
Large-Scale Parallel Programming:
Experience with the BBN Butterfly Parallel Processor

Thomas J. LeBlanc, Michael L. Scott, and Christopher M. Brown

Department of Computer Science
University of Rochester
Rochester, NY 14627

ABSTRACT

For three years, members of the Computer Science Depart-
ment at the University of Rochester have used a collection
of BBN Butterfly TM Parallel Processors to conduct research
in parallel systems and applications. For most of that
time, Rochester’s 128-node machine has had the distinc-
tion of being the largest shared-memory multiprocessor in
the world. In the course of our work with the Butterfly we
have ported three compilers, developed five major and
several minor library packages, built two different operat-
ing systems, and implemented dozens of applications. Our
experience clearly demonstrates the practicality of large-
scale shared-memory multiprocessors, with non-uniform
memory access times. It also demonstrates that the prob-
lems inherent in programming such machines are far from
adequately solved. Both locality and Amdahl’s law become
increasingly important with a very large number of nodes.
The availability of multiple programming models is also a
concern; truly general-purpose parallel computing will
require the development of environments that allow pro-
grams written under different models to coexist and
interact. Most important, there is a continuing need for
high-quality programming tools; widespread acceptance of
parallel machines will require the development of pro-
gramming environments comparable to those available on
sequential computers.

--- --
This work was supported in part by NSF CER grant

number DCR-8320136, NSF grant number CCR-8704492,
DARPA/ETL contract number DACA76-85-C-0001, DARPA/ONR
contract number N00014-82-K-0193, an ONR Young
Investigator Award, contract number N00014-87-K-0548, and an
IBM Faculty Development Award. The Xerox Corporation
University Grants Program provided equipment used in the
preparation of the manuscript.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

o 1988 ACM O-89791-276-4/0007/0161 $1.50

1. Introduction

In September 1984, the Department of Computer Sci-
ence at the University of Rochester acquired a 3-node BBN
ButterflyTM Parallel Processor [51. In May 1985, with
funding from an NSF CER grant, the department acquired
a 128-node Butterfly, the largest configuration in
existence. Over the last 3.5 years, the Butterfly has been
used by various members of the department to develop
numerous software packages and applications. This paper
traces the history of our software development for the
Butterfly and describes our collective experience using the
world’s largest shared-memory multiprocessor.

For us the Butterfly and its systems software
represented two unique scientific opportunities. First, it
was flexible enough to support the implementation of our
new ideas; second, it incorporated several interesting solu-
tions to problems that themselves represented research
issues. Our findings are based on a computer that is now a
generation removed from the current product line. In any
case, this is not a product review. We wish first to docu-
ment ideas and concerns that are shaping the evolution of
parallel computing. Second, and more important, we
believe that our experiences are still intellectually
relevant and that they will be useful in future contexts
when similar or related issues arise.

Our experiences fall into several categories. In sec-
tion 2 we describe our experience with the hardware and
software provided by BBN. Section 3 describes the history
of the Butterfly software development effort at the Univer-
sity of Rochester, including both systems software and
applications. Section 4 discusses lessons we have learned
along the way and section 5 provides a summary of our
experience and an assessment of the future of Butterfly-
like machines.

2. BBN Butterfly Hardware and Software

The original Butterfly Parallel Processor (the
“Butterfly-l”) was developed by BBN Laboratories in the
late 1970’s as part of a research project funded by the
Defense Advanced Research Projects Agency. It eventu-
ally evolved into a commercial product, marketed for the
past two years by BBN Advanced Computers, Inc. It has
recently been succeeded by a second generation of
hardware and software, the Butterfly 1000 series,
announced in October of 1987. The experiences reported
in this paper were obtained in the course of work with the
original version of the Butterfly. Much of our current

161

mls
PPEALS '88

research has moved to the new machine.

2.1. Butterfly Hardware

The Butterfly Parallel Processor (figure 1) consists of
up to 256 processing nodes connected by a high-speed
switching network. Each node in the switching network is
a 4-input, 4-output switch with a bandwidth of 32
Mbits/set. In the Butterfly-l, each processing node is an 8
MHz MC68000 with 24 bit virtual addresses and up to 1
Mbyte of local memory (4 Mbytes with additional memory
boards). A 2901-based bit-slice co-processor called the
processor node controller (PNC) interprets every memory
reference issued by the 68000 and is used to communicate
with other nodes across the switching network. All of the
memory in the system resides on individual nodes, but any
processor can address any memory through the switch.

The Butterfly is therefore a NUMA’ machine; remote
memory references (reads) take about 4 ps, roughly five
times as long as a local reference.

The PNC on the Butterfly-l implements a segmented
virtual memory. Each virtual address contains an 8 bit
segment number and a 16 bit offset within the segment.
A process can have at most 256 segments in its address
space, each of which can be up to 64 Kbytes in size. Each
segment is represented by a SAR (Segment Attribute
Register), which defines the base, extent, and protection of
the associated memory. A process’s virtual address space
is represented by an ASAR (Address Space Attribute
Register), which defines the address and extent of a group
of SARs corresponding to the segments addressable by the
process. There are 512 32-bit SARs and 1 Is-bit ASAR per
processor. Chrysalis allocates the available SARs in
blocks of 8, which are arranged in a buddy system. Three
bits in the ASAR are used to specify the size of the SAR
block, which must be one of 8, 16, 32, 64, 128, or 256.

The two most serious problems with the original
hardware proved to be its software floating point and its

Figure 1: Butterfly Parallel Processor

-
i Non-Uniform Memory Access time. Unlike UMA

multiprocessors (with uniform access times), NUMA machines
have the potential to scale to very large numbers of nodes.

primitive memory management. Hardware floating point
was provided by BBN in 1986, using a daughter board con-
taining an MC68020 processor and MC68881 floating point

co-processor,2 but the shortcomings of the memory archi-
tecture remained. Even though the physical address space
of the machine is 1 Gbyte, the virtual address space of a
process could include at most 16 Mbytes of memory (256
segments, each containing 64 Kbytes), and then only if
there were at most two processes per processor. This limi-
tation forced the programmer to modify the address space
of processes dynamically (at a cost of over 1 ms per seg-
ment added or deleted) and to avoid using shared memory
whenever possible. It also limited severely the number of
processes that could be allocated to a processor. In our
experience the need to manage SARs explicitly has been a
recurring source of irritation and problems.

Another problem with the memory architecture is
that remote references steal memory cycles from the local
processor. If many processors busy-wait on a shared loca-
tion (a common synchronization technique), the impact on
the processor containing the memory can be substantial.

Most of the problems just described have been
addressed in the design of the Butterfly Plus, the
hardware base for the Butterfly 1000 series [3]. Each node
in the Butterfly Plus has an MC68020 processor, MC68881
floating point co-processor, and MC68851 memory manage-
ment unit. The MC68020 and MC68851 on the Butterfly
Plus enable demand paging, but remote references still
steal memory cycles from the local processor. The
presense of a modern memory management system makes
the new machine an extremely attractive vehicle for
research in operating systems.

