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ABSTRACT 

For three years, members of the Computer Science Depart- 
ment at the University of Rochester have used a collection 
of BBN Butterfly TM Parallel Processors to conduct research 
in parallel systems and applications. For most of that 
time, Rochester’s 128-node machine has had the distinc- 
tion of being the largest shared-memory multiprocessor in 
the world. In the course of our work with the Butterfly we 
have ported three compilers, developed five major and 
several minor library packages, built two different operat- 
ing systems, and implemented dozens of applications. Our 
experience clearly demonstrates the practicality of large- 
scale shared-memory multiprocessors, with non-uniform 
memory access times. It also demonstrates that the prob- 
lems inherent in programming such machines are far from 
adequately solved. Both locality and Amdahl’s law become 
increasingly important with a very large number of nodes. 
The availability of multiple programming models is also a 
concern; truly general-purpose parallel computing will 
require the development of environments that allow pro- 
grams written under different models to coexist and 
interact. Most important, there is a continuing need for 
high-quality programming tools; widespread acceptance of 
parallel machines will require the development of pro- 
gramming environments comparable to those available on 
sequential computers. 

--- -- 
This work was supported in part by NSF CER grant 

number DCR-8320136, NSF grant number CCR-8704492, 
DARPA/ETL contract number DACA76-85-C-0001, DARPA/ONR 
contract number N00014-82-K-0193, an ONR Young 
Investigator Award, contract number N00014-87-K-0548, and an 
IBM Faculty Development Award. The Xerox Corporation 
University Grants Program provided equipment used in the 
preparation of the manuscript. 

Permission to copy without fee all or part of this material is granted provided 
that the copies are not made or distributed for direct commercial advantage, 
the ACM copyright notice and the title of the publication and its date appear, 
and notice is given that copying is by permission of the Association for 
Computing Machinery. To copy otherwise, or to republish, requires a fee and/ 
or specific permission. 

o 1988 ACM O-89791-276-4/0007/0161 $1.50 

1. Introduction 

In September 1984, the Department of Computer Sci- 
ence at the University of Rochester acquired a 3-node BBN 
ButterflyTM Parallel Processor [51. In May 1985, with 
funding from an NSF CER grant, the department acquired 
a 128-node Butterfly, the largest configuration in 
existence. Over the last 3.5 years, the Butterfly has been 
used by various members of the department to develop 
numerous software packages and applications. This paper 
traces the history of our software development for the 
Butterfly and describes our collective experience using the 
world’s largest shared-memory multiprocessor. 

For us the Butterfly and its systems software 
represented two unique scientific opportunities. First, it 
was flexible enough to support the implementation of our 
new ideas; second, it incorporated several interesting solu- 
tions to problems that themselves represented research 
issues. Our findings are based on a computer that is now a 
generation removed from the current product line. In any 
case, this is not a product review. We wish first to docu- 
ment ideas and concerns that are shaping the evolution of 
parallel computing. Second, and more important, we 
believe that our experiences are still intellectually 
relevant and that they will be useful in future contexts 
when similar or related issues arise. 

Our experiences fall into several categories. In sec- 
tion 2 we describe our experience with the hardware and 
software provided by BBN. Section 3 describes the history 
of the Butterfly software development effort at the Univer- 
sity of Rochester, including both systems software and 
applications. Section 4 discusses lessons we have learned 
along the way and section 5 provides a summary of our 
experience and an assessment of the future of Butterfly- 
like machines. 

2. BBN Butterfly Hardware and Software 

The original Butterfly Parallel Processor (the 
“Butterfly-l”) was developed by BBN Laboratories in the 
late 1970’s as part of a research project funded by the 
Defense Advanced Research Projects Agency. It eventu- 
ally evolved into a commercial product, marketed for the 
past two years by BBN Advanced Computers, Inc. It has 
recently been succeeded by a second generation of 
hardware and software, the Butterfly 1000 series, 
announced in October of 1987. The experiences reported 
in this paper were obtained in the course of work with the 
original version of the Butterfly. Much of our current 
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research has moved to the new machine. 

2.1. Butterfly Hardware 

The Butterfly Parallel Processor (figure 1) consists of 
up to 256 processing nodes connected by a high-speed 
switching network. Each node in the switching network is 
a 4-input, 4-output switch with a bandwidth of 32 
Mbits/set. In the Butterfly-l, each processing node is an 8 
MHz MC68000 with 24 bit virtual addresses and up to 1 
Mbyte of local memory (4 Mbytes with additional memory 
boards). A 2901-based bit-slice co-processor called the 
processor node controller (PNC) interprets every memory 
reference issued by the 68000 and is used to communicate 
with other nodes across the switching network. All of the 
memory in the system resides on individual nodes, but any 
processor can address any memory through the switch. 

The Butterfly is therefore a NUMA’ machine; remote 
memory references (reads) take about 4 ps, roughly five 
times as long as a local reference. 

The PNC on the Butterfly-l implements a segmented 
virtual memory. Each virtual address contains an 8 bit 
segment number and a 16 bit offset within the segment. 
A process can have at most 256 segments in its address 
space, each of which can be up to 64 Kbytes in size. Each 
segment is represented by a SAR (Segment Attribute 
Register), which defines the base, extent, and protection of 
the associated memory. A process’s virtual address space 
is represented by an ASAR (Address Space Attribute 
Register), which defines the address and extent of a group 
of SARs corresponding to the segments addressable by the 
process. There are 512 32-bit SARs and 1 Is-bit ASAR per 
processor. Chrysalis allocates the available SARs in 
blocks of 8, which are arranged in a buddy system. Three 
bits in the ASAR are used to specify the size of the SAR 
block, which must be one of 8, 16, 32, 64, 128, or 256. 

