemented a parallel external
merge sort on Bridge. Our analysis suggests that the paral-
lel portions of the algorithm, especially disk I/O, will
overlap the sequential portions under reasonable assump-
tions regarding the number and speed of processors and
disks and the speed of interprocessor communication. Not
until disks are attached to over a hundred different proces-
sors will the system become CPU or communication-
bound. In an attempt to confirm this analysis, we have
measured the merge sort on a 32-processor prototype of
Bridge. The results are within three percent of the analyti-
cal predictions.

2. Parallel Interleaved Files
An interleaved file can be regarded as a two-dimensional
array. Each of p disk drives (or multi-drive subsystems) is
attached to a dfstinct processor, and is managed by a sepa-
rate local file system (LFS). Files span all the disks,
interleaved with a granularity of logical records. For
example, the lines in a text file would be distributed such
that consecutive lines would be located on logically adja-
cent disks. The main file system directory lists the names
of the constituent LFS files for each interleaved file. This
information suffices to map an interleaved file name and
record number to the corresponding local file name and
record number. Formally, with p instances of the LFS,
numbered 0 ... p-I. record R of an interleaved file will be
record (R div p) in the constituent file on LFS
(R mod pl. The part of the file located on node x con-
sists of records {y I y mod p = x I. Round-robin
interleaving guarantees that programs can access p
consecutive records in parallel. For random access, it
scatters records at least as well as any other distribution
strategy.

mls
Univ. of Rochester 1989–90 Computer Science and Engg. Research Review

Our approach to data distribution resembles that of
soveral other researchers. At the file system level, disk
sf/";I,illg can be used to interleave data across the disks
comprising a sequential file system [Salem and Garcia-
Molina 1986[. In the second-generation Connection
Machine [Thinking Machines Inc. 1987], data is inter-
leaved across processors and disks at the level of individual
bits. At the physical device level. storage arrays encapsu-
late multiple disks inside a single logical device. Work is
underway at Berkeley to construct such arrays on a very
large scale [Patterson et al. 1988]. Our work is distin-
guished by its emphasis on the design and use of parallel
file system software, particularly its use of tools to
dynamically add high-level operations to the file system.

2.1 The Bridge File System
Bridge is an implementation of a parallel interleaved file
system on the BBN Butterfly Parallel Processor [BBN
Laboratories 1986]. Bridge has two main functional lay-
ers. The lower layer consists of a Local File System
(LFS) on each of the processors with disks. The upper
layer is called the Bridge Server; it maintains the integrity
of the file system as a whole and provides the initial inter-
face to user applications. Except for a few functions that
act on the state of the server itself, the Bridge Server
interprets I/O requests and dispatches them to the appro-
priate LFSs.

An LFS sees only one column sliced out of each
interleaved file, but this column can be viewed locally as a
complete file. The LFS instances are self-sufficient, fully-
competent file systems. They operate in ignorance of one
another. LFSs can even maintain local files outside the
Bridge file system without introducing any problems. Our
LFS implementation is based on the Elementary File
System developed for the Cronus distributed operating
system [Gurwitz et al. 1986]. Since our goal is simply to
demonstrate the feasibility of Bridge, we have not pur-
chased real disk drives. Instead of invoking a device driver.
the lowest level of the LFS maintains an image of the
disk in RAM and executes an appropriate delay with each
I/O request.

In order to meet the needs of different types of users.
the Bridge Server implements three different system
views. Two of tile views hide significant amounts of the
underlying parallel structure. These are designed for appli-
cations where a familiar interface is more important than
I/O performance. The third view of Bridge reveals the
interleaved structure of files to I/O-critical applications. It
is based on the concept of tools. discussed in the follow-
ing section.

2.2 Bridge Tools

Pamllel interleaved files effectively address any I/O boule-
necks at the LFS level of the file system or below.

21

Between the file system and the application, interprocessor
communication remains a potential bottleneck. It can be
addressed by reducing communication to the minimum
required for each file operation-by exporting as much
functionality as possible out of the application. across the
communication medium, and into the processors that run
the LFS.

Bridge tools are applications that become part of the
file system. A standard set of tools (copy. sort. grep. etc.)
can be viewed as part of the top layer of the file system.
but an application need not be a standard utility program
to become a tool. Any process that requires knowledge of
the LFS structure may be written as a tool. Tools com-
municate with the Bridge Server to obtain structural
information from the Bridge directory. Thereafter they
have direct access to the LFS level of the file system. All
accesses to the Bridge directory (Create. Delete. and Open)
are performed by the Bridge Server in order to ensure con-
sistency. In essence, Bridge tools communicate with the
Server as application programs. but they communicate
with the local file systems as if they were the Server.