2.2. Chrysalis Operating System

First-generation Butterfly machines use BBN’s own
Chrysalis operating system [4]. Chrysalis was originally
developed for real-time packet-switching applications. Its
facilities constitute a protected subroutine library for C
programs. They include operations for process manage-
ment, memory management, and interprocess communica-
tion Many of the most common operations, including
much of the process scheduler, are implemented in micro-
code in the PNC.

A Chrysalis process is a conventional heavyweight
entity with its own address space. Processes are scheduled
by the kernel. They do not migrate. The memory space of
a process consists of a collection of memory objects, each of

which can range in size from zero to 64 Kbytes3 Each
process, when created, is allocated a static portion of the
SARs on its node. One SAR is consumed by each memory
object in the process’s address space. SAR contents can be
changed dynamically; explicit operations permit the
current process to change its address space by mapping
and unmapping arbitrary memory objects.

--

2 We have upgraded 8 spare nodes and 8 nodes from our
large Butterfly to provide the Department with a Is-node
floating point machine.

3 Actually, segments can only be allocated in 16 standard
sizes. An odd-sized memory object is rounded up to the next
standard size, with an inaccessible fragment at the end.

162

Atomic memory operations can be used to implement
spin locks. In addition, Chrysalis provides highly efficient
mechanisms for scheduler-based synchronization. Events
resemble binary semaphores on which only one process
(the owner) can wait. The process that posts an event can
also provide a 32-bit datum that will be returned to the
owner by the wait operation. Dual queues are a generali-
zation of events that can hold the data from multiple posts
and can supply that data to multiple waiters. Microcode
implementation of events and dual queues allows all of the
basic synchronization primitives to complete in only tens
of microseconds.

All of the basic Chrysalis abstractions (processes,
memory objects, events, and dual queues) are subsumed by
a single object model. Among other things, this model
supports a uniform ownership hierarchy with reference
counts that allows the operating system to reclaim the
resources used by subsidiary objects when a parent is
deleted. Unfortunately, a facility for transferring owner-
ship to “the system” makes it easy to produce objects that
are never reclaimed. Chrysalis tends to leak storage.

Chrysalis incorporates an exception-handling mechan-
ism patterned after the MacLISP catch and throw [39].
Exception handlers are implemented with C macros that
save information for non-local gotos. In the event of an
error, whether detected by hardware (in a trap handler) or
software (in a kernel call or user program), Chrysalis
unwinds the stack to the nearest exception handler and
optionally suspends the process for examination by a
debugger. At first glance the catch/throw mechanism
appears to be an extremely attractive way of managing
errors. Unfortunately, it suffers from several limitations.
First of all, it is highly Language-specific. To program in
Modula-2, one must insert an extra subroutine (written in
C) around every system call in order to catch and handle
throws. Even in C, the programmer must be aware that
register and non-register variables will behave differently
in the event of a throw, and that gotos, breaks, or contin-
ues in or out of catch blocks will leave the process in an
unpredictable state. Entering and leaving a protected
block of code is expensive enough (about 70 l.ts [17]) that a
highly-tuned program must have every possible catch
block removed from its critical path of execution.

The interface provided by Chrysalis is too low-level
for convenient use by application programmers. We have
found, however, that its primitive operations constitute a
very general framework upon which to build efficient
higher-level communication protocols and programming
environments. The following section describes a number
of the software packages we have built on top of Chrysalis.
Their success has depended on the fact that Chrysalis
allows the user to explicitly manage processes, memory,
and address spaces, and provides highly efficient low-level
mechanisms for synchronization and communication.

Largely as a result of its research-environment ori-
gins, Chrysalis leaves much to be desired as a general-
purpose operating system. It has no support for virtual
memory or paging. It lacks a file system; file system
operations are implemented over the Ethernet by a dae-
mon process on a host machine (a VAX, Sun, or Symbolics
workstation). Its user interface is built around a primitive
ASCII terminal window manager (though X-window sup-
port is available when running the network software).
Interaction with the command interpreter requires

intimate knowledge of the hardware and the operating
system. This need for expertise means that Chrysalis is
an inappropriate programming environment for all but the
most sophisticated users. It is also not a development
environment; programs are written, compiled, and linked
on the host and downloaded for execution on the Butterfly.

Extensive use of a global referencing environment
makes Chrysalis essentially a single-user system. Users
can partition the machine into multiple virtual machines,
but there is no support for multiple users within a parti-
tion. Moreover, protection loopholes in both the hardware
and in Chrysalis allow processes (with a little effort) to
inflict almost unlimited damage on each other and on the
operating system. Chrysalis allows a process to map in any
memory object it can name, and names are easy to guess.
More fundamentally, the PNC microcode is designed in
such a way that a process can enqueue and dequeue infor-
mation on any dual queue it can name, regardless of any
precautions the operating system might take.

The Butterfly GP-1000, now in Beta test, will run the
Unix-compatible Mach operating system (11. The availa-
bility of Mach should guarantee a convenient development
environment on all of the newer machines. It is most
unlikely, however, to provide users with the efficiency or
the degree of control over low-level resources available
with Chrysalis. BBN has announced plans to provide a
hybrid approach on future machines (the RT-lOOO), with
applications running on top of a real-time kernel in dedi-
cated subsets of the machine, under the overall control of
Mach.

2.3. Uniform System
The BBN Uniform System (US) library package 161

implements lightweight tasks that execute within a single
global address space. The US interface consists of calls to
create a globally-shared memory, scatter data throughout
the shared memory, and create tasks that operate on the
shared memory. During initialization, US creates a
manager process for each processor, which is responsible
for executing tasks. A task is a procedure to be applied to
shared data, and is usually represented by a function
name and a pointer into shared memory. A global work
queue (accessed via microcode operations) is used to allo-
cate tasks efficiently to processors. Since each task inher-
its the globally-shared memory upon creation, US supports
a very small task granularity.

The Uniform System is the programming environ-
ment of choice for most applications, primarily because it
is easy to use. All communication is based on shared
memory, and the mapping of tasks to processors is accom-
plished automatically. Moreover, the light weight of tasks
provides a very cheap form of parallelism. Nevertheless,
there are significant disadvantages to using US. The work
queue model of task dispatching has led to an implementa-
tion in which tasks must run to completion. Spin locks
must be used for synchronization. Waiting processors
accomplish no useful work, implementation-dependent
deadlock becomes a serious possibility, and programs can
be highly sensitive to the amount of time spent between
attempts to set a lock [55]. Spin locks also steal remote
cycles, exacerbating the problem of memory contention.