The two most serious problems with the original 
hardware proved to be its software floating point and its 

Figure 1: Butterfly Parallel Processor 

- 
i Non-Uniform Memory Access time. Unlike UMA 

multiprocessors (with uniform access times), NUMA machines 
have the potential to scale to very large numbers of nodes. 

primitive memory management. Hardware floating point 
was provided by BBN in 1986, using a daughter board con- 
taining an MC68020 processor and MC68881 floating point 

co-processor,2 but the shortcomings of the memory archi- 
tecture remained. Even though the physical address space 
of the machine is 1 Gbyte, the virtual address space of a 
process could include at most 16 Mbytes of memory (256 
segments, each containing 64 Kbytes), and then only if 
there were at most two processes per processor. This limi- 
tation forced the programmer to modify the address space 
of processes dynamically (at a cost of over 1 ms per seg- 
ment added or deleted) and to avoid using shared memory 
whenever possible. It also limited severely the number of 
processes that could be allocated to a processor. In our 
experience the need to manage SARs explicitly has been a 
recurring source of irritation and problems. 

Another problem with the memory architecture is 
that remote references steal memory cycles from the local 
processor. If many processors busy-wait on a shared loca- 
tion (a common synchronization technique), the impact on 
the processor containing the memory can be substantial. 

Most of the problems just described have been 
addressed in the design of the Butterfly Plus, the 
hardware base for the Butterfly 1000 series [3]. Each node 
in the Butterfly Plus has an MC68020 processor, MC68881 
floating point co-processor, and MC68851 memory manage- 
ment unit. The MC68020 and MC68851 on the Butterfly 
Plus enable demand paging, but remote references still 
steal memory cycles from the local processor. The 
presense of a modern memory management system makes 
the new machine an extremely attractive vehicle for 
research in operating systems. 

2.2. Chrysalis Operating System 

First-generation Butterfly machines use BBN’s own 
Chrysalis operating system [4]. Chrysalis was originally 
developed for real-time packet-switching applications. Its 
facilities constitute a protected subroutine library for C 
programs. They include operations for process manage- 
ment, memory management, and interprocess communica- 
tion Many of the most common operations, including 
much of the process scheduler, are implemented in micro- 
code in the PNC. 

A Chrysalis process is a conventional heavyweight 
entity with its own address space. Processes are scheduled 
by the kernel. They do not migrate. The memory space of 
a process consists of a collection of memory objects, each of 

which can range in size from zero to 64 Kbytes3 Each 
process, when created, is allocated a static portion of the 
SARs on its node. One SAR is consumed by each memory 
object in the process’s address space. SAR contents can be 
changed dynamically; explicit operations permit the 
current process to change its address space by mapping 
and unmapping arbitrary memory objects. 

-- 

2 We have upgraded 8 spare nodes and 8 nodes from our 
large Butterfly to provide the Department with a Is-node 
floating point machine. 

3 Actually, segments can only be allocated in 16 standard 
sizes. An odd-sized memory object is rounded up to the next 
standard size, with an inaccessible fragment at the end. 
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Atomic memory operations can be used to implement 
spin locks. In addition, Chrysalis provides highly efficient 
mechanisms for scheduler-based synchronization. Events 
resemble binary semaphores on which only one process 
(the owner) can wait. The process that posts an event can 
also provide a 32-bit datum that will be returned to the 
owner by the wait operation. Dual queues are a generali- 
zation of events that can hold the data from multiple posts 
and can supply that data to multiple waiters. Microcode 
implementation of events and dual queues allows all of the 
basic synchronization primitives to complete in only tens 
of microseconds. 

All of the basic Chrysalis abstractions (processes, 
memory objects, events, and dual queues) are subsumed by 
a single object model. Among other things, this model 
supports a uniform ownership hierarchy with reference 
counts that allows the operating system to reclaim the 
resources used by subsidiary objects when a parent is 
deleted. Unfortunately, a facility for transferring owner- 
ship to “the system” makes it easy to produce objects that 
are never reclaimed. Chrysalis tends to leak storage. 

Chrysalis incorporates an exception-handling mechan- 
ism patterned after the MacLISP catch and throw [39]. 
Exception handlers are implemented with C macros that 
save information for non-local gotos. In the event of an 
error, whether detected by hardware (in a trap handler) or 
software (in a kernel call or user program), Chrysalis 
unwinds the stack to the nearest exception handler and 
optionally suspends the process for examination by a 
debugger. At first glance the catch/throw mechanism 
appears to be an extremely attractive way of managing 
errors. Unfortunately, it suffers from several limitations. 
First of all, it is highly Language-specific. To program in 
Modula-2, one must insert an extra subroutine (written in 
C) around every system call in order to catch and handle 
throws. Even in C, the programmer must be aware that 
register and non-register variables will behave differently 
in the event of a throw, and that gotos, breaks, or contin- 
ues in or out of catch blocks will leave the process in an 
unpredictable state. Entering and leaving a protected 
block of code is expensive enough (about 70 l.ts [17]) that a 
highly-tuned program must have every possible catch 
block removed from its critical path of execution. 

The interface provided by Chrysalis is too low-level 
for convenient use by application programmers. We have 
found, however, that its primitive operations constitute a 
very general framework upon which to build efficient 
higher-level communication protocols and programming 
environments. The following section describes a number 
of the software packages we have built on top of Chrysalis. 
Their success has depended on the fact that Chrysalis 
allows the user to explicitly manage processes, memory, 
and address spaces, and provides highly efficient low-level 
mechanisms for synchronization and communication. 

Largely as a result of its research-environment ori- 
gins, Chrysalis leaves much to be desired as a general- 
purpose operating system. It has no support for virtual 
memory or paging. It lacks a file system; file system 
operations are implemented over the Ethernet by a dae- 
mon process on a host machine (a VAX, Sun, or Symbolics 
workstation). Its user interface is built around a primitive 
ASCII terminal window manager (though X-window sup- 
port is available when running the network software). 
Interaction with the command interpreter requires 

intimate knowledge of the hardware and the operating 
system. This need for expertise means that Chrysalis is 
an inappropriate programming environment for all but the 
most sophisticated users. It is also not a development 
environment; programs are written, compiled, and linked 
on the host and downloaded for execution on the Butterfly. 

