
Language Support for 
Loosely-Coupled Distributed Programs 

Michael L. Scott 
Department of Computer Science 

The University of Rochester 
Rochester, NY 14627 

TR 183 (revised) 
September 1986 

At the University of Wisconsin, this work was supported in part by 
NSF Grant MCS-8105904, DARPA Contract N00014-82-C-2087, and a 
Bell Telephone Laboratories Doctoral Scholarship. At the University of 
Rochester, the work is supported in part by NSF Grant DCR-8320136 
and DARPA Contract DACA 76-85-C-OOOl. 

This paper will appear in the IEEE Transactions on Software 
Engineering in December 1986. 



Language Support 
for 

Loosely-Coupled Distributed Programs 

Michael L. Scott. member IEEE 

July 1986 

Abstract - A distributed operating system encourages a style of programming in which independently

developed processes interact in a non-trivial fashion at run time. Server processes, for example. must deal 

with clients that they do not understand. and certainly cannot trust Interprocess communication can be writ

ten in a traditional, sequential language with direct calls to kernel primitives. but the 'result is both cumber

some and error-prone. Convenience and safety are offered by the many distributed languages proposed to 

date. but in a form too inflexible for anything other than the pieces of a single distributed program. A new 

language known as LYNX overcomes the disadvantages of both these previous' approaches. Novel features of 

LYNX address problems encountered in the course of practical experience. writing distributed programs 

without high-level language support. Chief among these features are a virtual circuit abstraction called the 

link. and an unconventional coroutine mechanism that allows a server to maintain nested contexts for inter

leaved conversations with an arbitrary number of clients. 

Index Terms - Coroutines. distributed computing, late binding, links. LYNX. message passing. process 

independence. programming languages. 

I. Introduction 

Advances in parallel architectures have spurred the development of a wide variety of distri

buted operating systems [6.8,30,34,35.44]. Much of the functionality in these systems is provided 

outside the (replicated) kernel, by so-called system servers. Servers interact with users in precisely 

the same way that users interact with one another, making the distinction between application and 

system software increasingly unclear. A programming language for distributed computing must 

support safe, convenient communication for a dynamically-changing mix of loosely-coupled 

processes - processes designed in isolation, and compiled and loaded at disparate times. 

The author is with the Department of Computer Science. University of Rochester. Rochester. NY 14627. 

At the University of Wisconsin. this work was supported in part by NSF grant number MCS-8105904. DARPA con
tract number NOO14-82-C-2087. and a Bell Telephone Laboratories Doctoral Scholarship. At the University of Rochester, 
the ",ork is supported in part by NSF grant number DCR-8320136 and DARPA contract number DACA76-85-C-OOOL 



2 

Under a distributed operating system, a process interacts with its environment through mes

sages, much as a sequential process interacts with its environment through operations on files. It is 

tempting to presume that language features for message passing could reflect underlying communi

cation primitives as easily as the 110 statements of a sequential language reflect underlying file 

operations. While such a direct mapping might be possible for processes whose interactions are 

limited to file-like operations, it is not possible for processes in general or for servers in particular. 

The extra complexity of IPC can be ascribed to several causes: 

(1) Convenience and Safety 

Interprocess communication is more structured than are file operations. The remote requests 

of servers and multi-process user programs resemble procedure calls more than they resemble 

the transfer of uninterpreted streams of bytes. Processes need to be able to send and receive 

arbitrary collections of program variables. including those with structured types, without 

sacrificing type checking and without explicitly packing and unpacking buffers. 

(2) Error Handling and Protection 

Interprocess communication is more error-prone than are file operations. Both hardware and 

software may fail. Software is a panicular problem, since communicating processes cannot in 

general trust each other. A traditional file is, at least logically, a trusted. passive entity whose 

behavior is determined by the operations performed upon it A connection to an arbitrary 

process displays much more non-deterministic behavior. 

Fault-tolerant algorithms may allow a server to recover from many kinds of failures. The 

server must be able to detect those failures at the language level. It must not be vulnerable to 

erroneous or malicious behavior on the pan of clients. Errors in communication with anyone 

panicular client must not affect the service provided to others. 

(3) Concurrent Conversations 

While a conventional sequential program typically has nothing interesting to do while waiting 

for a file operation to complete (save perhaps for preparing the next file operation in high

performance, double-buffered applications), a server usually does have other work to do while 

waiting for communication to complete. Certainly, a server must never be blocked 

indefinitely while waiting for action on the pan of an untrustworthy client. Unfonunately, 

straightforward representation of remote operations will generally entail waiting for results to 

be returned. As described by Liskov, Herlihy, and Gilben [28,29], efficiency and clarity may 

best be realized with a dynamic set of tasks within a server, one for each uncompleted 

request. 



3 

Practical experience testifies to the significance of these issues. The Charlotte distributed 

operating system at the University of Wisconsin [14] is a case in point. Charlotte servers include a 

process and memory manager (the starter), a command interpreter, a process inter-connector, two 

kinds of file servers, a name server (the switchboard), and a terminal driver. The original versions 

of these servers were written in a conventional sequential language with ordinary subroutine calls 

for access to the operating system kernel. As work progressed. serious problems arose. Those 

problems can be attributed directly to the issues just described: 

• Programmers devoted a considerable amount of effort to packing and unpacking message 

buffers. The standard technique used type casts to overlay a record structure on an array of 

bytes. Program variables were assigned to or copied from appropriate fields of the record. 

The code was awkward at best and depended for correctness on programming conventions 

that were not enforced by the compiler. Errors due to incorrect interpretation of messages 

were relatively few, but very hard to find. 

• Every Charlotte kernel call returns a status variable whose value indicates whether the 

requested operation succeeded or failed. Different sorts of failures result in different values. 

A well-written program must inspect every status variable and be prepared to deal appropri

ately with every possible value. It was not unusual for 30% of a carefully-written server to be 

devoted to error checking and handling. 

• Conversations between servers and clients often require a long series of messages. A typical 

conversation with a file server. for example. begins with a request to open a file. continues 

with an arbitrary sequence of read. write. and seek requests, and ends with a request to close 

the file. The flow of control for a smgle con versation could be described by simple, straight

line code except for the fact that the server cannot afford to wait in the middle of that code 

for a message to be delivered. The explicit interleaving of separate conversations is very hard 

to read and understand. 

The last problem was probably the most serious. In order to maximize concurrency and 

protect servers from recalcitrant clients. Charlotte programmers were forced to break the code that 

manages a conversation into many small pieces, separated by requests for communication. Servers 

would invoke the pieces individually so that conversations interleaved. Every Charlotte server 

developed the following overall structure: 



begin 
initialize 
loop 

wait for a communication request to complete 
determine the conversation to which it applies 
case request.type of 

A: 

B: 

restore state of conversation 
compute 
start new request 
save state 

end case 
end loop 

end. 