US limits the amount of memory that can be shared
on the original Butterfly. Like any Chrysalis process, a
US manager can have at most 256 segments in its virtual

163

address space. Since all managers have identical memory
maps, only 16 Mbytes (out of a possible 1 Gbyte of physical
memory) can actually be used by a computation under the
Uniform System. Similarly, US limits how the data is
structured. One of the main advantages of a segmented
address space is that memory segments can be allocated to
logical quantities regardless of their size, since each seg-
ment is of arbitrary size. This is not a reasonable
approach under the Uniform System (at least on the
Butterfly-l) because the number of available SARs, and
hence memory segments, is severely limited. In order to
be able to access large amounts of memory, each segment
must be large. Data must be structured on the basis of
this architectural limit, rather than logical relationships.
Large amounts of data irregular in structure must be allo-
cated in regular patterns to economize on SARs. Even on
the new hardware, where SARs are not a problem, the sin-
gle globally-accessible data space will tend to discourage
the development of modular program structure.

Finally, the Uniform System model does not
encourage the programmer to exploit locality. US creates
the illusion of a global shared memory, where all data is
accessed using the same mechanisms. The illusion is not
supported by the hardware, however, since frequent access
to individual words of remote memory is undesirable.
Thus, in many applications, each task must copy data into
local memory, where it is processed and then returned to
the shared memory.

Our conclusion is that the Uniform System provides
an outstanding environment for certain kinds of applica-
tions. It is best for programs in which (1) the available
parallelism displays a high degree of regularity (as in
many data-parallel symbolic and numerical applications),
(2) the task-size granularity is on the order of a single sub-
routine call, and (3) almost all of the dependencies and
interactions between tasks are statically defined. For
other sorts of applications there are other useful models.
Several of these are described in the following section.

3. Rochester Software Development
Butterfly software development at Rochester has

always been driven by applications. Our work in com-
puter vision, connectionist networks, and computational
geometry motivated both our purchase of the Butterfly and
subsequent system development. Applications program-
mers struggled hard at first to learn the details of the new
architecture and operating system. Their effort was ham-
pered by unreliable software, poor diagnostics, a lack of
good tools, an absence of documentation, and the need to
use low-level system calls for most important operations.
Over time, BBN improved both software reliability and
documentation, and developed the Uniform System library
package, while the Rochester systems group has worked to
ease the programming task by developing a large number
of additional packages and tools. The Butterfly has also
formed the hardware base for implementations of two
different student operating systems, and a major research
effort in parallel operating systems is now underway on
the Butterfly Plus.

3.1. Applications
The first significant application developed for the

Butterfly at Rochester was the Connectionist

Simulator [21], now in use (in its uniprocessor incarnation)
at over 100 sites. The simulator supports a neural-like
model of massively-parallel computing. Rochester’s AI
group is using it to investigatn algorithms that might be
used by a computer resembling the brain [22]. The
Butterfly version of the simul ‘3r runs directly on top of
Chrysalis. It was our first oncrete example of the
Butterfly’s processing power. With 120 Mbytes of physical
memory we were able to build networks that had led to
hopeless thrashing on a VAX. With 120-way parallelism,
we were able to simulate in minutes networks that had
previously taken hours.

Several other early applications were drawn from
work in computer vision [7,9]. The vision group at
Rochester uses the University of British Colombia’s IFF
(Image File Format) as an internal standard. IFF includes
a library of vision utilities that can be used as filters,
reading an image from an input pipe and writing another
to an output pipe. Complex image operations can be
implemented by composing simpler filters. An early goal
of the software development effort at Rochester was to
extend the IFF model into the realm of parallel processing
with an implementation on the Butterfly. The BIFF
(Butterfly IFF) package [40], completed in the summer of
1986, contains Uniform System-based parallel versions of
the standard IFF filters. A researcher at a workstation
can download an image into the Butterfly, apply a complex
sequence of operations, and upload the result in a tiny
fraction of the time required to perform the same opera-
tions locally.

Perhaps the best-studied early application on the
Butterfly was the diagonalization of matrices by Gaussian
elimination. Bob Thomas of BBN conducted extensive
experiments with a Uniform System-based implementa-
tion [16,55]. In an attempt to capitalize on previous
experience with distributed programming, we implemented
and analyzed a message-based solution to the same prob-
lem, comparing it to the Uniform System version [28,29].
The results of this comparison suggested that neither
shared memory nor message passing was inherently supe-
rior, and that either might be preferred for individual
applications, both from a conceptual point of view and
from the point of view of maximizing performance.

In a single three-week period in the summer of 1986,
seven different benchmarks were developed as part of a
DARPA-sponsored investigation into parallel architectures
for computer vision [8,10,11,41]. These benchmarks
included edge finding and zero-crossing detection, con-
nected component labeling, Hough transformation,
geometric constructions (convex hull, Voronoi diagram,
minimal spanning tree), visibility calculations, graph
matching (subgraph isomorphism), and minimum-cost path
in a graph. Four different programming environments
were used: bare C with Chrysalis calls, the Uniform Sys-
tem, the Structured Message Passing package (section 3.2),
and the Lynx distributed programming language (also sec-
tion 3.2). Experience with these applications and environ-
ments reinforced our conviction that different models of
parallel programming can be appropriate for different
applications.

Several pedagogical applications have been con-
structed by students for class projects, including graph
transitive closure, 8-queens, and the game of pentominoes.
In addition, we have running a large checkers-playing

164

program (written in Lynx), that uses a parallel version of
alpha-beta search [23]. As part of our research in debug-
ging parallel programs (section 3.3), we have studied a
non-deterministic version of the knight’s tour problem and
have performed extensive analysis of a Butterfly imple-
mentation of Batcher’s bitonic merge sort. As part of our
research in parallel file systems (section 3.4), we have
developed 110 intensive algorithms for copying, transform-
ing, merging, and sorting large external files. Ph. D.
dissertations are currently in preparation in the areas of
parallel compilation [25], parallelizing compilers [44], and
parallel programming language design [14].

3.2. Programming Environments

NET [261 was the first systems package developed for
the Butterfly at Rochester. NET facilitates the construc-
tion of regular rectangular meshes (including lines,
cylinders, and tori), where each element in the mesh is
connected to its neighbors by byte streams. Where
Chrysalis required over 100 lines of code to create a single
process, NET could create a mesh of processes, including
communication connections, in half a page of code. Our
experience with NET showed how valuable even a very
simple systems software package could be.

Another early decision in our work with the Butterfly
was that experimentation with multiple models of parallel
programming would be facilitated by the availability of
languages other than C. Source was available for a
Modula-2 compiler developed at DEC’s Western Research
Center. The construction of a 68000 code generator and
Butterfly run-time library provided us with our second
Butterfly language [42]. In addition to addressing well-
known weaknesses in C (in the areas of modularity and
error-checking, for example), Modula-2 has allowed us to
construct packages such as Ant Farm (see below), in which
the fine-grain pseudo-parallelism of coroutines plays a cen-
tral role.

Both BIFF and NET showed the value of message
passing, even in a shared-memory multiprocessor. BIFF
applications based on the Uniform System would copy data
into and out of the shared memory using essentially a
message-passing style. NET byte streams implemented
untyped messages. Together with the experiments in
Gaussian elimination, this early experience suggested the
need to provide general-purpose support for message pass-
ing on the Butterfly. Projects were therefore launched to
provide that support both at the library package level and
in the form of a high-level programming language.