Extensive use of a global referencing environment 
makes Chrysalis essentially a single-user system. Users 
can partition the machine into multiple virtual machines, 
but there is no support for multiple users within a parti- 
tion. Moreover, protection loopholes in both the hardware 
and in Chrysalis allow processes (with a little effort) to 
inflict almost unlimited damage on each other and on the 
operating system. Chrysalis allows a process to map in any 
memory object it can name, and names are easy to guess. 
More fundamentally, the PNC microcode is designed in 
such a way that a process can enqueue and dequeue infor- 
mation on any dual queue it can name, regardless of any 
precautions the operating system might take. 

The Butterfly GP-1000, now in Beta test, will run the 
Unix-compatible Mach operating system (11. The availa- 
bility of Mach should guarantee a convenient development 
environment on all of the newer machines. It is most 
unlikely, however, to provide users with the efficiency or 
the degree of control over low-level resources available 
with Chrysalis. BBN has announced plans to provide a 
hybrid approach on future machines (the RT-lOOO), with 
applications running on top of a real-time kernel in dedi- 
cated subsets of the machine, under the overall control of 
Mach. 

2.3. Uniform System 
The BBN Uniform System (US) library package 161 

implements lightweight tasks that execute within a single 
global address space. The US interface consists of calls to 
create a globally-shared memory, scatter data throughout 
the shared memory, and create tasks that operate on the 
shared memory. During initialization, US creates a 
manager process for each processor, which is responsible 
for executing tasks. A task is a procedure to be applied to 
shared data, and is usually represented by a function 
name and a pointer into shared memory. A global work 
queue (accessed via microcode operations) is used to allo- 
cate tasks efficiently to processors. Since each task inher- 
its the globally-shared memory upon creation, US supports 
a very small task granularity. 

The Uniform System is the programming environ- 
ment of choice for most applications, primarily because it 
is easy to use. All communication is based on shared 
memory, and the mapping of tasks to processors is accom- 
plished automatically. Moreover, the light weight of tasks 
provides a very cheap form of parallelism. Nevertheless, 
there are significant disadvantages to using US. The work 
queue model of task dispatching has led to an implementa- 
tion in which tasks must run to completion. Spin locks 
must be used for synchronization. Waiting processors 
accomplish no useful work, implementation-dependent 
deadlock becomes a serious possibility, and programs can 
be highly sensitive to the amount of time spent between 
attempts to set a lock [55]. Spin locks also steal remote 
cycles, exacerbating the problem of memory contention. 

US limits the amount of memory that can be shared 
on the original Butterfly. Like any Chrysalis process, a 
US manager can have at most 256 segments in its virtual 
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address space. Since all managers have identical memory 
maps, only 16 Mbytes (out of a possible 1 Gbyte of physical 
memory) can actually be used by a computation under the 
Uniform System. Similarly, US limits how the data is 
structured. One of the main advantages of a segmented 
address space is that memory segments can be allocated to 
logical quantities regardless of their size, since each seg- 
ment is of arbitrary size. This is not a reasonable 
approach under the Uniform System (at least on the 
Butterfly-l) because the number of available SARs, and 
hence memory segments, is severely limited. In order to 
be able to access large amounts of memory, each segment 
must be large. Data must be structured on the basis of 
this architectural limit, rather than logical relationships. 
Large amounts of data irregular in structure must be allo- 
cated in regular patterns to economize on SARs. Even on 
the new hardware, where SARs are not a problem, the sin- 
gle globally-accessible data space will tend to discourage 
the development of modular program structure. 

Finally, the Uniform System model does not 
encourage the programmer to exploit locality. US creates 
the illusion of a global shared memory, where all data is 
accessed using the same mechanisms. The illusion is not 
supported by the hardware, however, since frequent access 
to individual words of remote memory is undesirable. 
Thus, in many applications, each task must copy data into 
local memory, where it is processed and then returned to 
the shared memory. 

Our conclusion is that the Uniform System provides 
an outstanding environment for certain kinds of applica- 
tions. It is best for programs in which (1) the available 
parallelism displays a high degree of regularity (as in 
many data-parallel symbolic and numerical applications), 
(2) the task-size granularity is on the order of a single sub- 
routine call, and (3) almost all of the dependencies and 
interactions between tasks are statically defined. For 
other sorts of applications there are other useful models. 
Several of these are described in the following section. 

3. Rochester Software Development 
Butterfly software development at Rochester has 

always been driven by applications. Our work in com- 
puter vision, connectionist networks, and computational 
geometry motivated both our purchase of the Butterfly and 
subsequent system development. Applications program- 
mers struggled hard at first to learn the details of the new 
architecture and operating system. Their effort was ham- 
pered by unreliable software, poor diagnostics, a lack of 
good tools, an absence of documentation, and the need to 
use low-level system calls for most important operations. 
Over time, BBN improved both software reliability and 
documentation, and developed the Uniform System library 
package, while the Rochester systems group has worked to 
ease the programming task by developing a large number 
of additional packages and tools. The Butterfly has also 
formed the hardware base for implementations of two 
different student operating systems, and a major research 
effort in parallel operating systems is now underway on 
the Butterfly Plus. 