4 

The flow of control for a typical conversation is buried in the state information, obscured by the 

global loop. The program must save and restore that state in order to preserve the data structures 

associated with each conversation and in order to keep track of the current point of execution in 

what would ideally be straight-line code. Both tasks would be handled implicitly if each conversa

tion were managed by an independent thread of control. Data structures would be placed in local 

variables and the progress of the conversation would be reflected by its program counter. 

Previous research has addressed the complexity of IPC in several different ways. The prob

lem of buffer management has been solved in several distributed systems by the development of 

so-called stub routines to pack and unpack parameters. A language-specific tool generates stubs 

automatically from interface descriptions. Birrell and Nelson's Lupine [4] and the Accent Match

maker [23] are particularly worthy of note. The technique works best in languages that support 

procedures as first-class objects. Safety depends on integrating the stub generator into the 

compiler's type-checking mechanism and on preventing messages from being sent in any other 

way. If the language provides facilities for exception handling, then the second problem on the list 

above can be solved with stubs as well. 

Addressing the third problem requires multiple cooperating threads of control in a single 

address space. Such threads are supported directly by the Amoeba distributed operating sys

tem [30], and may be realized through programming conventions in any operating system that 

allows processes to share memory. There is, however, a non-trivial cost associated with scheduling 

a server's tasks at the operating-system level, since creating a task or switching from one task to 

another requires a context switch into and out of the kernel. The designers of the Medusa distri-

. buted operating system [33] chose to implement co routines at the user level rather than change the 

set of processes (activities) in a server (task force) at run time. 



5 

Though the first generation of Charlotte servers was indeed completed successfully, it 

became clear that direct use of system calls was an inadequate approach to writing systems pro

grams. A stub generator was not an attractive alternative. Among other things. the language in 

which we were working (Modula-l [13]) provided neither exceptions nor formal procedures, and its 

mechanism for blocking and unblocking threads of control was poorly suited for writing a message 

dispatcher. Moreover, no other, more suitable language was available on our machines. Since we 

were faced with the prospect of writing a compiler and run-time package in any event, we under

took. to design a language that would overcome the disadvantages of the existing environment while 

sacrificing as few of its advantages as possible. In particular, we wished to obtain the benefits of 

high-level naming, type checking, exception handling, and automatic management of context while 

still allowing processes to be developed in mutual isolation, without the need for compiler-enforced 

global context. 

Section II of this paper outlines the motivational factors that distinguish our work from that 

of previous language designers. Section 1II introduces a language we call LYNX. Rationale for 

the more imponant features of the language IS provided in section IV, together with comparisons 

to previous research. The conclusion summanzes the significance of LYNX and discusses future 

plans. 

II. Motivation 

The complexity of interprocess communication has motivated the design of a large number 

of distributed programming languages. Work is still active on such languages and language tools as 

the Accent Matchmaker [23], Ada [43], Argus [27], CSP [21], EPL [6], Linda [18], NIL [40,41]. 

SR [1. 2], and Cedar [42] (with Nelson's RPC [4,31]). In the terminology of the previous section. 

most of the designs are convenient and safe. Their communication statements refer directly to pro

gram variables and they insist on type security for messages. Several provide special mechanisms 

for error handling and recovery. Most allow a process to be subdivided into more than one thread 

of control. None, however, appears to have been designed with independent processes in mind. 

Return for a moment to the analogy between file operations and interprocess communica

tion. Imagine a time-sharing system in which every data format in the file system must be declared 

in a database of types. Imagine that files are segregated according to the types they contain, and 

that consistency of access is enforced at compile time by checking programs against the database. 

If the file system is distributed across a local area network, imagine that the database must be kept 

con~istent across machines. A file system along these lines could almost certainly be built but its 

complexity and clumsiness hardly seem wonh the security provided. Programmers routinely rely 



6 

upon compile-time type checking for temporary files that are used in the course of a single run of a 

single program, but we suspect that they would balk at the need to do so for all files in all applica

tions. 

Similarly, we are inclined to doubt that compile-time knowledge of communication topology 

and types will be appropriate under all circumstances. From the point of view of a systems pro

grammer, the principal disadvantage of existing distributed languages is a matter of orientation. 

Language designers have tended to think in tenns of communication between the pieces of a single 

distributed program, rather than between processes that are really separate programs. The network 

of process interconnections, for example, must sometimes (as in CSP) be statically declared. Even 

if connections can be changed dynamically, it is generally necessary for any process that partici

pates in introducing one process to another to understand the types of any messages a newly

created connection may carry. Client processes can always choose their serve.rs, but servers are 

usually unable to distinguish between clients. to provide them with differing levels of service or 

extend to them differing levels of trust. No attempt is made to distinguish between local errors and 

remote errors, or to protect a process from the latter. Type checking is enforced by maintaining a 

global compiler name space. Even a trivial change to an interface will generally force the recompi

lation of every process that uses it. 

For distributed systems software, a language must maintain the flexibility of explicit kernel 

calls while providing extensive features to handle errors, manage conversations, and make those 

calls convenient. A language that accomplishes these aims is introduced in the following section. 

The environment it provides is one in which programs can be pieced together quickly and easily 

from separately-developed processes, in the spirit of the well-known but substantially simpler pipes 

of UNIX. 

The name of the language is derived from its use of communication channels called links. 

Links are provided as a built-in data type. A link is used to represent a resource. The ends of a 

link can be moved from one process to another. Servers are free to rearrange their interconnec

tions in order to meet the needs of a changing user community and in order to control access to 

the resources they provide. Type security is enforced on a message-by-message basis, Errors are 

deferred to exception handlers outside the normal flow of execution, Multiple conversations are 

supported by integrating the communication facilities with the mechanism for creating new threads 

of control. 



7 

III. LYNX Overview 

Central to the philosophy of LYNX is the notion that processes are independent entities. 

Each can be written, compiled, linked. and loaded in total isolation. with no information whatso

ever about any other process. The pieces of a single application. of course. will generally be writ

ten with their peers in mind. but it is the goal of LYNX to permit that mutual knowledge without 

requiring it for processes whose interactions are much less formal and structured. 

Processes in LYNX execute in parallel. possibly on processors that share no common 

memory. Processes interact by sending messages on bi-directional communication links. Each pro

cess begins with an initial set of arguments, presumably containing at least one link to connect it to 

the rest of the world. Each link has a single process at each end. As an example of a simple appli

cation. consider a producer process that creates data of some type and sends that data to a consu

mer. Each process begins with a link to the other. The producer looks like this: 

process producer (consumer: link); 

type data = whatever; 
ent ry transfer (info: data); remote; 

function produce: data; 
begin 

-- whatever 
end produce: 

begin -- producer 
loop 

connect transfer (produce D on consumer; 
end; 

end producer. 

The basic syntax and scope rules of LYNX are similar to those of Modula-2 [47]. Com

ments are defined as in Ada [43]. The word ent ry introduces a template for a remote operation. 