Our simplest tool copies files. It requires communi-
cation between nodes only for startup and completion.
Where a sequential file system requires time 0(11) to copy
an II-block file, the Bridge Copy Tool can accomplish the
same thing in time O(II/p). plus O(log(p)) for startup and
completion. Any one-to-one filter will display the same
behavior; simple modifications to the Copy Tool would
allow us to perform a large number of other tasks. includ-
ing character translation, block encryption. or lexical
analysis. By returning a small amount of information at
completion time. we could also perform sequential
searches or produce summary information.

Other tools can be expected to require non-trivial
communication between parallel components. We focus
in this paper on the problem of sorting, first because it is
an important operation in practice (files are frequently
sorted), and second because it is in some sense an inher-
ently hard problem for interleaved files.

3. Sorting Parallel Interleaved Files

Several researchers have addressed the problem of parallel
external sorting [Bitton et al. 1984; Kwan 1986[. In a
recent paper. Beck. Bitton. and Wilkinson [19881 detail
their construction of a functional parallel external sort.
They chose an algorithm consisting of local quicksort tol-
lowed by parallel mergesort. Since they used compara-
tively few processors (five). they were able to pipeline the
entire multi-phase merge with one disk read and one write.
This gives them excellent performance. but poor speedup
past three processors and no speedup of the merge stage in
the worst case. We chose a straightforward parallelization
of the most conventional merge sort algorithm.

A sequential external merge sort makes no unusual
demands on the file system (no random access, indexing,
etc.) runs," O(n log n) time. Given a parallel merge
algonthm, a log-depth parallel merge sort is easy to write.
With p processors and N records a parallel merge sort con-
currently builds p sorted runs of length NIp. It then
merges the sorted runs in a log p depth merge tree.
Pseudo-code for this algorithm appears in Figure I. The
first phase of the algorithm sorts the records on each LFS
iodependently. The second phase merges the sorted records
in neighboring pairs of LFSs. Assuming for the sake of
simplicity that p is a power of two, the final phase
merges the records from two collections of LFSs, each
consisting of p/2 processors.

3.1 Merging Parallel Interleaved Files

An interleaved file can be viewed as a whole or, at the
other extreme, as p sub-files, each local to a node. It may
also be regarded as some intermediate number of sub-files,
each of which spans a non-trivial subset of the file system
nodes. The merge algorithm takes two sub-files, each
spread across k nodes, and produces a single sub-file spread
across 2k nodes. To do so it employs two sets of reading
processes (one set for each of the source sub-files, one
process per node) and one set of writing processes (again,
one process per node).

The algorithm passes a token among the reading pro-
cesses of the two source sub-files. The token contains the
least unwritten key from the other source sub-file and the
location of the process ready to write the next record of the
output sub-file. When a process receives the token it
compares the key in the token to the least unwritten key
among its source records. If the key in the token is
greaterthan or equal to its local key, the process writes an
output record and forwards the token to the next processor
in its sub-file. If the key in the token is less than the
local key, the process builds a new token with its own
key and address, and sends that token back to the origina-
tor of the token it received.

Special cases are required to deal with termination,
but the algorithm generally follows the outline in

In parallel perform local external sorts on each LFS
Consider the resulting files to be "interleaved"

across only one processor
x:= 2
while (x <= p)

Merge pairs of files in parallel
Consider the new files to be interleaved

across x processors
Discard the old files in parallel
x := 2 * x

Figure 1 Merge Sort

22

Figure I. Figure 2 contains pseudo-code for an individ-
ual reader process.

The parallelism of the merge algorithm is limited by
sequential forwarding of the token. On at least every other
hop, however, the process with the token initiates a disk
read and write at the same time it forwards the token. For
disk sorting on a machine like the Butterfly multiproces-
sor, we will show that the token can undergo approxi-
mately one hundred sixty hops in the time required for the
parallel read and write. This implies that the sequential
component will be entirely hidden by VO latency on con-
figurations of well over 100 processors. Performance
should scale almost linearly with p within that range.

3.2 Analysis

Merge

The parallel merge algorithm is a close analog of the stan-
dard sequential merge. The token is never passed twice in a
row without writing, and all records are written in nonde-
creasing order. The program therefore writes all of its
input as sorted output and halts.