3.1. Applications 
The first significant application developed for the 

Butterfly at Rochester was the Connectionist 

Simulator [21], now in use (in its uniprocessor incarnation) 
at over 100 sites. The simulator supports a neural-like 
model of massively-parallel computing. Rochester’s AI 
group is using it to investigatn algorithms that might be 
used by a computer resembling the brain [22]. The 
Butterfly version of the simul ‘3r runs directly on top of 
Chrysalis. It was our first oncrete example of the 
Butterfly’s processing power. With 120 Mbytes of physical 
memory we were able to build networks that had led to 
hopeless thrashing on a VAX. With 120-way parallelism, 
we were able to simulate in minutes networks that had 
previously taken hours. 

Several other early applications were drawn from 
work in computer vision [7,9]. The vision group at 
Rochester uses the University of British Colombia’s IFF 
(Image File Format) as an internal standard. IFF includes 
a library of vision utilities that can be used as filters, 
reading an image from an input pipe and writing another 
to an output pipe. Complex image operations can be 
implemented by composing simpler filters. An early goal 
of the software development effort at Rochester was to 
extend the IFF model into the realm of parallel processing 
with an implementation on the Butterfly. The BIFF 
(Butterfly IFF) package [40], completed in the summer of 
1986, contains Uniform System-based parallel versions of 
the standard IFF filters. A researcher at a workstation 
can download an image into the Butterfly, apply a complex 
sequence of operations, and upload the result in a tiny 
fraction of the time required to perform the same opera- 
tions locally. 

Perhaps the best-studied early application on the 
Butterfly was the diagonalization of matrices by Gaussian 
elimination. Bob Thomas of BBN conducted extensive 
experiments with a Uniform System-based implementa- 
tion [16,55]. In an attempt to capitalize on previous 
experience with distributed programming, we implemented 
and analyzed a message-based solution to the same prob- 
lem, comparing it to the Uniform System version [28,29]. 
The results of this comparison suggested that neither 
shared memory nor message passing was inherently supe- 
rior, and that either might be preferred for individual 
applications, both from a conceptual point of view and 
from the point of view of maximizing performance. 

In a single three-week period in the summer of 1986, 
seven different benchmarks were developed as part of a 
DARPA-sponsored investigation into parallel architectures 
for computer vision [8,10,11,41]. These benchmarks 
included edge finding and zero-crossing detection, con- 
nected component labeling, Hough transformation, 
geometric constructions (convex hull, Voronoi diagram, 
minimal spanning tree), visibility calculations, graph 
matching (subgraph isomorphism), and minimum-cost path 
in a graph. Four different programming environments 
were used: bare C with Chrysalis calls, the Uniform Sys- 
tem, the Structured Message Passing package (section 3.2), 
and the Lynx distributed programming language (also sec- 
tion 3.2). Experience with these applications and environ- 
ments reinforced our conviction that different models of 
parallel programming can be appropriate for different 
applications. 

Several pedagogical applications have been con- 
structed by students for class projects, including graph 
transitive closure, 8-queens, and the game of pentominoes. 
In addition, we have running a large checkers-playing 

164 



program (written in Lynx), that uses a parallel version of 
alpha-beta search [23]. As part of our research in debug- 
ging parallel programs (section 3.3), we have studied a 
non-deterministic version of the knight’s tour problem and 
have performed extensive analysis of a Butterfly imple- 
mentation of Batcher’s bitonic merge sort. As part of our 
research in parallel file systems (section 3.4), we have 
developed 110 intensive algorithms for copying, transform- 
ing, merging, and sorting large external files. Ph. D. 
dissertations are currently in preparation in the areas of 
parallel compilation [25], parallelizing compilers [44], and 
parallel programming language design [14]. 

3.2. Programming Environments 

NET [261 was the first systems package developed for 
the Butterfly at Rochester. NET facilitates the construc- 
tion of regular rectangular meshes (including lines, 
cylinders, and tori), where each element in the mesh is 
connected to its neighbors by byte streams. Where 
Chrysalis required over 100 lines of code to create a single 
process, NET could create a mesh of processes, including 
communication connections, in half a page of code. Our 
experience with NET showed how valuable even a very 
simple systems software package could be. 

Another early decision in our work with the Butterfly 
was that experimentation with multiple models of parallel 
programming would be facilitated by the availability of 
languages other than C. Source was available for a 
Modula-2 compiler developed at DEC’s Western Research 
Center. The construction of a 68000 code generator and 
Butterfly run-time library provided us with our second 
Butterfly language [42]. In addition to addressing well- 
known weaknesses in C (in the areas of modularity and 
error-checking, for example), Modula-2 has allowed us to 
construct packages such as Ant Farm (see below), in which 
the fine-grain pseudo-parallelism of coroutines plays a cen- 
tral role. 

Both BIFF and NET showed the value of message 
passing, even in a shared-memory multiprocessor. BIFF 
applications based on the Uniform System would copy data 
into and out of the shared memory using essentially a 
message-passing style. NET byte streams implemented 
untyped messages. Together with the experiments in 
Gaussian elimination, this early experience suggested the 
need to provide general-purpose support for message pass- 
ing on the Butterfly. Projects were therefore launched to 
provide that support both at the library package level and 
in the form of a high-level programming language. 

The SMP (Structured Message Passing) pack- 
age [30,31] was designed to provide a level of functionality 
comparable to that of the BBN Uniform System. It sup- 
ports the dynamic construction of process families, 
hierarchical collections of heavyweight processes that com- 
municate through asynchronous messages (figure 2). In a 
generalization of the NET interconnection facility, process 
families can be connected together according to arbitrary 
static topologies. Each process can communicate with its 
parent, its children, and a subset of its siblngs, as 
specified by the family topology. An SMP library is avail- 
able for both C and Modula-2. For C programs it elim- 
inates most of the cumbersome and error-prone details of 
interacting with Chrysalis. For Modula-2 programs it also 
provides a model of true parallelism with heavyweight 
processes and messages that nicely complements the 

n 

Figure 2: Hierarchy of SMP Process Families 

built-in model of pseudo-parallelism with coroutines and 
shared memory. In order to economize on SARs, an SMP 
process with many communication channels must map its 
buffers in and out dynamically. To soften the roughly 1 
ms overhead of map operations, SMP incorporates an 
optional SAR cache that delays unmap operations as long 
as possible, in hopes of avoiding a subsequent map. 