The general syntax is 

entry opname ( in-'lrgs ) : outJypes ; 

In this case, the transfer entry has no reply parameters. The word remote indicates that the code 

for the operation is provided somewhere else. 

The connect statement is used to request a remote operation. The vertical bar in the argu

ment list separates request and reply parameters. 

connect opname ( expr..Jist I var.Jist ) on linkname ; 

The current thread of control in the sending process is blocked until a reply message is received. 



8 

even if the list of reply parameters is empty. Our producer has only one thread of control (more 

complicated examples appear below), so in this case the process itself is blocked. 

The consumer looks like this: 

process consumer (producer: link); 

type data = whatever; 
entry transfer (info: data); remote; 

procedure consume (info: data); 
begin 

-- whatever 
end consume; 

va r buffer: data; 

begin -- consumer 
loop 

accept transfer (buffer) on producer: reply; 
consume (buffer); 

end; 
end consumer. 

The accept statement is used to serve an operation requested by the process at the other 

end of a link. 

accept opname ( var -.Jist) on linkname ; 

reply ( expUist ) ; 

The reply statement returns its parameters to the process at the other end of linkname and 

unblocks the thread of control that requested the operation opname. The parameter types for 

·opname must be defined by an entry declaration. 

In keeping with the notion of process independence, neither the consumer nor the producer 

can name the other directly. Each refers only to the link that connects them. It is entirely possible 

that the consumer. having received all the data it wants. might pass its end of the link on to 

another process. Future requests for the transfer operation would be served by the new consumer. 

The producer would never know anything had happened. 

A variable of type link accesses one end of a physical link, much as a pointer accesses an 

object in Pascal. Links are created by a built-in routine called newlink that returns references to a 

new pair of ends. New links are usually created for one of two reasons: either one end is to be 

passed to a newly-created process. or else both ends are to be passed to existing processes. to intro

duce each to the other. To make these common cases easier to write, newlink returns one of its 



9 

results as a function value and the other as a reference parameter. 

A producer/consumer pair could be created in LYNX with the following sequence of state-

ments: 

var L : link; 
begin 

startprocess ("consumer", newlink (L»; 
startprocess ("producer", L); 

The strings "consumer" and "producer" serve to identify executable load images to the underly

ing operating system. The process that executes the startprocess statement may well be pan of 

the same application as the processes it creates. Equally easily, it may be an operating-system pro

cess such as a command interpreter. In our implementation for the BBN Butterfly machine [3], a 

producer/consumer pair would be created in response to the following series of commands to the 

Butterfly shell: 

[] link A B 
[] xrun consumer @A 
[] xrun producer @B 

Since messages are addressed to links. not processes, it is not even necessary to connect the 

producer and consumer directly. An extra process could be interposed for the purpose of filtering 

or buffering the data. Neither the producer nor the consumer would know of the intermediary'S 

existence. 

[] link ABC 0 
[] xrun consumer @A 
[] xrun intermediary @B @C 
[] xrun producer @D 

There is another way to write the consumer in LYNX. In the version above. the process 

contains a single thread of control that receives requests explicitly. We call the alternative implicit 

receipt. Instead of running a single thread in a loop, we can arrange for each appropriate request 

to create its own thread automatically. The code to be executed by a newly-created thread appears 

in the form of a begin ... end block for an entry, in place of the word remote.1 The implicit

receipt version of our consumer looks like this: 

1 The header of the entry can still serve as the template for connect and accept statements; the word remote 
merely allows the code to be omitted when the current process does not provide the operation through implicit receipt 



process consumer (producer: link); 

type data = whatever; 

procedu re consume (info: data); 
begin 

-- whatever 
end consume; 

entry transfer (info: data); 
begin 

reply; 
consume (info); 

end transfer; 

begin -- consumer 
bind producer to transfer; 

end consumer. 

10 

The reply statement appears here in the body of an emry, without a malching accept. As 

with explicit receipt. it serves to unblock the thread of control that requested the current operation. 

The producer shown above can be used with either version of the consumer, without modification. 

The bind statement serves to define an "appropriate" request. 

bind link-1ist to entfY-.Jist ; 

Each of the entries mentioned in a bind statement must have a begin ... end block. A subse

quent request on one of the mentioned link ends for one of the mentioned operations will create a 

new thread to execute the matching entry. Bindings can also be broken: 

unbind link.Jist from entry.Jist ; 

The ability to make and break bindings at run time is a powerful mechanism for access control, as 

we shall see below. 

Entries may be declared at any level of lexical nesting. Non-global data may therefore be 

shared by more than one thread of control. A newly-created thread begins execution in the nam

ing environment of the bind statement that pennitted its creation. The activation records accessi

ble at any given time will fonn a tree (a cactus stack [20]). with a separate thread corresponding to 

each leaf. From the point of view of anyone thread, the path back to the root looks like a nonnal 

stack. To simplify reclamation of stack frames. a thread is not allowed to leave a given scope until 

any descendant threads still active in that scope have completed. 

A reply statement can occur anywhere inside an entry; the thread that executes it continues 

to exist until it reaches the end of its code. Often a newly-created thread will allocate new data 



11 

structures, create some bindings for nested threads, send a reply to indicate that it is ready, and 

then continue to receive related requests throughout a lengthy conversation. The file server exam

ple in section IILD will contain such a thread for each of its open files. 

The threads of control within a single process do not execute in parallel: each process con

tinues to execute a single thread until it blocks.2 The process then takes up some other thread 

where it last left off. If no thread is runnable. then the process waits until one is. In a sense, the 

threads are coroutines, but the details of control transfer are hidden in the run-time support pack

age. 

Though the implicit-receipt version of the consumer will contain a thread for every invoca

tion of the transfer operation, it is likely that only one such thread will exist at a time. For a 

slightly more complicated example, consider the buffer process mentioned above. Interposed 

between a producer and consumer, the buffer serves to smooth out fluctuations in their relative 

rates of speed. 

process buffer (producer, consumer: link); 
const 

size = whatever; 
type 

data = whatever; 
var 

buf : array [1 .. size] of data; 
firstfree, lastfree : [1 .. size]; 

entry transfer (info: data); 
begin 

await firstfree <> lastfree; 
buf[firstfree] := info; 
firstfree := firstfree % size + 1; 
reply; 

end transfer; 

2 The circumstances under which a thread may block are defined in section lILA. 



va r info: data; 
begin 

firstfree := 1; 
lastfree := size; 
bind producer to transfer; . 
loop 

await lastfree % size + 1 <> firstfree; 
lastfree := lastfree % size + 1; 
info := buf[lastfree]; 
connect transfer (info D on consumer; 

end; 
end buffer. 

12 

Here the header of the transfer entry serves to define the structure of both incoming and 

outgoing transfer requests. The await statement blocks the current thread until the specified con

dition is true. There is no need to worry about simultaneous access to buf., firstfree. or lastfree. 

because the coroutine semantics guarantee that only one thread can execute at a time. 