For the purposes of this analysis, let p be the number
of nodes across which the output sub-file is to be inter-

token (WriteAII, Key, Source, Numberl

Setup for the merge k I
Read a record
If this process initiates the merge

Read a record
Build a token (false, key, MyName, 0 I

where key is the first key in the local file
Send the token to the first process for the other file

Loop
Receive token k2
If (token. Key file key and not EOF) or

token.WriteAII
Increment token.Number k3
Pass token to next process for this source file
Send a write-request message to

Write-Process[token.Number-1 mod p} k4
Send a read-request message to the local LFS kj

Else
Build a token (EOF, file key,

MyName, token. Number J ko
Send the new token to token.Source

While not EOF

If (not token.WriteAII) k7
Build a token (true, MAXKEY,

MyName. token.Number I k6
Send the token to old token.Source

Figure 2 Merge Pseudo-Code

leaved and let N be the number of records in this file. Let
us also refer to source and destination sub-files simply as
files. Each source file will of course be interleaved over
half as many nodes as the destination file, and will consist
of half as many records. Moreover, the merge steps that
make up an overall merge sort will often manipulate sig-
nificantly fewer records than comprise the entire file, and
will use significantly fewer nodes.

We will call the sequential part of the algorithm its
limiting section. The rest of the code can execute in paral-
lel with disk I/O. The critical code comprises the loop in
Figure 2.

There are two cases in the loop, one taking time
Tact = k2+k3 and the other taking time Tpass = k2+k6·
Since the first case will be executed N times before all the
records are written and the algorithm tenninates, the total
time used by that code will be TaetN. The second case is
executed whenever the token passes from one file to the
other.

A run is a string of records merged from the same
file. A crossover stands between runs. If C is the number
of crossovers in the merge, the total time used by case 2
is T passe.

To analyze the behavior of the algorithm as a whole,
we must consider the extent to which the limiting section
can execute in parallel with disk I/O. The second case of
the loop has no parallel part, but case I includes both a
read and a write: Tread = k5 and T write = k4. The limit-
ing section has the potential to become significant when a
process of a source file finishes reading its next record
before the token returns, or when a process of the destina-
tion file finishes writing a record before being given
another one. The time required for the token to return to
the same reading process can be as small as T aetp!2, or as
large as Taet(P/2+NI2) + Tpassmin(C, p12), since it is
possible for the entire other source file to be traversed
before returning. Similarly, the time that elapses between
writes to the same output process can be as small as
Taetp, or as large as Taetp + Tpassmin(C, pl. On aver-
age, the time to complete either a read or a write "circuit"
should be p(T act + T passCIN). The extent to which in-
dividual circuits deviate from the average will depend on
the uniformity of the distribution of crossovers.

We want to discover the number of processors that
can be used effectively to sort. We must therefore deter-
mine the point at which I/O begins to wait for the sequen-
tial token passing. Average case behavior can only be used
with care because an unusually brief circuit saves no time
(I/O is still the limiting factor), whereas an unusually
long circuit loses time by allowing the sequential compo-
nent to dominate. Fortunately, we can make the fluctua-
tions negligible in practice by allowing source file pro-
cesses to read ahead and write behind.

23

Since the output file is interleaved across the same
disks as the input files, we will obtain linear speedup so
long as every disk is kept continually busy reading or
writing useful records. A source file process whose disk
has nothing else to do should simply read ahead. Finite
buffer space will not constitute a problem until the limit-
ing section begins to dominate overall. In our implemen-
tation, the timing anomalies caused by uneven crossover
distribution (on random input data) are rendered negligible
with only one record of read ahead.

Execution time for the merge algorithm as a whole
can be approximated as

(I)

where T disk = Tread + T write. and Tf;xed is overhead
independent of p. Each pass of the merge sort algorithm
should delete its temporary files; since the delete operation
for our LFS takes time klQ per record, T delete = klQ.
Tfixed includes the time required within each process for
initialization and finalization. It also includes the time
Teofrequired in one of the token circuits to recognize the
end of the first source file and build a WriteAII token. Per-
phase initialization time is kl· Teof= k2 + k7 + k6.
If we let kll he per-phase termination time, we have
Tfixed= kl + (k2 + k7 + k6) + kll·

The merge algorithm will display linear speedup with
p so long as p is small enough to keep the minimum
token-passing time below the 1/0 times; in other words,
so long as

p pmax = min (2Tread. T write-)
Tact Tact (2)