At a higher level of abstraction, message passing is 
also supported by the Lynx distributed programming 
language [46,48]. Like SMP with Modula-2, Lynx sup- 
ports a collection of heavyweight processes containing 
lightweight threads. Unlike SMP, it incorporates a remote 
procedure call model for communication between threads, 
relying on a message dispatcher and thread scheduler in 
the run-time support package to provide the performance 
of asynchronous message passing between heavyweight 
processes. Connections (links) between processes can be 
created, destroyed, and moved dynamically, providing the 
programmer with complete run-time control over the com- 
munication topology (figure 3). On the Butterfly, a stan- 
dard Lynx library also permits processes to share memory, 
though message-passing (or spin locks) must still be used 
for synchronization. 

Because it is a language instead of a library package, 
Lynx offers the advantages of syntactic cleanliness, secure 
type checking for messages, high-level naming (with 

Figure 3: Processes and Links in Lynx 

165 



scatter/gather of message parameters), Ada-like exception 
handling, and automatic management of context for inter- 
leaved conversations. Unlike most parallel and distrib- 
uted languages, Lynx provides these advantages without 
requiring compile-time knowledge of communication 
partners and without sacrificing protection from potential 
errors in those partners. Experience with Lynx has 
yielded important information on the inherent costs of 
message passing [49] and the semantics of the parallel 
language/operating system interface 1471. 

Applications experience, particularly with graph algo- 
rithms and computational geometry, has convinced us of 
the need for a programming environment that supports 
very large numbers of lightweight blockable processes. 
Parallel graph algorithms, for example, often call for one 
process per node of the graph. At the time of the DARPA 
benchmark, none of the programming environments avail- 
able on the Butterfly supported algorithms of this type. 
Lightweight tasks form the core of the Uniform System, 
but have no facilities for blocking or synchronization other 
than spin locks. Lightweight threads are also available in 
Lynx and in Modula-2 (e.g. with SMP), but the mechan- 
isms for interaction between threads in the same process 
are radically different from the mechanisms for interaction 
between threads in different processes. We have recently 
developed a library package called Ant Farm t501 that 
ericapsulates the microcoded communication primitives of 
Chrysalis with a Lynx-like coroutine scheduler, Origi- 
nally designed for use in Modula-2, Ant Farm is currently 
being modified to work with a C-based coroutine package 
provided in recent releases of Chrysalis. In either 
language, invocation of a blocking operation by a light- 
weight Ant Farm thread causes an implicit context switch 
to another runnable thread in the same Chrysalis process. 
In the event that no other thread is runnable, the corou- 
tine scheduler blocks the process until a Chrysalis event is 
received. When combined with a global heap and facilities 
for starting remote coroutines, the resulting system allows 
lightweight threads to communicate with each other 
without regard to location. 

The Uniform System, SMP, Lynx, and Ant Farm are 
all significantly safer and more convenient to use than the 
Chrysalis primitives on which they are implemented. 
They are also significantly less flexible, and bear little 
resemblance to the abstractions of the operating system. 
A more compatible improvement to the Chrysalis environ- 
ment was provided by Chrysalis+ + [12], an encapsulation 
of Chrysalis abstractions in C+ + class definitions. To 
implement Chrysalis+ + we first modified the standard 
AT&T implementation of C+ + to generate code for the 
Butterfly, then recast the explicit object management of 
Chrysalis into the implicit object management of C-t f. 
Implicit object management reduces the amount of code 
necessary to create and manage processes, memory objects, 
events, dual queues, and atomic variables. The strong 
type checking of C + + also reduces the frequency of run- 
time errors. Problems encountered in the implementation 
of Chrysalis+ + led to general observations about the 
difficulty of reconciling the object-management needs of 
languages and operating systems [13,15]. 

3.3. Programming Tools 

Numerous small projects undertaken in the course of 
our work with the Butterfly can be categorized loosely as 
systems software tools. Modifications to the Uniform 

System (e.g. for faster initialization) have been incor- 
porated into the standard BBN release. A general-purpose 
package called Crowd Control allows similar tree-based 
techniques to be used in other programs [321, spreading 
work over multiple nodes. The Crowd Control package 
can be used to parallelize almost any function whose serial 
cdmponent is due to contention for read-only data. Other 
packages have been developed for highly-parallel con- 
current data structures [19,351 and memory alloca- 
tion [201. 

A local facility for software partitioning (to subdivide 
a Butterfly into smaller virtual machines) was brought up 
prior to the release of the BBN version. Local enhance- 
ments to the host-based remote file server allow us to 
access NFS files from Butterfly programs. The only full 
set of published benchmarks for PNC and Chrysalis func- 
tions is a Rochester technical report 1171. Experiments 
with eight different implementations of remote procedure 
call explored the ramifications of these benchmarks for 
interprocess communication 1341. 

Despite the improvement in the programming 
environment achieved by software packages and tools, the 
parallel program debugging cycle continued to be frustrat- 
ing, particularly for non-deterministic applications. It was 
the realization that cyclic debugging of nondeterministic 
behavior was impractical, coupled with the observation 
that the standard approach to debugging parallel pro- 
grams based on message logs would quickly fill all 
memory, that led to the development of Instant 
Replay [331. Instant Replay allows us to reproduce the 
execution behavior of parallel programs by saving the 
relative order of significant events as they occur, and then 
forcing the same relative order to occur while re-running 
the program for debugging. Instant Replay requires less 
time and space than other methods because the actual 
information communicated between processes is not saved. 
It is also general enough to use in all of our software pack- 
ages because it assumes a communication model based on 
shared objects, which are used to implement both shared 
memory and message passing. No central bottlenecks are 
introduced by execution monitoring and there is no need 
for synchronized clocks or a globally-consistent logical 
time. 