A. Execution Details 

Every LYNX process begins with a single thread of control, executing the process's main 

begin ... end block. New threads are created in response to incoming requests on links bound to 

entries, and may also be created explicitly by executing a call (fork) statement in an existing 

thread. 

call entryname ( expr~ist I var~ist ) ; 

As with connect. the calling thread is blocked until the entry replies. 

Context switches between threads happen only 1) at connect. accept. reply. and call 

statements, 2) at await statements. and 3) when the current thread reaches the end of a scope in 

which descendant threads are still active or in which bindings exist that might cause the creation of 

descendant threads. 

A link end may be bound to more than one entry. The bindings need not be created at the 

same time. A bound end can even be used in subsequent accept statements. These provisions 

make it possible for separate threads to carry on independent conversations on the same link at 

more or less the same time. The startprocess statement, for example, might be implemented by 

sending a request to a process manager written in LYNX. Each such request might create a new 

thread of control within that manager. Separate threads could share the same link between the 

process manager and file server. Their requests to open and read executable files would interleave 

transparently. 



13 

When all of a process's threads are blocked, run-time support routines attempt to receive a 

message on any of the links for which there are outstanding accepts or bindings, or on which 

replies are expected for outstanding connects. Incoming replies can only have been sent in 

response to an outgoing request. Each such reply can therefore be delivered to an appropriate 

thread of control. Incoming replies, by contrast, can be unexpected or unwanted. Competing 

goals come into play. On the one hand, the implementation should detect (and reject) requests for 

invalid or bogus operations. On the other hand, it should distinguish such cases from requests for 

operations for which a server is not yet ready, but will be sometime "soon." LYNX addresses 

these concerns by defining a valid request to be one for which the server will be ready when all its 

threads are blocked. 

Incoming messages are not examined until all threads are blocked. The. operation name of a 

request is compared against those of the outstanding accepts and bindings for its link. If a 

match is found. then an appropriate thread can be made ready and execution can continue. If 

there are no accepts or bindings. then consideration of the message is postponed. If accepts or 

bindings exist but none of them match the request, then the message is discarded and an 

INVALID_OPERA nON exception is raised in the thread that executed the connect statement at 

the other end of the link. Exceptions are discussed in more detail in section 1lI.D. 

One consequence of the above rules is that there is no way in LYNX to receive a message 

asynchronously. Real-time device control cannot be programmed, nor can any algorithm in which 

incoming messages must interrupt the execution of lower-priority "background" computation. 

There are currently no plans to accommodate LYNX to hard. real-time constraints. For less 

demanding applications, a low-cost polling function can be used by a background thread to relin

quish control when higher-priority messages arrive. The built-in function idle returns false when

ever the communication for which another thread is waiting has completed. Otherwise it returns 

true. We have used the idle function in a distributed game-playing program based on Fishburn's 

algorithms for alpha-beta search [17]. Threads that are evaluating pieces of the game tree execute 

the statement 

await idle; 

at the top of an outer loop. Messages containing updated alpha-beta values (for better game-tree 

. pruning) are therefore received within a reasonable amount of time. Evaluation of idle is fast 

enough that performance does not suffer. 



14 

B. Link Movement 

Much of the power of LYNX derives from the ability to move the ends of links. Language 

semantics specify that every link end is accessible to only one process at a time. If a data structure 

containing one or more link variables is enclosed in a message, then the transmission of that mes

sage will have have the side effect of moving the referenced link ends from the sending process to 

the receiver. The semantics of this feature are somewhat subtle. Suppose process A has a link 

variable X that accesses the "green" end of link L. Now suppose A sends X to process B, which 

receives it into link variable Y. Once the transfer has occurred, Y can be used to access the green 

end of L, but X is a dangling reference. Loosely speaking, the sender of a link variable loses access 

to the end of the link involved. 

We have seen (in the producer/consumer example) how moving links are used to establish 

connections between newly-created processes. They can be used at other times as well. A link 

between a server and a client can be passed on to a new client when the first one doesn't need it 

any more. It can also be passed on to a new server (functionally equivalent to the old one, presum

ably) in order to balance work load or otherwise improve performance. A name server process can 

even keep a database of server names and links. Clients in need of a particular service can ask the 

name server for a link on which to request that service. 

To facilitate use of a name server. we have established a convention for introducing a new 

client to a server that can support more than one client at a time. Each such server binds its 

name-server link to a newclient entry. 

entry newclient (client: link); 

When asked for a link to, say, a mail server, the name server creates a new link, passes one end to 

the mail server in a request for the newclient operation, and returns the othercnd to the client. In 

the newclient entry, the mail server binds the newly-received client link to some "standard" set of 

entries. 

C Access Control 

Unlike most distributed languages, LYNX allows a server to control precisely which clients 

have access to the operations it provides. By making and breaking bindings at run time, a process 

can enforce a simple and highly effective form of access control. Consider, for example, the 

famous readers/writers problem [11]. A server controls a resource that behaves like a large collec

tion of data. Two operations are provided: reading and writing individual data items. More than 

one client may read at once, but for the sake of consistency a writer requires exclusive access to the 

entire data structure. Each client performs its operations in the course of read or read/write 



15 

sessions. [t begins a session by requesting permission to read or write. It ends a session by inform

ing the server that it is through. Each process is guaranteed that no one else will perform a write 

operation while it is in the middle of its current session. Each writer is also guaranteed that no one 

else will perform a read operation. Most imponant, the decision as to which data to read or write 

is allowed to depend on the results of previous read operations: a client need not know exactly 

what it wants to read or write at the time it begins its session. 

Here is a solution in LYi'>.X: 

process readwrite (firstclient : link); 

var readers, writers: integer; -- writers is always 0 or 1. 

entry doread; -- should have arguments 
begin 

-- whatever; 
end doread; 

entry dowrite: -- should have arguments 
begin 

-- whatever; 
end dowrite; 

entry startread: forward: entry startwrite: forward: 
entry endread; forward; entry endwrite; forward: 

ent ry start read : 
begin 

await writers = 0; 
readers +;= 1: 
unbind curlink from startwrite, startread; 
bind curlink to doread. endread; 
reply: 

end startread: 

ent ry startwrite: 
begin 

await readers = 0 and writers = 0; 
writers +:= 1; 
unbind curlink from start read , startwrite; 
bind curlink to doread, dowrite, endwrite: 
reply; 

end startwrite; 

entry endread; 
begin 

unbind curlink from doread, endread; 
bind curlink to startread, startwrite: 
readers -:= 1; 
reply; 

end endread; 



ent ry endwrite; 
begin 

unbind curlink from doread, dowrite, endwrite; 
bind curlink to startread, startwrite; 
writers -:= 1; 
reply; 

end endwrite; 

entry newclient (client: link): 
begin 

reply; 
bind client to newclient, startread, startwrite; 

end newclient; 

begin -- initialization 
readers := 0; writers := 0; 
call newclient (firstclient I); 

end readwrite. 