If crossovers are close to uniformly distributed, the algo-
rithm should actually display linear speedup so long as p
is small enough to keep the al'erage token-passing time
below the I/O time; in other words, so long as

(3)
The expected value of Ccan be shown to be NI2, so

and

Tmerf.:C = T/ixcd + tlTdl'/ete
p

+ max (NT"" +

which we will henceforth use as our value for T merge-
(4)

Merge Sort

The local external sorts in the first phase of the merge sort
are ordinary external sorts. Any external sorting utility
will serve for this phase. Standard external sorts will run
(in parallel with each other) in time O«Nlp) log (NIp».
We can approximate this as

= Cloc·al N (I + 10glL)
p pB

where B is the size in records of the in-core sort buffer.
The I inside the parentheses accounts for one initial read
and write of each record, used to produce sorted runs the
size of the buffer. Internal sort time is negligible com-
pared to the cost of 1/0 for merging.

Referring back to Figure I, there are log p phases of
merge, for x = 2, 4, 8, ... , p (again assuming that p is a
power of two). Phase x runs pIx merges, each of which
uses x processors to merge Nxlp records. The expected
time for phase x is therefore

Tx = + NTdelete + max (NXTocl + NXTpass. NTdisk)
P P 2p P

If Tcreate is the time required to create 2p processes and to
verify their termination, then the expected time for the
merge sort as a whole is

T sort = Tcreau + Tlocal + L Tx
x=2.4,8 •... .,p

= Tcreat,,+ T/m:ui + logp (T/i.ted+

+ NT· + NXT +NxT. - disk k - act - pa"
... i P xci P 2p

p;;;;;;<xSp (5)

If P is small enough that I/O always dominates, this is

Tsarl = tcreate + Tlm:a/ + log p (Tfixed + + Tdl!'ft'U))

Otherwise our equation for T,'IOrt is

T.tOr/ = Tcr(!'u/e + T/o{'U/

+ [log Pmaxl (Tfl"d + + Td"'''))
+ + (2p - 2I'ngt>;;;;Di+')

4. Empirical Results

(6)

We have measured the sort tool's perfonnance on our im-
plementation of Bridge. Actual and predicted performance
figures are shown in Table I. The better-than-linear per-
formance "improvements" with increasing P in the local
sort are not remarkable. They reflect the reduced local file
size, n, with greater p, and the n log n local sort.
Figure 4 displays our predicted results pictorially. The
dashed line indicates the percentage of time spent in the
merge phase. The graph clearly illustrates that merging
becomes proportionally much more important with in-
creasing p, as work moves out of the local sort and into
additional merges.

Our local sort algorithm is relatively naive: a simple
two-way external merge with 500-record internal sort
buffers. It runs at about a quarter the speed of the Unix
sort utility.

Our predicted performance figures differ only slightly
from measured performance between 2 and 32 processors
(see Figure 3). A detailed examination of timing data
suggests that the remaining inaccuracy stems from minor
contention for the local file systems that is not accounted
for in the analysis .

Figure 3 plots predicted and actual performance fig-
ures up to 32 processors for the local sorts, the merge
phases, and the overall sort tool. Figure 4 extends these
graphs with predicted performance on larger numbers of
nodes. The dashed line plots the percentage of total execu-
tion time devoted to parallel merge phases (as opposed to

Table 1 Merge Tool Performance (10 Mbyte file. times in minutes)

Merge Phases Local Sort Merge Sort Total

Processors Measured Predicted Measured Predicted Measured Predicted Rate
(kbytes/sec)

2 7.8 7.68 19.6 19.58 27,4 27.26 6.26
4 7.6 7.68 7.6 7.83 15.2 15.51 11.00
8 5.7 5.76 2.7 2.94 8,4 8.70 19.62

16 3.8 3.84 1.0 0.98 4.8 4.82 35,41
32 2,4 2,40 0.3 0.24 2.7 2.65 64.52
64 1.44 0.12 1.56 109.21

128 0.84 0.06 0.90 189.28
256 0.51 0.03 0.54 318.06
5t2 0.33 0.02 0.35 491.29

24

local sorts). Speedup begins to taper off noticeably
beyond the point where I/O ceases to dominate sequential
token passing. Performance continues to improve, but at a
slower rate. The merge phase that uses 256 processors to
merge two files will run at its lPC speed. The earlier
phases of the merge and the local sorts will, however, run
with p-way parallelism. This causes the algorithm to
show some improvement with thousands of processors
even though (as shown in lhe following section) the last
stages of the merge will reach a speedup of only about
160.