Our experiments indicate that the overhead of moni- 
toring can be kept to within a few percent of execution 
time for typical programs, making it practical to run non- 
deterministic applications under Instant Replay all the 
time. We are in the process of building a toolkit based on 
Instant Replay that allows a full range of debugging and 
performance analysis tools to be integrated with a graphi- 
cal user interface [241. The graphics package, known as 
Moviola, makes it possible to examine the partial order of 
events in a parallel program at arbitrary levels of detail. 
It has been used to discover performance bottlenecks and 
message-ordering bugs, and to derive analytical predic- 
tions of running times. 

3.4. Operating Systems 

The Butterfly-l has been used at Rochester as a 
hardware base for two different pedagogical operating sys- 
tems. The Osiris kernel was an early prototype of low- 
level routines for the Psyche operating system (see below). 
It was preceded by Elmwood [36], a fully-functional RPC- 
based multiprocessor operating system constructed as a 
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class project in only a semester and a half. Though it was 
not originally conceived as a research project, experience 
with Elmwood led to a considerably deeper understanding 
of the Butterfly architecture. It also provided us with use- 
ful experience in the management of multi-person projects, 
and provided some ten different graduate students with 
first-hand experience writing low-level software on a 
parallel machine. 

Our accumulated experience with both applications 
and systems software has convinced us that no one model 
of process state or style of communication will prove 
appropriate for all applications. The beauty of large-scale 
NUMA machines like the Butterfly is that their hardware 
supports efficient implementations of a wide variety of 
models. Truly general-purpose parallel computing 
demands an operating system that supports these models 
as well, and that allows program fragments written under 
different models to coexist and interact. These observa- 
tions have led to the development of a parallel operating 
system we call Psyche [51]. Psyche facilitates dynamic 
sharing between threads of control by providing a user 
interface based on passive data abstractions in a uniform 
virtual address space. It ensures that users pay for protec- 
tion only when necessary by permitting the lazy evalua- 
tion of privileges, using a system of keys and access lists. 
The data abstractions are known as realms. Their access 
protocols define conventions for sharing the uniform 
address space. An explicit tradeoff between protection and 
performance determines the degree to which those conven- 
tions are enforced. In the absence of protection boun- 
daries, access to a shared realm (figure 4) can be as 
efficient as a procedure call or a pointer dereference. A 
Psyche implementation is currently under construction on 
the Butterfly Plus. 

In the gray area between operating systems and pro- 
gramming tools, we are investigating issues in the design 
of highly-parallel file systems that can be used to increase 
the performance of I/O bound applications. From the point 
of view of parallel processing, any performance limit on 
the path between secondary storage and application pro- 
gram must be considered an I/O bottleneck. Faster 
storage devices cannot solve the I/O bottleneck problem for 
large multiprocessor systems if data passes through a file 
system on a single processor. Implementing the file 

Figure 4: Overlapping Protection Domains in Psyche 

system as a parallel program can significantly improve 
performance. Selectively revealing this parallel structure 
to utility programs can produce additional improvements, 
particularly on machines in which interprocessor commun- 
ication is slow compared to aggregate I/O bandwidth. The 
Bridge parallel file system [18] distributes each file across 
multiple storage devices and processors. The approach is 
based on the notion of an interleaved file, in which con- 
secutive logical blocks are assigned to different physical 
nodes, Naive programs are able to access files just as they 
would with a conventional file system, while more sophis- 
ticated programs may export pieces of their code to the 
processors managing the data, for optimum performance. 
Analytical and experimental studies indicate that Bridge 
will provide linear speedup on several dozen disks for a 
wide variety of file-based operations, including copying, 
sorting, searching, and comparing. 

4. Lessons 
The following summarizes the lessons we have 

learned in developing both system software and applica- 
tions for a large-scale multiprocessor over a three year 
period. Our work has emphasized architectural implica- 
tions and programming environment issues; our lessons 
reflect this emphasis. Although our particular experience 
is with the Butterfly-l, we believe these lessons generalize 
to other multiprocessors as well. 

4.1. Architectural Implications 
Large-scale shared-memory multiprocessors are practi- 

cal. We have achieved significant speedups (often almost 
linear) using over 100 processors on a range of applica- 
tions including connectionist network simulation, game- 
playing, Gaussian elimination, parallel data structure 
management, and numerous computer vision and graph 
algorithms. In the course of developing these applications, 
we have also discovered that many interesting effects 
become obvious only when large numbers of processors are 
in use. In the Gaussian elimination experiments, for 
example, our SMP implementation outperformed the Uni- 
form System implementation whenever fewer than 64 
processors were used, despite the fact that communication 
in SMP is significantly more expensive than direct access 
to shared memory. Beyond 64 processors the timings for 
the Uniform System remained constant (no additional 
improvements), while the SMP timings actually increased 
(figure 5). This anomaly is due to the amount of communi- 
cation used in each implementation. The number of mes- 
sages sent in the SMP implementation is P*N, where P is 
the number of processors and N is the size of the matrix. 
In other words, doubling the amount of parallelism also 
doubles the amount of communication. Beyond 64 proc- 
essors, the increased amount of communication caused by 
each additional processor is not justified by the incremen- 
tal gain in parallelism. The number of communication 

operations in the Uniform System implementation is (N2- 
N) +P(N-1); doubling the amount of parallelism does not 
significantly increase the amount of communication. The 
point at which the increase in communication dominates 
additional parallelism in the Uniform System implementa- 
tion is not even visible with 128 processors. Without a 
large number of processors, we might not have discovered 
the anomaly. 
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Figure 5: Gaussian Elimination Performance; 
Shared Memory versus Message Passing 

Locality of reference is important, even with shared 
memory. Although each processor can access the memory 
of others, remote references on the Butterfly-l are five 
times slower than local references. This disparity is not so 
great as that found in local-area networks, where two or 
three orders of magnitude are common, but it cannot be 
ignored without paying a substantial performance penalty. 
Any measurable difference between local and remote 
access time requires the programmer to treat the two 
differently; caching of frequently accessed data is essen- 
tial. A standard technique used in Uniform System pro- 
grams is to copy blocks of data from the (logically) global 
shared memory into local memory for processing; results 
are then copied back to the global shared memory. In the 
Hough transform application, this technique improved per- 
formance by 42% when 64 processors were used [41]. 
Local lookup tables for transcendental functions improved 
performance by an additional 22%. The issue of locality 
will be even more important in the Butterfly Plus, since 
local references have improved by a factor of four, while 
remote references have improved by only a factor of two. 