The SMP (Structured Message Passing) pack-
age [30,31] was designed to provide a level of functionality
comparable to that of the BBN Uniform System. It sup-
ports the dynamic construction of process families,
hierarchical collections of heavyweight processes that com-
municate through asynchronous messages (figure 2). In a
generalization of the NET interconnection facility, process
families can be connected together according to arbitrary
static topologies. Each process can communicate with its
parent, its children, and a subset of its siblngs, as
specified by the family topology. An SMP library is avail-
able for both C and Modula-2. For C programs it elim-
inates most of the cumbersome and error-prone details of
interacting with Chrysalis. For Modula-2 programs it also
provides a model of true parallelism with heavyweight
processes and messages that nicely complements the

n

Figure 2: Hierarchy of SMP Process Families

built-in model of pseudo-parallelism with coroutines and
shared memory. In order to economize on SARs, an SMP
process with many communication channels must map its
buffers in and out dynamically. To soften the roughly 1
ms overhead of map operations, SMP incorporates an
optional SAR cache that delays unmap operations as long
as possible, in hopes of avoiding a subsequent map.

At a higher level of abstraction, message passing is
also supported by the Lynx distributed programming
language [46,48]. Like SMP with Modula-2, Lynx sup-
ports a collection of heavyweight processes containing
lightweight threads. Unlike SMP, it incorporates a remote
procedure call model for communication between threads,
relying on a message dispatcher and thread scheduler in
the run-time support package to provide the performance
of asynchronous message passing between heavyweight
processes. Connections (links) between processes can be
created, destroyed, and moved dynamically, providing the
programmer with complete run-time control over the com-
munication topology (figure 3). On the Butterfly, a stan-
dard Lynx library also permits processes to share memory,
though message-passing (or spin locks) must still be used
for synchronization.

Because it is a language instead of a library package,
Lynx offers the advantages of syntactic cleanliness, secure
type checking for messages, high-level naming (with

Figure 3: Processes and Links in Lynx

165

scatter/gather of message parameters), Ada-like exception
handling, and automatic management of context for inter-
leaved conversations. Unlike most parallel and distrib-
uted languages, Lynx provides these advantages without
requiring compile-time knowledge of communication
partners and without sacrificing protection from potential
errors in those partners. Experience with Lynx has
yielded important information on the inherent costs of
message passing [49] and the semantics of the parallel
language/operating system interface 1471.

Applications experience, particularly with graph algo-
rithms and computational geometry, has convinced us of
the need for a programming environment that supports
very large numbers of lightweight blockable processes.
Parallel graph algorithms, for example, often call for one
process per node of the graph. At the time of the DARPA
benchmark, none of the programming environments avail-
able on the Butterfly supported algorithms of this type.
Lightweight tasks form the core of the Uniform System,
but have no facilities for blocking or synchronization other
than spin locks. Lightweight threads are also available in
Lynx and in Modula-2 (e.g. with SMP), but the mechan-
isms for interaction between threads in the same process
are radically different from the mechanisms for interaction
between threads in different processes. We have recently
developed a library package called Ant Farm t501 that
ericapsulates the microcoded communication primitives of
Chrysalis with a Lynx-like coroutine scheduler, Origi-
nally designed for use in Modula-2, Ant Farm is currently
being modified to work with a C-based coroutine package
provided in recent releases of Chrysalis. In either
language, invocation of a blocking operation by a light-
weight Ant Farm thread causes an implicit context switch
to another runnable thread in the same Chrysalis process.
In the event that no other thread is runnable, the corou-
tine scheduler blocks the process until a Chrysalis event is
received. When combined with a global heap and facilities
for starting remote coroutines, the resulting system allows
lightweight threads to communicate with each other
without regard to location.

The Uniform System, SMP, Lynx, and Ant Farm are
all significantly safer and more convenient to use than the
Chrysalis primitives on which they are implemented.
They are also significantly less flexible, and bear little
resemblance to the abstractions of the operating system.
A more compatible improvement to the Chrysalis environ-
ment was provided by Chrysalis+ + [12], an encapsulation
of Chrysalis abstractions in C+ + class definitions. To
implement Chrysalis+ + we first modified the standard
AT&T implementation of C+ + to generate code for the
Butterfly, then recast the explicit object management of
Chrysalis into the implicit object management of C-t f.
Implicit object management reduces the amount of code
necessary to create and manage processes, memory objects,
events, dual queues, and atomic variables. The strong
type checking of C + + also reduces the frequency of run-
time errors. Problems encountered in the implementation
of Chrysalis+ + led to general observations about the
difficulty of reconciling the object-management needs of
languages and operating systems [13,15].

3.3. Programming Tools

Numerous small projects undertaken in the course of
our work with the Butterfly can be categorized loosely as
systems software tools. Modifications to the Uniform

System (e.g. for faster initialization) have been incor-
porated into the standard BBN release. A general-purpose
package called Crowd Control allows similar tree-based
techniques to be used in other programs [321, spreading
work over multiple nodes. The Crowd Control package
can be used to parallelize almost any function whose serial
cdmponent is due to contention for read-only data. Other
packages have been developed for highly-parallel con-
current data structures [19,351 and memory alloca-
tion [201.

A local facility for software partitioning (to subdivide
a Butterfly into smaller virtual machines) was brought up
prior to the release of the BBN version. Local enhance-
ments to the host-based remote file server allow us to
access NFS files from Butterfly programs. The only full
set of published benchmarks for PNC and Chrysalis func-
tions is a Rochester technical report 1171. Experiments
with eight different implementations of remote procedure
call explored the ramifications of these benchmarks for
interprocess communication 1341.

Despite the improvement in the programming
environment achieved by software packages and tools, the
parallel program debugging cycle continued to be frustrat-
ing, particularly for non-deterministic applications. It was
the realization that cyclic debugging of nondeterministic
behavior was impractical, coupled with the observation
that the standard approach to debugging parallel pro-
grams based on message logs would quickly fill all
memory, that led to the development of Instant
Replay [331. Instant Replay allows us to reproduce the
execution behavior of parallel programs by saving the
relative order of significant events as they occur, and then
forcing the same relative order to occur while re-running
the program for debugging. Instant Replay requires less
time and space than other methods because the actual
information communicated between processes is not saved.
It is also general enough to use in all of our software pack-
ages because it assumes a communication model based on
shared objects, which are used to implement both shared
memory and message passing. No central bottlenecks are
introduced by execution monitoring and there is no need
for synchronized clocks or a globally-consistent logical
time.

Our experiments indicate that the overhead of moni-
toring can be kept to within a few percent of execution
time for typical programs, making it practical to run non-
deterministic applications under Instant Replay all the
time. We are in the process of building a toolkit based on
Instant Replay that allows a full range of debugging and
performance analysis tools to be integrated with a graphi-
cal user interface [241. The graphics package, known as
Moviola, makes it possible to examine the partial order of
events in a parallel program at arbitrary levels of detail.
It has been used to discover performance bottlenecks and
message-ordering bugs, and to derive analytical predic-
tions of running times.