16 

To simplify presentation, we have not worried in this example about starvation of either 

readers or writers. A more careful solution would require some 30 lines of additional code (and 

would in almost any language). Global variables would keep track of how many readers and writ

ers were waiting to get access. Await statements would be modified to take these variables into 

account. Startread would block when there were waiting writers. Endwrite would unblock wait

ing readers first. 

By making and breaking bindings, the server is able to ensure that clients are physically 

unable to perform operations for which they have not obtained authorization. The built-in func

tion curlink returns a reference to the link on which the request message arrived for the closest 

lexically-enclosing entry (in this case the current entry). From the point of view of a reader. a tYPI" 

cal session would look something like this: 

connect startread on RWlink; 
-- series of (possibly interrelated) doread requests 
connect endread on RWlink; 

A read/write session looks like this: 

connect startwrite on RWlink; 
-- series of (possibly interrelated) doread and dowrite requests 
connect endwrite on RWlink; 

Any client that requests read or write operations without obtaining permission. or that requests a 

startread. startwrite, endread. or end write operation out of order will feel an 

INV ALID_OPERATION exception. 

The newclient convention has been used in this example. We have written the server to 

take a single initial argument: a link to a single client. Additional clients are introduced by 



17 

invocations of newclient over links from existing clients. We have used the call statement to 

establish the same bindings for the initial client as are established for late-comers. 

D. Exceptions 

LYNX provides an exception handling mechanism to 1) cope with exceptional conditions 

that arise in the course of message passing. and 2) allow one thread to interrupt another. Excep

tion handlers may be attached to any begin ... end block. Such blocks comprise the bodies of 

procedures, entries, processes, and modules. and may also be inserted anywhere a statement is 

allowed. The syntax is 

begin 

when exception-'ist do 

when exception-'ist do 

end; 

A handler (when clause) is executed in place of the portion of its begin ... end block that had 

yet to be executed when the exception occurred. 

Built-in exceptions are provided for a number of conditions: 

• Failure of the operation name of a message to match an accept or binding on the far end of 

the link. 

• Type clash between the sender and recei"er of a message. 

• Termination of a receiving thread that has not yet replied. 

• Destruction of a link on which a thread is trying to send or receive. 

All of a process's links are destroyed when it terminates or crashes. Additional exceptions can be 

defined by the programmer. 

A built-in exception is raised in the current thread of control when one of the above condi

tions prevents that thread's normal continuation. Both built-in and user-defined exceptions can 

also appear in an explicit raise statement. In either case, the search for an appropriate handler 

begins in the current block. If that block has no handler. the exception is raised in the next enclos

ing block, or in the previous scope on the dynamic chain if the block is a procedure or function. 

Propagation halts at the scope in which the thread began. If the exception is not handled at that 

level, then the thread is aborted. If the propagation of an exception escapes the scope of an 

accept statement, or if an exception is not handled at the outermost scope of an entry that has 

not yet replied, then an exception is raised in the appropriate thread in the requesting process as 



18 

well. If the propagation escapes a scope in which nested threads are still active, those threads are 

aboned recursively. 

In addition to the raise statement. LYNX provides an announce statement to allow one 

thread to interrupt another. An announced exception is felt by all and only those threads that 

have declared a handler for it in some scope on their current dynamic chain. (This mayor may 

not include the current thread.) Since handlers refer to them by name. announced exceptions 

must be declared in a scope visible to all the threads that use them. The coroutine semantics 

guarantee that threads feel exceptions only when blocked. 

Announced exceptions are useful for protocols in which one thread may disco\ er that the 

communication for which another thread is waiting is no longer appropriate (or possible). One 

example is found in a stream-based file server. The code below sketches the fonn that such a 

server might take. 

1 process fileserver (switchboard: link); 
2 type string = whatever; bytes = whatever; 

3 entry open (filename: string; readflag, writeflag. seekflag : Boolean) : link; 
4 va r filelnk : link; readptr, writeptr : integer; 
5 exception seeking; 

6 procedu re put (data: bytes; filename: string; writeptr : integer); 
7 external; 
8 function get (filename: string; readptr : integer) : bytes; external; 
9 function available (filename: string) : Boolean; exte mal; 

10 ent ry writeseek (newptr : integer): 
11 begin 
12 writeptr := newptr; reply; 
13 end writeseek; 

14 entry stream (data: bytes): 
15 begin 
16 put (data, filename, writeptr); writeptr +:= 1; reply; 
17 end stream; 

18 entry read seek (newptr : integer); 
19 begin 
20 readptr := newptr; announce seeking; reply; 
21 end readseek; 

22 begin -- open 
23 if available (filename) then 
24 reply (newlink (filelnk)); -- release client 
25 readptr := 0; writeptr := 0; 



26 if writeflag then 
27 if seekflag then bind filelnk to writeseek; end; 
28 bind filelnk to stream; 
29 end; 

30 if readflag then 
31 if seekflag then bind filelnk to readseek; end; 
32 loop 
33 begin 
34 connect stream (get (filename, readptr) I ) on filelnk; 
35 readptr +:= 1; 
36 when seeking do 
37 -- nothing; try again at new location 
38 when REMOT~DESTROYED do 
39 exit; -- leave loop 
40 end; 
41 end; -- loop 
42 end; -- if readflag 
43 else -- not available 
44 reply (nolink); -- release client 
45 end; 
46 -- control will not leave 'open' until nested entries have died 
47 end open; 

48 entry newclient (client: link); 
49 begin 
50 bind client to newclient, open; reply; 
51 end newclient: 

52 begin -- main 
53 bind switchboard to newclient: 
54 end fileserver. 

19 

Like the readwrite server. the file server begins with a single initial link. Here we have 

assumed that the link is attached to a name server (the switchboard), and not to an ordinary 

client. When the switchboard sends the file server a link to a new client (line 48), the file server 

binds that link to an entry procedure for each of the services it provides. One of those entries, for 

opening files, is shown in this example (lines 3-47). 

Open files are represented by links. Within the server, each file link is managed by a 

separate thread of control. New threads are created in response to open requests. After verifying 

that its physical file exists (line 23), each thread creates a new link (line 24) and returns one end to 

its client. It then binds the other end to appropriate sub-entries. Among these sub-entries, context 

is maintained automatically from one request to the next. As suggested by Black [5], bulk data 

transfers are initiated by the producer (with connect) and accepted by the consumer. As we 

have seen, this asymmetry allows the transparent insertion of an intermediate filter or buffer. 

When a file is opened for writing the server plays the role of consumer. When a file is opened for 



20 

reading the server plays the role of producer. Seek requests are handled by raising an exception 

(line 20. caught at line 36) in the file-server thread that is attempting to send data out over the link. 

Clients close their files by destroying the corresponding links.3 A thread that tries to use a 

destroyed link feels a REMOTE_DESTROYED exception (caught at line 38 in the file server). 

Bindings for a destroyed link are broken automatically. These mechanisms suffice in this example 

to clean up me context for a file. 