Contention has the potential to seriously impact per- 
formance. Remote references on the Butterfly can 
encounter both memory and switch contention. The poten- 
tial for switch contention was clearly anticipated in the 
design of the Butterfly hardware, and has been rendered 
almost negligible [45]. On the other hand, the potential 
for memory contention appears to have been 

underestimated, since remote references steal memory 
cycles from the processor containing the memory. Only 
one processor can issue local references to a given memory, 
but over a hundred processors can issue simultaneous 
remote references, leading to performance degradation far 
beyond the nominal factor of five delay. The careful pro- 
grammer must organize data not only to maximize local- 
ity, but also to minimize memory contention. For exam- 
ple, the Gaussian elimination program (on 64 processors or 
fewer) displays a performance improvement of over 30% 
when data is spread over all 128 memories 1291. The 
greatest effect occurs when roughly 114 to 112 of the total 
number of processors are in use. When a larger fraction of 
processors are performing computation, most of the 
memory is already in use. Not enough is left to reduce 
contention noticeably. When too few processors are used, 
the resulting memory traffic is not heavy enough to cause 
significant contention. 

Amdahl’s law is extremely important in large-scale 
multiprocessors. Serial program components that have lit- 
tle impact on performance when a few processors are in 
use can lead to serious bottlenecks when 100 processors 
are in use. Massive problem sizes are sometimes required 
to justify the high costs of serial startup. Serialization in 
system software is especially difficult to discover and 
avoid. For example, the Crowd Control package was 
created to parallelize process creation, but serial access to 
system resources (such as process templates in Chrysalis) 
ultimately limits our ability to exploit large-scale parallel- 
ism during process creation. Serial memory allocation in 
the Uniform System was a dominant factor in many pro- 
grams until a parallel memory allocator was introduced 
into the implementation [201. Serial access to a large .file 
is especially unacceptable when 100 processes are avail- 
able to process the data; the Bridge file system is designed 
to address this particular bottleneck. None of these paral- 
lel solutions is particularly simple, and the elimination of 
similar bottlenecks can be expected to pose a serious prob- 
lem for any highly parallel application. 

Architectural variety inhibits the deueEopment of port- 
able systems software. A myriad of different multiproces- 
sor architectures are now commercially available, includ- 
ing bus-based multiprocessors like the Sequent Balance 
and Encore Multimax, switch-based multiprocessors like 
the BBN Butterfly, cosmic cube variants like the NCUBE 
and Intel hypercube, and the Connection Machine from 
Thinking Machines, Inc. Despite the architectural variety, 
few general principles of parallel programming have 
emerged on which programming environments could be 
based. Some notable attempts have been made to provide 
general parallel programming environments [43,53,541, 
but substantial investments in software development are 
still required for every new machine. In many cases it 
may even be difficult to develop a production-quality 
operating system fast enough to make truly effective use 
of a machine before it becomes obsolete. The problem is 
less severe in the sequential computer world, since unipro- 
cessors tend to resemble one another more than multipro- 
cessors do. While an operating system such as Unix can 
make effective use of a variety of conventional sequential 
computers, simply porting Unix to a multiprocessor would 
not provide fine-grain parallelism, cope effectively with 
non-uniform memory access times (the so-called “NUMA 
problem”), or address a host of other issues. The emer- 
gence of Mach may improve matters significantly, but its 
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effectiveness for NUMA architectures has yet to be demon- 
strated. 

4.2. Programming Environment 

The programming environment must support multiple 
programming models. We have implemented many 
different applications using an assortment of operating 
systems, library packages, and languages. Empirical 
measurements demonstrate that NUMA machines like the 
Butterfly can support many different programming models 
efficiently. For example, efficient communication based on 
shared memory has been implemented in the Uniform Sys- 
tem and Ant Farm. Higher-level communication based on 
message passing and remote procedure call has been 
implemented in SMP, Lynx, and Elmwood. Extensive 
analysis of the communication costs in these systems sug- 
gests that, for the semantics provided, the costs are very 
reasonable [36,47,49]. A comparison with the costs of the 
basic primitives provided by Chrysalis shows that any gen- 
eral scheme for communication on the Butterfly will have 
comparable costs. 

Even though each model can be implemented 
efficiently on the Butterfly, no single model can provide 
optimal performance for all applications. Moreover, sub- 
jective experience indicates that conceptual clarity and 
ease of programming are maximized by different models 
for different kinds of applications. In the course of the 
DARPA benchmark experiments, seven different problems 
were implemented using four different programming 
models. One of the basic conclusions of the study was that 
none of the models then available was appropriate for cer- 
tain graph problems; this experience led to the develop- 
ment of Ant Farm. Some large applications may even 
require different programming models for different com- 
ponents; therefore it is also important that mechanisms be 
in place for communication across programming models. 
These concerns form the motivation behind the Psyche 
operating system. 