3.4. Operating Systems

The Butterfly-l has been used at Rochester as a
hardware base for two different pedagogical operating sys-
tems. The Osiris kernel was an early prototype of low-
level routines for the Psyche operating system (see below).
It was preceded by Elmwood [36], a fully-functional RPC-
based multiprocessor operating system constructed as a

166

class project in only a semester and a half. Though it was
not originally conceived as a research project, experience
with Elmwood led to a considerably deeper understanding
of the Butterfly architecture. It also provided us with use-
ful experience in the management of multi-person projects,
and provided some ten different graduate students with
first-hand experience writing low-level software on a
parallel machine.

Our accumulated experience with both applications
and systems software has convinced us that no one model
of process state or style of communication will prove
appropriate for all applications. The beauty of large-scale
NUMA machines like the Butterfly is that their hardware
supports efficient implementations of a wide variety of
models. Truly general-purpose parallel computing
demands an operating system that supports these models
as well, and that allows program fragments written under
different models to coexist and interact. These observa-
tions have led to the development of a parallel operating
system we call Psyche [51]. Psyche facilitates dynamic
sharing between threads of control by providing a user
interface based on passive data abstractions in a uniform
virtual address space. It ensures that users pay for protec-
tion only when necessary by permitting the lazy evalua-
tion of privileges, using a system of keys and access lists.
The data abstractions are known as realms. Their access
protocols define conventions for sharing the uniform
address space. An explicit tradeoff between protection and
performance determines the degree to which those conven-
tions are enforced. In the absence of protection boun-
daries, access to a shared realm (figure 4) can be as
efficient as a procedure call or a pointer dereference. A
Psyche implementation is currently under construction on
the Butterfly Plus.

In the gray area between operating systems and pro-
gramming tools, we are investigating issues in the design
of highly-parallel file systems that can be used to increase
the performance of I/O bound applications. From the point
of view of parallel processing, any performance limit on
the path between secondary storage and application pro-
gram must be considered an I/O bottleneck. Faster
storage devices cannot solve the I/O bottleneck problem for
large multiprocessor systems if data passes through a file
system on a single processor. Implementing the file

Figure 4: Overlapping Protection Domains in Psyche

system as a parallel program can significantly improve
performance. Selectively revealing this parallel structure
to utility programs can produce additional improvements,
particularly on machines in which interprocessor commun-
ication is slow compared to aggregate I/O bandwidth. The
Bridge parallel file system [18] distributes each file across
multiple storage devices and processors. The approach is
based on the notion of an interleaved file, in which con-
secutive logical blocks are assigned to different physical
nodes, Naive programs are able to access files just as they
would with a conventional file system, while more sophis-
ticated programs may export pieces of their code to the
processors managing the data, for optimum performance.
Analytical and experimental studies indicate that Bridge
will provide linear speedup on several dozen disks for a
wide variety of file-based operations, including copying,
sorting, searching, and comparing.

4. Lessons
The following summarizes the lessons we have

learned in developing both system software and applica-
tions for a large-scale multiprocessor over a three year
period. Our work has emphasized architectural implica-
tions and programming environment issues; our lessons
reflect this emphasis. Although our particular experience
is with the Butterfly-l, we believe these lessons generalize
to other multiprocessors as well.

4.1. Architectural Implications
Large-scale shared-memory multiprocessors are practi-

cal. We have achieved significant speedups (often almost
linear) using over 100 processors on a range of applica-
tions including connectionist network simulation, game-
playing, Gaussian elimination, parallel data structure
management, and numerous computer vision and graph
algorithms. In the course of developing these applications,
we have also discovered that many interesting effects
become obvious only when large numbers of processors are
in use. In the Gaussian elimination experiments, for
example, our SMP implementation outperformed the Uni-
form System implementation whenever fewer than 64
processors were used, despite the fact that communication
in SMP is significantly more expensive than direct access
to shared memory. Beyond 64 processors the timings for
the Uniform System remained constant (no additional
improvements), while the SMP timings actually increased
(figure 5). This anomaly is due to the amount of communi-
cation used in each implementation. The number of mes-
sages sent in the SMP implementation is P*N, where P is
the number of processors and N is the size of the matrix.
In other words, doubling the amount of parallelism also
doubles the amount of communication. Beyond 64 proc-
essors, the increased amount of communication caused by
each additional processor is not justified by the incremen-
tal gain in parallelism. The number of communication

operations in the Uniform System implementation is (N2-
N) +P(N-1); doubling the amount of parallelism does not
significantly increase the amount of communication. The
point at which the increase in communication dominates
additional parallelism in the Uniform System implementa-
tion is not even visible with 128 processors. Without a
large number of processors, we might not have discovered
the anomaly.

167

350 -

250 -

200 -

150 -

100 -

50 -
Shared
Memory

01 I I I I
32 64 96 128

Number of Processors

Figure 5: Gaussian Elimination Performance;
Shared Memory versus Message Passing

Locality of reference is important, even with shared
memory. Although each processor can access the memory
of others, remote references on the Butterfly-l are five
times slower than local references. This disparity is not so
great as that found in local-area networks, where two or
three orders of magnitude are common, but it cannot be
ignored without paying a substantial performance penalty.
Any measurable difference between local and remote
access time requires the programmer to treat the two
differently; caching of frequently accessed data is essen-
tial. A standard technique used in Uniform System pro-
grams is to copy blocks of data from the (logically) global
shared memory into local memory for processing; results
are then copied back to the global shared memory. In the
Hough transform application, this technique improved per-
formance by 42% when 64 processors were used [41].
Local lookup tables for transcendental functions improved
performance by an additional 22%. The issue of locality
will be even more important in the Butterfly Plus, since
local references have improved by a factor of four, while
remote references have improved by only a factor of two.

Contention has the potential to seriously impact per-
formance. Remote references on the Butterfly can
encounter both memory and switch contention. The poten-
tial for switch contention was clearly anticipated in the
design of the Butterfly hardware, and has been rendered
almost negligible [45]. On the other hand, the potential
for memory contention appears to have been

underestimated, since remote references steal memory
cycles from the processor containing the memory. Only
one processor can issue local references to a given memory,
but over a hundred processors can issue simultaneous
remote references, leading to performance degradation far
beyond the nominal factor of five delay. The careful pro-
grammer must organize data not only to maximize local-
ity, but also to minimize memory contention. For exam-
ple, the Gaussian elimination program (on 64 processors or
fewer) displays a performance improvement of over 30%
when data is spread over all 128 memories 1291. The
greatest effect occurs when roughly 114 to 112 of the total
number of processors are in use. When a larger fraction of
processors are performing computation, most of the
memory is already in use. Not enough is left to reduce
contention noticeably. When too few processors are used,
the resulting memory traffic is not heavy enough to cause
significant contention.