IV. Discussion 

Every language is heavily influenced by the perspective of its designer(s). Existing distri

buted languages grew out of efforts to generalize sequential languages. first to multiple processes. 

then to multiple processors. LYNX evolved in the opposite direction. It began with the distri

buted processes and worked to increase their effectiveness through high-level language support. 

Aiming for elegance, previous languages attempted to invent a small set of fundamental con-

. cepts. Many of their decisions would be inappropriate for the style of programming to which we 

had grown accustomed under Charlotte. Resources, for example. are often confused with either 

processes or operations. CSP and EPL support remote naming at the level of an entire process 

only. They fail to recognize that a process may implement an arbitrary number of resources. ~IL 

and SR (and in some sense Ada. Argus. and Cedar as well) provide capability variables that permit 

naming at the level of individual operations. but since a resource may support more than one 

operation, these capabilities must be packaged up in records. Only SR allows a server to provide 

separate instances of the same operation for separate resources.4 Similar confusion between 

processes and threads has caused designers to forbid the existence of multiple threads (as in CSP 

and NIL), or to specify that threads may execute in parallel (as in Ada, Argus, Cedar, EPL. Linda. 

and SR). The first extreme complicates the management of context; the second requires special 

mechanisms to protect shared data. 

That existing distributed languages should be inappropriate for the server programs of a par

ticular operating system should not be especially surprising. These languages have, for the most 

part, been designed to address the following question: "Here is an important application; how can 

we run it on multiple machines?" LYNX attempts to address the complementary question: "Here 

are some programs already in use on multiple machines; how can we impose some structure on 

3 Destroy is a built-in procedure that takes a single parameter of type link. Variables accessing either end of a des· 
troyed link become dangling references. 

4 N. B.: SR terminology differs from that used here. What we call a process is called a resource in SR. What we call 
a thread is called a process. Our notion of resource has no direct analog. 



21 

their interactions?" 

A distributed operating system like Charlotte (or like any of the others in the references) can 

be used for embedded applications. It can also be used for a dynamically-changing mix of smaller 

applications, in the style of conventional time-sharing. LYNX is based on the assumption that 

largely-unrelated processes may need to communicate from time to time, and that high-level 

language support can make that communication both safer and more convenient. 

The notion of process independence is to a large extent the legacy of UNIX [36]. It is cer

tainly not the only way to go about building software. but it is one that has proven highly success

ful for sequential computation and that merits consideration for parallel environments as well. 

Much of the power and popularity of UNIX derives from the ability to piece together applications 

from a large collection of small but general tools. LYNX maintains this level of flexibility while 

providing mechanisms to manage the extra complexity of a parallel environment. Chief among 

these mechanisms are the link and the thread of control. Links support interaction between 

processes; threads of control support management of context within processes. 

A. Links 

Links are a tool for representing distributed resources. A resource is a fundamental concept. 

It is an abstraction. defined by the semantics of its external interface and thought of conceptually as 

a single entity. The definition of a resource is entirely in the hands of the programmer who creates 

it. Examples of resources include files. query processors. physical devices, data streams, and avail

able blocks of memory. The interface to a resource may include an arbitrary number of remote 

operations. An open file. for example. may be defined by the semantics of read, write, seek, and 

close operations. 

Recent sequential languages have provided explicit support for data abstraction. Modula 

modules [47], Ada packages [43], and Clu clusters [26] are obvious examples. Sequential mechan

isms for abstraction, however. do not generalize easily to the distributed case. They are compli

cated by the need to share resources among more than one loosely-coupled process. Several issues 

are involved: 

• Reconfiguration 

Resources move. It must be possible to pass a resource from one process to another and to 

change the implementation of a resource without the knowledge of the processes that use it. 

• Naming 

A resource needs a single name that is independent of its implementation. Process names 

cannot be used because a single process may implement an arbitrary number of resources. 



22 

Operation names cannot be used because a single resource may provide an arbitrary number 

of operations in its external interface. 

• Type Checking 

Operations on resources are at least as complicated as procedure calls. In fact. since resources 

change location at run time, their operations are as complicated as calls to lomzal procedures. 

Type checking is crucial. It helps to ensure that a resource and its users do not misinterpret 

one another. 

• Protection 

Even if processes interpret each other correctly, they still cannot trust each other. Neither the 

process that implements a resource nor the process that uses it can afford to be damaged by 

the other's incorrect behavior. 

In light of these issues, links appear ideally suited to representing distributed resources. As 

first-class objects they are easily created, destroyed, stored in data structures, passed to subroutines. 

or moved from one process to another. Their names are independent both of the processes that 

implement them and the operations they support. A client may hold a link to one of a community 

of servers. The servers may cooperate to implement a resource. They may pass their end of the 

client's link around among themselves in order to balance their workload or to connect the client to 

the member of their group most appropriate for serving its requests at a particular point in time. 

The client need not even be aware of such goings on. 

Names for links are uniJomz in the sense that there is no need to differentiate. as one must 

in Ada. for example, between communication paths that are statically declared and those that are 

accessed through pointers. Moreover, links are one-one paths; a server is free to choose the clients 

with which it is willing to communicate at any particular time. It can consider clients as a group 

by gathering their links together in a set and by binding them to the same entries. It is never 

forced, however, to accept a request from an arbitrary source that happens to know its address. 

Dynamic binding of links to entries is a simple but effective means of providing protection. 

As demonstrated in the readers/writers example of section III.e, bindings can be used to control 

the access of particular clients to particular operationS. With many-one paths no such control is 

possible. Ada, for example, can only enforce a solution to the readers/writers problem by resorting 

to a system of keys [46].5 

5 The "solution" in reference 22 (page 11:11) limits each process to one read or write operation per protected session. 
[t does not generalize to applications in which processes gain access, perform a series of operations, and then release the 
resource. 



23 

The protection afforded by links is not. of course. complete. In panicular, though a process 

can make or break bindings on a link-by-link basis. it has no way of knowing which process is 

attached to the far end of any link. It is not even informed when an end moves. In one sense, a 

link is like a capability: it allows its holder to request operations on a resource. In another sense. it 

is a coarser mechanism that requires access lists for fine-grained protection. The rights to specific 

operations are controlled by servers through bindings: they are not a propeny of links. Links also 

differ from capabilities in that they can never be copied and can always be moved. 

Protection could be increased by distinguishing between the server end and the client end of 

a link. The inability of a server to tell when far ends move is after all a direct consequence of link 

symmetry. If links were asymmetric one could allow the server ends to move without notice. yet 

require permission (or at least provide notification) when client ends move. Such a scheme has 

several disadvantages. Foremost among them is its complexity. Two different types of link vari

able would be required, one to access each type of end. Connect would require a link to a 

server. Accept. bind. and unbind would require a link to a client. Newlink would return one 

link of each type. Destroy would take an argument of either type. The semantics of link move

ment would depend on which end was enclosed; special rules would apply to the movement of 

ends attached to clients. Finally. communication between peers (who often make requests of each 

other) would suddenly require pairs of links. one for each direction. 