It is dificult to exercise low-level control over parallel- 
ism without accepting explicit control of other resources as 
well. Programmers use a multiprocessor for performance 
gains, and therefore must maximize the (true) parallelism 
in an application program. Since it is impossible to antici- 
pate the needs of every application, a parallel program- 
ming environment will usually provide low-level mechan- 
isms for mapping processes to processors. Unfortunately, 
in allowing the programmer to control parallelism (and 
the corresponding processes), the environment will often 
force the programmer to manage other resources as well. 
For example, the programmer may be required to manage 
address spaces explicitly in order to co-locate a process and 
its data. All of the parallel programming environments on 
the Butterfly couple the ability (or inability) to manage 
parallelism with the ability (or inability) to manage 
memory. Chrysalis allows the programmer to create a 
process on any Butterfly node, but it also requires the pro- 
grammer to manage shared memory explicitly. Even very 
simple sharing requires several system calls, each with 
several parameters. The Uniform System attempts to 
make processor boundaries transparent; each task may 
execute on any available processor. There is no attempt, 
however, to co-locate a task and the data it manipulates. 
To achieve acceptable performance, the programmer must 
cache data explicitly. SMP does not require the user to 

manage the address space of a process explicitly; however, 
it allocates processes to processors using a fixed allocation 
algorithm, which can lead to an imbalance in processor 
load. A better balance between flexibility and ease of use 
must be found. 

An efficient implementation of a shared name space is 
valuable even in the absence of uniform access time. The 
primary advantage of shared memory is that it provides 
the programmer with a familiar computational model. 
Programmers do not have to deal with multiple address 
spaces; programs can pass pointers and data structures 
containing pointers without explicit translation. The 
attractiveness of a single address space cannot be over- 
stated; it is the primary reason why most programmers 
choose to use the Uniform System as their programming 
environment. Even when non-uniform access times warp 
the single address space model by forcing the programmer 
to deal explicitly with local caching of data, shared 
memory continues to provide a form of global name space 
that appeals to programmers. Data items, including 
pointers, can be copied from one local memory to another 
through the global name space. In effect, the shared 
memory is used to implement an efficient Linda tuple 
space 121. The Linda in, read, and out operations 
correspond roughly to the operations used to cache data in 
the Uniform System. 

Better monitoring and debugging tools are essential. 
The lack of such tools contributes dramatically to program 
development time, and is probably the most frequently 
cited cause of frustration with parallel programming 
environments. Performance is paramount in multiproces- 
sors, yet few general tools exist for measuring perform- 
ance. Bottlenecks such as memory or switch contention 
are difficult to discover and must usually be measured 
indirectly. Single process debuggers cannot capture paral- 
lel behavior, and performance monitoring and debugging 
tools for distributed systems [27,37,38] are not particu- 
larly well-suited to multiprocessors. The problem is espe- 
cially acute in NUMA machines, since they lack a shared 
communication medium that could facilitate monitoring. 

Significant progress has been made recently in moni- 
toring and debugging tools for shared-memory multipro- 
cessors [24,52]. In particular, we have begun construction 
of an extensible, integrated toolkit for parallel program 
debugging and performance analysis, as mentioned in sec- 
tion 3.3 I241. Ultimately, the toolkit will include an 
interactive debugger, a graphical execution browser, per- 
formance analysis packages, and a programmable interface 
for user queries. We hide the complexity of how an algo- 
rithm is implemented by emphasizing a graphical 
representation of execution. (Figure 6, produced by the 
toolkit, is a graphical view of deadlock in an odd-even 
merge sort program.) Top-down analysis at all levels of 
abstraction is possible because the graphical representa- 
tion is integrated with access to the low-level details of an 
execution. The analysis process converges because all exe- 
cutions are repeatable. The toolkit is programmable, 
hence extensible. It allows programmers to analyze the 
behavior of parallel programs interactively, much as 
interactive debuggers and profilers are used to analyze the 
behavior of sequential programs. Our experience to date 
confirms the utility of the toolkit; the debugging and 
analysis cycle has decreased from several days to a few 
hours. 
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Figure 6: Graphical View of Odd-Even Merge Sort 

Programming environments are often more important 
than processing speed. Many application programmers in 
our department who could exploit the parallelism offered 
by the Butterfly continue to use Sun workstations and 
VAXen. These programmers have weighed the potential 
speedup of the Butterfly against the programming environ- 
ment of their workstation and found the Butterfly want- 
ing New processors, switching networks, or memory 
organizations will not change this fact, although the intro- 
duction of Mach on the Butterfly is clearly a step in the 
right direction. The most important task ahead for the 
parallel programming community is not the development 
of newer and bigger multiprocessors, but rather the 
development of programming environments comparable to 
those available on sequential computers. 

5. Conclusions 
The existence of a large-scale multiprocessor at the 

University of Rochester has dramatically affected how we 
think about parallel programming. Special-purpose tech- 
niques do not tend to extrapolate well to 120 processors; 
we have learned to avoid taking advantage of a specific 
number of processors. 

We are generally satisfied with the Butterfly. We 
have had access to all of the system details necessary to 
implement system software; we have invested the effort to 
become experts. However, despite the level of local exper- 
tise, to this day only intrepid programmers use the 
Butterfly to solve real problems. It remains to be seen 
whether the newer Mach-based Butterfly software will 
change this situation appreciably. 

Butterfly-family machines remain the largest shared- 
memory multiprocessors commercially available. They are 

vastly more flexible than the competing message-based 
multicomputers (e.g. hypercubes), and are not subject to 
the bandwidth limitations of bus-based shared-memory 
machines. The problems presented by the architecture, 
especially the NUMA problem, will be with us for some 
time, and solutions will be required in any future large- 
scale parallel machine. Perhaps most important from our 
point of view, parallel processors have helped bring appli- 
cations programmers and system developers together in a 
spirit of cooperation. This cooperation will be crucial to 
the development of the parallel programming environ- 
ments of the future. 
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