Amdahl’s law is extremely important in large-scale
multiprocessors. Serial program components that have lit-
tle impact on performance when a few processors are in
use can lead to serious bottlenecks when 100 processors
are in use. Massive problem sizes are sometimes required
to justify the high costs of serial startup. Serialization in
system software is especially difficult to discover and
avoid. For example, the Crowd Control package was
created to parallelize process creation, but serial access to
system resources (such as process templates in Chrysalis)
ultimately limits our ability to exploit large-scale parallel-
ism during process creation. Serial memory allocation in
the Uniform System was a dominant factor in many pro-
grams until a parallel memory allocator was introduced
into the implementation [201. Serial access to a large .file
is especially unacceptable when 100 processes are avail-
able to process the data; the Bridge file system is designed
to address this particular bottleneck. None of these paral-
lel solutions is particularly simple, and the elimination of
similar bottlenecks can be expected to pose a serious prob-
lem for any highly parallel application.

Architectural variety inhibits the deueEopment of port-
able systems software. A myriad of different multiproces-
sor architectures are now commercially available, includ-
ing bus-based multiprocessors like the Sequent Balance
and Encore Multimax, switch-based multiprocessors like
the BBN Butterfly, cosmic cube variants like the NCUBE
and Intel hypercube, and the Connection Machine from
Thinking Machines, Inc. Despite the architectural variety,
few general principles of parallel programming have
emerged on which programming environments could be
based. Some notable attempts have been made to provide
general parallel programming environments [43,53,541,
but substantial investments in software development are
still required for every new machine. In many cases it
may even be difficult to develop a production-quality
operating system fast enough to make truly effective use
of a machine before it becomes obsolete. The problem is
less severe in the sequential computer world, since unipro-
cessors tend to resemble one another more than multipro-
cessors do. While an operating system such as Unix can
make effective use of a variety of conventional sequential
computers, simply porting Unix to a multiprocessor would
not provide fine-grain parallelism, cope effectively with
non-uniform memory access times (the so-called “NUMA
problem”), or address a host of other issues. The emer-
gence of Mach may improve matters significantly, but its

168

effectiveness for NUMA architectures has yet to be demon-
strated.

4.2. Programming Environment

The programming environment must support multiple
programming models. We have implemented many
different applications using an assortment of operating
systems, library packages, and languages. Empirical
measurements demonstrate that NUMA machines like the
Butterfly can support many different programming models
efficiently. For example, efficient communication based on
shared memory has been implemented in the Uniform Sys-
tem and Ant Farm. Higher-level communication based on
message passing and remote procedure call has been
implemented in SMP, Lynx, and Elmwood. Extensive
analysis of the communication costs in these systems sug-
gests that, for the semantics provided, the costs are very
reasonable [36,47,49]. A comparison with the costs of the
basic primitives provided by Chrysalis shows that any gen-
eral scheme for communication on the Butterfly will have
comparable costs.

Even though each model can be implemented
efficiently on the Butterfly, no single model can provide
optimal performance for all applications. Moreover, sub-
jective experience indicates that conceptual clarity and
ease of programming are maximized by different models
for different kinds of applications. In the course of the
DARPA benchmark experiments, seven different problems
were implemented using four different programming
models. One of the basic conclusions of the study was that
none of the models then available was appropriate for cer-
tain graph problems; this experience led to the develop-
ment of Ant Farm. Some large applications may even
require different programming models for different com-
ponents; therefore it is also important that mechanisms be
in place for communication across programming models.
These concerns form the motivation behind the Psyche
operating system.

It is dificult to exercise low-level control over parallel-
ism without accepting explicit control of other resources as
well. Programmers use a multiprocessor for performance
gains, and therefore must maximize the (true) parallelism
in an application program. Since it is impossible to antici-
pate the needs of every application, a parallel program-
ming environment will usually provide low-level mechan-
isms for mapping processes to processors. Unfortunately,
in allowing the programmer to control parallelism (and
the corresponding processes), the environment will often
force the programmer to manage other resources as well.
For example, the programmer may be required to manage
address spaces explicitly in order to co-locate a process and
its data. All of the parallel programming environments on
the Butterfly couple the ability (or inability) to manage
parallelism with the ability (or inability) to manage
memory. Chrysalis allows the programmer to create a
process on any Butterfly node, but it also requires the pro-
grammer to manage shared memory explicitly. Even very
simple sharing requires several system calls, each with
several parameters. The Uniform System attempts to
make processor boundaries transparent; each task may
execute on any available processor. There is no attempt,
however, to co-locate a task and the data it manipulates.
To achieve acceptable performance, the programmer must
cache data explicitly. SMP does not require the user to

manage the address space of a process explicitly; however,
it allocates processes to processors using a fixed allocation
algorithm, which can lead to an imbalance in processor
load. A better balance between flexibility and ease of use
must be found.

An efficient implementation of a shared name space is
valuable even in the absence of uniform access time. The
primary advantage of shared memory is that it provides
the programmer with a familiar computational model.
Programmers do not have to deal with multiple address
spaces; programs can pass pointers and data structures
containing pointers without explicit translation. The
attractiveness of a single address space cannot be over-
stated; it is the primary reason why most programmers
choose to use the Uniform System as their programming
environment. Even when non-uniform access times warp
the single address space model by forcing the programmer
to deal explicitly with local caching of data, shared
memory continues to provide a form of global name space
that appeals to programmers. Data items, including
pointers, can be copied from one local memory to another
through the global name space. In effect, the shared
memory is used to implement an efficient Linda tuple
space 121. The Linda in, read, and out operations
correspond roughly to the operations used to cache data in
the Uniform System.

Better monitoring and debugging tools are essential.
The lack of such tools contributes dramatically to program
development time, and is probably the most frequently
cited cause of frustration with parallel programming
environments. Performance is paramount in multiproces-
sors, yet few general tools exist for measuring perform-
ance. Bottlenecks such as memory or switch contention
are difficult to discover and must usually be measured
indirectly. Single process debuggers cannot capture paral-
lel behavior, and performance monitoring and debugging
tools for distributed systems [27,37,38] are not particu-
larly well-suited to multiprocessors. The problem is espe-
cially acute in NUMA machines, since they lack a shared
communication medium that could facilitate monitoring.

Significant progress has been made recently in moni-
toring and debugging tools for shared-memory multipro-
cessors [24,52]. In particular, we have begun construction
of an extensible, integrated toolkit for parallel program
debugging and performance analysis, as mentioned in sec-
tion 3.3 I241. Ultimately, the toolkit will include an
interactive debugger, a graphical execution browser, per-
formance analysis packages, and a programmable interface
for user queries. We hide the complexity of how an algo-
rithm is implemented by emphasizing a graphical
representation of execution. (Figure 6, produced by the
toolkit, is a graphical view of deadlock in an odd-even
merge sort program.) Top-down analysis at all levels of
abstraction is possible because the graphical representa-
tion is integrated with access to the low-level details of an
execution. The analysis process converges because all exe-
cutions are repeatable. The toolkit is programmable,
hence extensible. It allows programmers to analyze the
behavior of parallel programs interactively, much as
interactive debuggers and profilers are used to analyze the
behavior of sequential programs. Our experience to date
confirms the utility of the toolkit; the debugging and
analysis cycle has decreased from several days to a few
hours.