Values for Constants

The figures in Table 2 were obtained by inserting timing
code in the merge program. The measurement code

700
Local 80

Merge Agreg.te • 65 • .,
kbyta/tee

e •
• e • • e • Actual

o Pred.i.<:ted
0 32 0 32 0 2 p-

Figure 3 Predicted versus Actual Perfonnance

,100%
.... --.-----.-----------. I r I

I I
500

• I
kbytesfsee I I merge

I time,

processors

Figure 4 Predicted Aggregate Performance

percent

25

inevitably introduced overhead but not enough to make a
difference in performance. The predicted times in Table I
were calculated with equation 6 and the constants from
Table 2.

Perhaps the most important figure in Table 2 is the
value for Pmax. With the [/0, communication, and com-
putation times found in our implementation (which we
believe would be closely matched by a production-quality
version of Bridge), and with fewer than 160 processors in
use, there is no way for a process to complete an I/O
operation before being asked to perform another one.

5, Experiences

5_1 Analysis

OUf research is focussed more on systems issues than the-
ory, but we find nonetheless that the mathematical analy-
sis of algorithms can play an important role in this work,
[n the case of the merge sort tool, our analysis has proven
extremely successful. Informal analysis guided our initial
choice of algorithm. Detailed analysis uncovered an im-

Table 2 Constant Values

Constant Value Source
k 1 - merge setup time 20000 J.1sec measured (avg.)

Maximum 30951 J.1sec measured
Minimum 116 J.1sec measured
k II - tenninate a o J.1sec hidden in start

men!e nhase of next phase
k2 - receive token 253 J.1sec measured

and fol",wing tests
k3 - update token number 28 J.1sec measured

and fOlWard token
k4 write a record (TlI"l"ilr) 45000 J.l.sec measured
ks - read a record (Tl"rat/) 25000 J.1sec measured
k6 - build & send a token 31 J.l.sec measured
k7 - simple if 45 Ilsec measured
kg - start a process 48000 J.1sec measured
k9 - end a process 300 J.l.sec measured
klO - delete a record 20000 J.1sec measured

Clonll 45900 J.1sec measured
T disk 70000 J.1sec k + k 4 ,

Tact 2R 1 Ilsec + kJ
T,ICI.'':S 2841lsec k:!. + k5

T.fix/·(I 20300 J.l.sec k1+k:!.+kll
+k7+ k 11

I'max 160 see eqn. 2
I'max 165 see eon. 3

portant flaw in our implementation, and yielded a trust-
worthy estimate of the number of nodes that could be
utilized effectively.

An informal analysis of our sorting algorithm sug-
gested that it would parallelize well despite its sequential
part. Further analysis confirmed that conclusion, but only
a full analysis, including all constant factors, could show
the range over which we could expect the algorithm to
scale. The analysis played the role of a lower bound while
we tuned our implementation of the algorithm.

Our sorting algorithm is not parallel under asymp-
totic analysis. It is, however, simple and it is parallel
over the range of parallelism that we have chosen to
address. There are numerous truly parallel sorting algo-
rithms, but they don't have the simplicity of our merge
sort. Some of these parallel algorithms would use more
than (n log n)/p reads; others are too casual about access
to non-local data.

Our analytical predictions accurately match the exper-
imental results we report in this paper, but our first exper-
iments fell well below the predicted performance. There
were wide variations in read times and there was less paral-
lelism than expected. This cast doubt on our analysis.
When we included a simple model of contention for disk
drives in our analysis, we obtained a far better match with
the experimental data. Unfortunately, the equations
became much more complex than those in Section 3. We
then collected more timing measurements, which con-
firmed that contention was a serious problem. Alerted to
the problem, we were able to implement a simple read-
ahead scheme that eliminated almost all of the contention,
thereby improving performance and matching the predic-
tions of the simpler version of the analysis.

This approach to program optimization is too painful
for us to recommend as a general practice. but it was a
useful tool in this specific case and is likely to be so in
others. The analysis plays the role of a lower bound on
run time, providing a self-sufficient benchmark for com-
parison with experimental results. When experimental data
fails to match the analysis, there is either a problem with
one's understanding of the algorithm (as reflected in the
analysis) or with one's realization of the algorithm in
code. In our case, the problem was the latter.