Symmetric links strike a compromise between absolute protection on the one hand and sim

plicity and flexibility on the other. They provide a process with complete run-time control over its 

connections to the rest of the world. but limit its knowledge about the world to what it hears in 

messages. A process can confound its peers by restricting the types of requests it is willing [0 

accept, but the consequences are far from catastrophic. Exceptions are the most serious result. and 

exceptions can be caught. Even an uncaught exception kills only the thread that ignores it.6 

To a large extent. links are an exercise in late binding. Since the links in communication 

statements are variables. requests are not bound to communication paths until the moment they are 

sent Since the far end of a link can be moved. requests are not bound to receiving processes until 

the moment they are received. Since the set of valid operations depends on outstanding bindings 

and accepts. requests are not bound to receiving threads of control until after they have been 

examined by the receiving process. Only after a thread has been chosen can a request be bound to 

the types it must contain. Checks must be performed on a message-by-message basis? 

6 Admittedly, a malicious process can serve requests and provide erroneous results. No language can prevent it from 
doing so. 

7 We have used a technique based on hashing to minimize the cost of run-time checks [38). The expense per message 
is less than 10 microseconds. 



24 

Several existing languages provide late binding for communication paths. Ada. Argus. 

Cedar, and SR provide variables that hold a reference to a process. NIL and SR provide variables 

that hold a reference to a single operation. Each of these languages allows references to be passed 

in messages. Each checks its types at compile time. To permit such checking, each assigns types to 

the variables that access. communication paths. Variables of different types have incompatible 

values. By contrast. the dynamic type checking of LYNX has two major advantages: 

(1) A process can hold a large number of links without being aware of the types of messages they 

may eventually carry. A name server, for example, can keep a link to each registered process. 

even though many such processes will have been created long after the name server was com

piled and placed in operation. 

(2) A process can use the same link for different types of messages at different times, or even at 

the same time. A link can change roles dynamically without forcing a server to deal explicitly 

with inappropriate requests. 

LYNX type checking also differs from that of previous languages in its use of structural 

equivalence ([191, p. 92). The alternative. name equivalence. requires the compiler to maintain a 

global name space for types. Two specifically distributed concerns motivated the adoption of struc

tural equivalence for LYNX: 

(1) A global name space requires a substantial amount of bookkeeping, particularly if it is to be 

maintained on more than one machine. While the task is certainly not impossible. the relative 

scarcity of compilers that enforce name equivalence across compilation units suggests that it is 

not trivial, either. 

(2) Compilers that do enforce name equivalence across compilation units usually do so by affixing 

time stamps to files of declarations. A change or addition to one declaration in a file appears 

to modify the others. A global name space for distributed programs can be expected to 

devote a file to the interface for each distributed resource. Mechanisms can be devised to 

allow simple extensions to an interface. but certain enhancements will inevitably invalidate all 

the users of a resource. In a tightly-coupled program, enhancements to one compilation unit 

may force the unnecessary recompilation of others. In a loosely-coupled system. enhance

ments to a process like the file server may force the recompilation of every program in 

existence. 

Dynamic checking has been used in conjunction with a global name space for types in EPL. 

The Eden designers call this method abstract typing [6]. The compiler verifies that each request for 

a remote operation agrees with the declaration of that operation in the name space. Only when the 

request occurs at run time. however. does EPL check to see that the requestor and provider of an 



25 

operation were compiled with the same declaration. LYNX differs from this approach only in that 

it uses the structure of message parameters, rather than the globally-unique location of a declara

tion. as the basis of type compatibility. Such errors as two requests in the same process for the 

same operation but with different parameter types are still caught at compile time. 

Probably the most serious problem with run-time checking is that programming errors that 

would have been caught at compile time in other languages may not be noticed until significantly 

later in LYNX or EPL. We have accepted this cost in LYNX as the price of flexibility. As a prac

tical matter. we tend to follow the Eden style, compiling individual processes on the basis of shared 

files of declarations. Though type clashes can in principle be announced at run time, it seldom 

happens in practice. 

A second, serious cost of the LYNX approach to types is the less-than-perfect checking 

implied by structural equivalence. Variables with the same arrangement of components will be 

accepted as compatible even if the abstract meanings of those components are completely unre

lated. This cost. too, we have been willing to accept. with the understanding that no type system, 

no matter how exacting, will ensure that messages are meaningful. The goal of type checking is to 

reduce the likelihood of data misinterpretation, not to eliminate it altogether. 

B. Threads of Control 

Even on a single machine many processes can most easily be written as a collection of 

largely independent threads of control. Language designers have recognized this fact for many 

years. Such relatively early languages as Algol-68, PUt and SIMULA allow more than one thread 

to operate inside a single module and share that module's data. The threads are designed to 

operate in simulated parallel. that is. as If they were running simultaneously on separate processors 

with access to a common store. 

In Argus, Cedar. EPL. and SR, a resource is an isolated module. Argus calls such modules 

guardians; Cedar calls them modules. EPL calls them objects. and SR calls them resources. Each 

module is inhabited by one or more processes. Semantics specify that the processes execute in 

parallel. but implementation considerations prevent their assignment to machines that share no 

memory. In effect. the "processes" of these other languages are the threads of control of LYNX. 

Guardians. modules. objects. and resources correspond to LYNX processes. 

Ada allows data to be shared by arbitrary processes (tasks) that execute in parallel. It has no 

notion of modules that are inherently disjoint. In the absence of a shared-memory architecture. an 

Ada implementation must either simulate shared data across machine boundaries or else specify 

that only processes that share no data can be placed on separate machines. The former option is 



26 

facilitated by semantics that require consistency for shared data only when tasks are synchronized. 

While simulated parallelism may be aesthetically pleasing, it does not reflect the nature of 

most underlying hardware. On a single machine. only one thread of control can execute at a time. 

There is no inherent need for synchronization of simple operations on shared data. By pretending 

that separate threads can execute in parallel. language designers introduce race conditions that 

should not even exist: they force the programmer to provide explicit synchronization for even the 

most basic operations. 

In EPL and Cedar, monitors and semaphores are used to protect shared data. These 

mechanisms are provided in addition to those already needed for inter-module interaction. They 

lead to two very different forms of synchronization in almost every program. 

In Ada. Linda. and SR. processes with access to common data synchronize their operations 

with the same message-passing primitives used for inter-module interaction. Small-grain protection 

of simple variables is therefore rather costly. 

Argus sidesteps the whole question of concurrent access with a powerful (and complicated) 

transaction mechanism that provides the appearance of serial execution for even large-grain opera

tions. Programmers have complete control over the exact meaning of atomicity for individual data 

types [451. Such an approach may prove ideal for the on-line transaction systems that Argus is 

intended to support. It is not appropriate for the comparatively low-level operations of operating 

system servers. Servers might choose to implement a transaction mechanism for processes that want 

one. They must, however, be prepared to interact with arbitrary clients. In an environment where 

transactions are not a fundamental concept. servers cannot afford to rely on transactions them

selves. 