169

Figure 6: Graphical View of Odd-Even Merge Sort

Programming environments are often more important
than processing speed. Many application programmers in
our department who could exploit the parallelism offered
by the Butterfly continue to use Sun workstations and
VAXen. These programmers have weighed the potential
speedup of the Butterfly against the programming environ-
ment of their workstation and found the Butterfly want-
ing New processors, switching networks, or memory
organizations will not change this fact, although the intro-
duction of Mach on the Butterfly is clearly a step in the
right direction. The most important task ahead for the
parallel programming community is not the development
of newer and bigger multiprocessors, but rather the
development of programming environments comparable to
those available on sequential computers.

5. Conclusions
The existence of a large-scale multiprocessor at the

University of Rochester has dramatically affected how we
think about parallel programming. Special-purpose tech-
niques do not tend to extrapolate well to 120 processors;
we have learned to avoid taking advantage of a specific
number of processors.

We are generally satisfied with the Butterfly. We
have had access to all of the system details necessary to
implement system software; we have invested the effort to
become experts. However, despite the level of local exper-
tise, to this day only intrepid programmers use the
Butterfly to solve real problems. It remains to be seen
whether the newer Mach-based Butterfly software will
change this situation appreciably.

Butterfly-family machines remain the largest shared-
memory multiprocessors commercially available. They are

vastly more flexible than the competing message-based
multicomputers (e.g. hypercubes), and are not subject to
the bandwidth limitations of bus-based shared-memory
machines. The problems presented by the architecture,
especially the NUMA problem, will be with us for some
time, and solutions will be required in any future large-
scale parallel machine. Perhaps most important from our
point of view, parallel processors have helped bring appli-
cations programmers and system developers together in a
spirit of cooperation. This cooperation will be crucial to
the development of the parallel programming environ-
ments of the future.

Acknowledgments

The authors would like to express their thanks to the
research and support staff of BBN Laboratories and BBN
Advanced Computers Incorporated, and to the many stu-
dents, staff, and faculty members whose willingness to
immerse themselves in an experimental and often frustrat-
ing environment has made this research possible. Special
thanks are due to Liud Bukys, our tireless lab manager
and all-around Butterfly guru.

References

Dl

PI

[31

r41

[51

[Sl

r71

[81

PI

[lOI

M. Accetta, R. Baron, W. Bolosky, D. Golub, R.
Rashid, A. Tevanian, and M. Young, “Mach: A New
Kernel Foundation for UNIX Development,” Proceed-
ings of the Summer 1986 USENIX Technical Confer-
ence and Exhibition, June 1986, pp, 93-112.

S. Ahuja, N. Carriero, and D. Gelernter, “Linda and
Friends,” Computer 19:8 (August 1986), pp. 26-34.

BBN Advanced Computers Incorporated, “Inside the
Butterfly Plus,” Cambridge, MA, 16 October 1987.

BBN Advanced Computers Incorporated, “Chrysalis@
Programmers Manual, Version 3.0,” Cambridge, MA,
28 April 1987.

BBN Laboratories, “Butterfly@ Parallel Processor
Overview,” BBN Report #6149, Version 2, Cam-
bridge, MA, 16 June 1986.

BBN Laboratories, “The Uniform System Approach
to Programming the Butterfly@ Parallel Processor,”
BBN Report #6149, Version 2, Cambridge, MA, 16
June 1986.

C. M. Brown, “Parallel Vision with the Butterfly
Computer,” Third International Conference on Super-
computing, April 1988.

C. M. Brown, R. J. Fowler, T. J. LeBlanc, M. L.
Scott, M. Srinivas, and others, “DARPA Parallel
Architecture Benchmark Study,” BPR 13, Computer
Science Department, University of Rochester,
October 1986.

C. M. Brown, T. Olson, and L. Bukys, “Low-level
Image Analysis on a MIMD Architecture,” Proceed-
ings of the First IEEE International Conference on
Computer Vision, June 1987, pp. 468-475.

L. Bukys, “Connected Component Labeling and
Border Following on the BBN Butterfly Parallel
Processor,” BPR 11, Computer Science Department,
University of Rochester, October 1986.

170

1111

[121

1131

u41

D51

il61

[I71

1181

u91

1201

[211

1221

[231

[241

1251

J. Costanzo, L. Crowl, L. Sanchis, and M. Srinivas,
“Subgraph Isomorphism on the BBN Butterfly Mul-
tiprocessor,” BPR 14, Computer Science Department,
University of Rochester, October 1986.

L. Crowl, “Chrysalis+ +,” BPR 15, Computer Science
Department, University of Rochester, December
1986.

L. A. Crowl, “An Interface Between Object-Oriented
Systems,” TR 211, Department of Computer Science,
University of Rochester, Apr 1987.

L. A. Crowl, “A Model for Parallel Programming,”
pp. 71-84 in Proceedings of the 1988 Open House, ed.
C. A. Quiroz, TR 209, Department of Computer Sci-
ence, University of Rochester, May 1988.

L. A. Crowl, “Shared Memory Multiprocessors and
Sequential Programming Languages: A Case Study,”
Proceedings of the 2Ist Annual Hawaii Znternational
Conference on System Sciences, Jan 1988.

W. Crowther, J. Goodhue, E. Starr, R. Thomas, W.
Milliken, and T. Blackadar, “Performance Measure-
ments on a 128-Node Butterfly Parallel Processor,”
Proceedings of the 1985 International Conference on
Parallel Processing, 20-23 August 1985, pp. 531-540.

P. Dibble, “Benchmark Results for Chrysalis Func-
tions,” BPR 18, Computer Science Department,
University of Rochester, December 1986.

P. C. Dibble, M. L. Scott, and C. S. Ellis, “Bridge: A
High-Performance File System for Parallel Proc-
essors,” Proceedings of the Eighth Znternational
Conference on Distributed Computing Systems, 13-17
June 1988.

C. S. Ellis, “Extendible Hashing for Concurrent
Operations and Distributed Data,” TR 110, Computer
Science Department, University of Rochester,
October 1982.

C. S. Ellis and T. J. Olson, “Parallel First Fit
Memory Allocation,” Proceedings of the 1987 Znterna-
tional Conference on Parallel Processing, 17-21
August 1987, pp. 502511.

M. Fanty, “A Connectionist Simulator for the BBN
Butterfly Multiprocessor,” TR 164, BPR 2, Computer
Science Department, University of Rochester, Janu-
ary 1986.

J. A. Feldman, M. A. Fanty, N. H. Goddard, and K.
J. Lynne, “Computing with Structured Connectionist
Networks,” CACM 31:2 (February 1988), pp. 170-187.

J. P. Fishburn and R. A. Finkel, “Parallel Alpha-
Beta Search on Arachne,” Computer Sciences Techni-
cal Report #540, University of Wisconsin -
Madison, July 1980.