S.2 Bridge

An application for a parallel interleaved file system is in
some sense "trivially parallel" if the processing for each
record of the file is independent of activities on other pro-
cessors. From OUf point of view. the most interesting
problems for Bridge are those in which data movement and
inter-node cooperation 3re essential. The critical observa-
tion is that algorithms will continue to scale so long as
all the disks are busy all the time (assuming they are do-
ing useful work). In theory there is a limit to the paral-

26

lelism that can be exploited in any algorithm with a
sequential component, but the time scale difference be-
tween disk accesses and CPU operations is large enough
that one can hope to run out of money to buy disks before
reaching the point of diminishing returns. In the merge
sort tool, the token is generally able to pass all the way
around a ring of many dozen processes before a given pro-
cess can finish writing out its previous record and reading
in the next. It is clear that the tool can offer "only" a
constant factor of speedup, but this observation misses the
point entirely. Constant factors are all one ever looks for
when replicating hardware.

This argument suggests that asymptotic performance
may be the wrong way to think about I/O-intensive paral-
lel applications. It also suggests that the exporting of
user code onto the processors local to the disks, as sup-
ported in Bridge, is essential to obtaining good perfor-
mance. It is precisely this exported code, embodied in a
Bridge tool, that enables each disk to perform useful work
as steadily as possible. Our experience with a variety of
applications also suggests that the tool-based interface to
Bridge is simple and convenient enough to be used for any
application in which very high performance is important.
There is no doubt that tools are harder to write than pro-
grams that use the more naive Bridge interfaces. At the
same time, they are substantially easier than the alterna-
tive: explicit management of multiple files under multiple
local file systems. They also allow separate applications
to process the same data without worrying about compati-
ble use of subfiles.

Round-robin interleaving for data distribution has
proven to be both simple and effective. In the case of the
merge sort tool, a process that produces a record to be
written may need to write it to any disk in the system,
depending on the distribution of runs. Though the records
read from a particular source file or written to a particular
destination file are always used in order, the records
accessed by the application as a whole are more randomly
distributed. Even so, a small amount of buffering allows
each disk to remain busy almost all the time. We have
observed this same phenomenon in other tools, such as
those devised for file compression and image transposi-
tion. We have been unable to find a practical application
for which round-robin interleaving does not suffice.

The successful analysis and implementation of a sort·
ing tool on Bridge supports our thesis that a parallel inter-
leaved file system can effectively address the I/O bottle-
neck on parallel machines. Intuitively, it seems fitting
that parallel file system software should be used to solve a
problem introduced by the parallel execution of applica-
tion code. Practically, our experience with the merge sort
tool (together with similar experience with other tools)
has shown that parallel interleaved file systems will scale
well to very large numbers of nodes.

Acknowledgement
Carla Ellis contributed heavily to the early design of
Bridge.

References
BBN Laboratories, "Butterfly® parallel processor over-

view," TR 6149, Version 2, June 1986.

Beck, M., D. Bitton, and W.K. Wilkinson, "Sorting large
files on a backend multiprocessor," IEEE Trans.
Computers 37, 7, 769-778, July 1988.

Bitton, D., D.J. DeWitt, O.K. Hsaio, and J. Menon, "A
taxonomy of parallel sorting," ACM Computing
Surveys 16, 287-318, Sept. 1984.

Dibble, P.C., M.L. Scott, and C.S. Ellis, "Bridge: A
high-performance file system for parallel proces-
sors," Proc., 8th Int'!. Conf. on Distributed
Computing Systems, 154-161, June 1988.

27

Gurwitz, R.F., M.A. Dean, and R.E. Schantz, "Pro-
gramming support in the Cronus distributed oper-
ating system," Proc., 6th Int'l. Conf. on Distributed
Computing Systems, 486-493, May 1986.

K wan, S.c., "External sorting: I/O analysis and parallel
processing techniques," Ph.D. Thesis, U. Washing-
ton, Jan. 1986.

Manuel, T. and C. Barney, "The big drag on computer
throughput," Electronics 59, 5\-53, Nov. 1986.

Patterson, D.A., G. Gibson, and R.H. Katz, "A case for
redundant arrays of inexpensive disks (RAID),"
Proc., ACM SIGMOD Conf., 109-116, June 1988.

Salem, K. and H. Garcia-Molina, "Disk striping," Proc .•
IEEE Conf. on Data Engineering, 336-342, 1986; a
slightly more detailed version can be found in TR
332, EECS Dept., Princeton University.

Thinking Machines, Inc., "Connection machine model
CM-2 technical summary," TR HA87-4, Apr. 1987.