R. J. Fowler, T. J. LeBlanc, and J. M. Mellor-
Crummey, “An Integrated Approach to Parallel Pro-
gram Debugging and Performance Analysis on
Large-Scale Multiprocessors,” Proceedings, ACM
SZGPLAN and SZGOPS Workshop on Parallel and
Distributed Debugging, May 1988.

N. M. Gafter, “Algorithms and Data Structures for
Parallel Incremental Parsing,” Proceedings of the
1987 Znternational Conference on Parallel Processing,
17-21 August 1987, pp. 577-584.

[261

1271

[281

1291

[301

1311

[321

r331

[341

[351

[361

1371

[381

E. HinkeIman, “NET: A Utility for Building Regular
Process Networks on the BBN Butterfly Parallel
Processor,” BPR 5, Computer Science Department,
University of Rochester, February 1986.

J. Joyce, G. Lomow, K. Slind, and B. Unger, “Moni-
toring Distributed Systems,” ACM TOCS 5:2 (May
1987), pp. 121-150.

T. J. LeBlanc, “Shared Memory Versus Message-
Passing in a Tightly-Coupled Multiprocessor: A Case
Study,” Proceedings of the 1986 International Confer-
ence on Parallel Processing, 19-22 August 1986, pp.
463-466. Expanded version available as BPR 3.
Computer Science Department, University of Roches-
ter, January 1986.

T. J. LeBlanc, “Problem Decomposition and Com-
munication Tradeoffs in a Shared-Memory Multipro-
cessor,” in Numerical Algorithms for Modern Parallel
Computer Architectures, IMA Volumes in Mathemat-
ics and its Applications #16, Springer-Verlag, 1988.

T. J. LeBlanc, “Structured Message Passing on a
Shared-Memory Multiprocessor,” Proceedings of the
21st Annual Hawaii Znternational Conference on Sys-
tem Sciences, Jan 1988.

T. J. LeBlanc, N. M. Gafter, and T. Ohkami, “SMP:
A Message-Based Programming Environment for the
BBN Butterfly,” BPR 8, Computer Science Depart-
ment, University of Rochester, July 1986.

T. J. LeBlanc and S. Jain, “Crowd Control: Coordi-
nating Processes in Parallel,” Proceedings of the 1987
International Conference on Parallel Processing,
17-21 August 1987, pp. 81-84.

T.J. LeBlanc and J.M. Mellor-Crummey, “Debugging
Parallel Programs with Instant Replay,” IEEE Tran-
sactions on Computers C-36:4 (April 1987), pp. 471-
482.

J. Low, “Experiments with Remote Procedure Call on
the Butterfly,” BPR 16, Computer Science Depart-
ment, University of Rochester, December 1986.

J. M. Mellor-Crummey, “Concurrent Queues: Practi-
cal Fetch-and-Phi Algorithms,” TR 229, Computer
Science Department, University of Rochester, Nov
1987.

J. M. Mellor-Crummey, T. J. LeBlanc, L. A. Crowl,
N. M. Gafter, and P. C. Dibble, “Elmwood - An
Object-Oriented Multiprocessor Operating System,”
BPR 20, Computer Science Department, University
of Rochester, July 1987. Also published in the
University of Rochester 1987-88 Computer Science
and Computer Engineering Research Review, and
submitted for journal publication.

B. P. Miller, C. Macrander, and S. Sechrest, “A Dis-
tributed Programs Monitor for Berkeley Unix,”
Software - Practice and Experience 16~2 (February
1986), pp. 183-200.

B. P. Miller and C.-Q. Yang, “IPS: An Interactive
and Automatic Performance Measurement Tool for
Parallel and Distributed Programs,” Proceedings of
the Seventh International Conference on Distributed
Computing Systems, 21-25 September 1987, pp. 482-
489.

171

[39] D. Moon, MacLZSP Reference Manual, Revision 0,
Project MAC, Laboratory for Computer Science, MIT,
Cambridge, MA, April 1974.

[40] T. J. Olson, “An Image Processing Package for the
BBN Butterfly Parallel Processor,” BPR 9, Computer
Science Department, University of Rochester, Sep-
tember 1986.

1411 T. J. Olson, “Finding Lines with the Hough
Transform on the BBN Butterfly Parallel Processor,”
BPR 10, Computer Science Department, University
of Rochester, September 1986.

1421 T. J. Olson, “Modula-2 on the BBN Butterfly Parallel
Processor,” BPR 4, Computer Science Department,
University of Rochester, January 1986.

[433 T. Pratt, “PISCES; An Environment for Parallel
Scientific Computation,” IEEE Software, July 1985,
pp. 7-20.

[44] C. A. Quiroz, “Compilation for MIMD Architectures,”
Thesis Proposal, Department of Computer Science,
University of Rochester, May 1986.

1451 R. Rettberg and R. Thomas, “Contention is No Obsta-
cle to Shared-Memory Multiprocessing,” CACM 29:12
(December 1986), pp. 1202-1212.

1461 M. L. Scott, “LYNX Reference Manual,” BPR 7,
Computer Science Department, University of Roches-
ter, August 1986 (revised).

[471 M. L. Scott, “The Interface Between Distributed
Operating System and High-Level Programming
Language,” Proceedings of the 1986 Znternational
Conference on Parallel Processing, 19-22 August
1986, pp. 242-249.

1481 M. L. Scott, “Language Support for Loosely-Coupled
Distributed Programs,” IEEE Transactions on
Software Engineering SE-13:l (January 1987), pp.
88-103.

[49] M. L. Scott and A. L. Cox, “An Empirical Study of
Message-Passing Overhead,” Proceedings of the
Seventh Znternational Conference on Distributed Com-
puting Systems, 21-25 September 1987, pp. 536-543.

[50] M. L. Scott and K. R. Jones, “Ant Farm: A Light-
weight Process Programming Environment,” BPR 21,
Computer Science Department, University of Roches-
ter, in preparation.

[51] M. L. Scott, T. J. LeBlanc, and B. D. Marsh, “Design
Rationale for Psyche, a General-Purpose Multiproces-
sor Operating System,” Proceedings of the 1988 Znter-
national Conference on Parallel Processing, August
1988.

[52] 2. Segall and L. Rudolph, “PIE: A Programming and
Instrumentation Environment for Parallel Process-
ing,” IEEE Software 2:6 (November 1985), pp. 22-37.

1531 L. Snyder and D. Socha, “Poker on the Cosmic Cube:
The First Retargetable Parallel Programming
Language and Environment,” Proceedings of the 1986
International Conference on Parallel Processing,
19-22 August 1986, pp. 628-635.

[541 W. K. Su, R. Faucette, and C. Seitz, “C
Programmer’s Guide to the Cosmic Cube,” TR
5203:85, Computer Science Department, California
Institute of Technology, Sept 1985.

1551 R. Thomas, “Using the Butterfly to Solve Simultane-
ous Linear Equations,” Butterfly Working Group
Note 4, BBN Laboratories, March 1985.

172