A much more attractive approach to intra-module concurrency can be seen in the semantics 

of Brinch Hansen's Distributed Processes [71. Instead of pretending that entry procedures can exe

cute concurrently, the DP proposal provides for each module to contain a single process. The pro

cess jumps back and forth between its initialization code and the various entry procedures only 

when blocked by a Boolean guard. Race conditions are impossible. The comparatively simple 

await statement suffices to order the executions of entry procedures. There is no need for moni

tors, semaphores, atomic data, or expensive message passing. Similar semantics are provided by 

the Amoeba distributed operating system [30], where each process is composed of a set of tasks 

that share data but execute in mutual exclusion. 

An important goal of LYNX is to provide safe and, convenient mechanisms that accurately 

reflect the structure of the underlying system. In keeping with this goal, LYNX adopts the seman

tics of entry procedures in Distributed Processes, with six extensions: 



(1) Requests can be received explicitly (with accept), as well as implicitly (through bindings). 

(2) Entry procedures can reply before tenninating. 

(3) New threads of control can be created locally, as well as remotely. 

(4) Blocked threads can be interrupted by exceptions. 

(5) A process can accept external requests while waiting for the reply to a request of its own. 

(6) Modules. procedures. and entries can nest without restriction. 

27 

The last extension is, perhaps, the most controversial. As in Ada, it allows the sharing of 

non-local, non-global data. Techniques for managing the necessary tree of activation records are 

well understood [20]. Activation records for any subroutine that might not return before the next 

context switch must be allocated from a heap. Allocators for this purpose have been built 

before [25], with excellent perfonnance. 

Admittedly, the mutual exclusion of threads in LYNX prevents race conditions only 

between context switches. In effect, LYNX code consists of a series of critical sections, separated 

by blocking statements. Since context switches can occur inside subroutines, it is not even immedi

ately obvious where those blocking statements are. The compiler can be expected to help to some 

extent by producing listings in which each (potentially) blocking statement is marked. Experience 

to date has not uncovered a serious need for inter-thread synchronization across blocking state

ments. For those cases that do arise. a simple Boolean variable in an await statement perfonns 

the work of a semaphore. 

C Explicit and Implicit lWessage Receipt 

LYNX provides two very different means of receiving messages: the accept statement and 

the mechanism of bindings. The fonner allows messages to be received explicitly: the latter allows 

them to be received implicitly. Rationale for providing both options is discussed in detail else

where [37]. The gist of the argument is that each approach has applications for which it is 

appropriate and others for which it is both awkward and confusing. 

Implicit receipt reflects the externally-driven nature of most servers. It recognizes that many 

processes are essentially passive, sitting idle until called from outside. With implicit receipt, the 

programmer can allow servers to converse with arbitrary numbers of clients without guessing how 

many threads to allocate ahead of time and without replicating code in every server to create new 

threads dynamically. 

Explicit receipt is most useful for the exchange of messages between active, cooperating 

peers. Its use was demonstrated by the producer and consumer of section III. 



28 

Some existing languages, notably StarMod [9,10], already provide both explicit and implicit 

receipt. LYNX goes one step farther by allowing a process to decide at run time which form(s) to 

use when, and on which links. 

D. Experience 

An implementation of LYNX for Charlotte has been in use since 1984. It runs on the 

University of Wisconsin's Crystal multicomputer [12]. A second, paper design was created for the 

SODA distributed operating system designed by Jonathan Kepecs [24]. A third implementation is 

now in use at the University of Rochester, where it runs on the BBN Butterfly Parallel Proces

sor [3]. Details can be found in reference 39. 

At Wisconsin, the standard Charlotte servers were originally written in Modula ([13], 

sequential features only) with direct calls to the IPC primitives of the kernel. Many of those 

servers have now been written in L'r'NX. Several conclusions can be drawn: 

• LYNX programs are considerably easier to write than their sequential counterparts. The 

Modula fileserver was written and re-written several times over a period of about two years. 

It was a constant source of trouble. The LYNX filescrver was written in two weeks. It would 

have required even less time had the L)'NX run-time package already been debugged. 

• The source for LYNX programs is considerably shoner than equivalent sequential code. The 

new fileserver is just over 300 lines long. The original is just under 1000 lines.s 

• LYNX programs are considerably easier to read than their sequential counterpans. While this 

is a highly subjective measure, it appears to reflect the consensus of programmers who have 

examined both versions. 

• LYNX can be implemented at acceptable cost. For Charlotte, the overhead of the language 

run-time package added less than ten percent to the transmission times for messages (while 

simultaneously adding a significant amount of functionality). On the Butterfly, simple remote 

operations complete in just over two milliseconds. Code tuning and protocol optimizations 

now under development are likely to improve this figure by 30 to 40%. In several cases, re

implementation of a server in LYNX has led to significantly faster code, because programmers 

are no longer tempted to simplify their task by waiting for the completion of individual com

munication requests. 

8 Object code from L Y!'o}( tends to be about 50% larger than its sequential counterpan. The difference can be attri· 
buted to default exception handlers, descnptive information for entries and messages, Initialization, management of the en
vironment tree. and run-time checks on subranges, sets, case statements, and function calls. In addition. every L Y:-"'X pro
gram is linked to a substantial amount of run-time suppon code: the message dispatcher. communication routines. and code 
to manage exceptions and threads. 



29 

V. Conclusion 

In comparison to a sequential language that perfonns communication through library rou-

tines or through direct calls to operating-system primitives, LYNX supports 

- direct use of program variables in communication statements 
- secure type checking 
- thorough error checking, with exception handlers outside 

the nonnal flow of control 
- automatic management of concurrent conversations 

In comparison to previous distributed languages, LYNX obtains these benefits without sacrificing 

the flexibility needed for loosely-coupled applications. LYNX supports 

- dynamic binding of links to processes 
- dynamic binding of types to links 
- abstraction of distributed resources 
- protection from errors in remote processes 

In addition, LYNX reflects the structure of most distributed hardware by differentiating between 

processes, which execute in parallel and pass messages, and threads of control. which share memory 

and execute in mutual exclusion. 

Even for the pieces of a single distributed program, LYNX offers some advantages over 

most previous proposals. By providing both explicit and implicit receipt, LYNX admits a wide 

range of communication styles. By allowing dynamic binding of links to entry procedures. LYNX 

provides access control for such applications as the readers/writers problem. By integrating impli

cit receipt with the creation of threads. LYNX supports communication between processes and 

management of context within processes with an economy of syntax. By relying on structural type 

equivalence for messages, LYNX avoids unnecessary recompilations when definitions change. 

Support for tightly-coupled programs, however, is not central to the goals of LYNX. The 

real significance of the language is in areas outside the focus of previous research. LYNX supports 

applications for which other languages were never intended. It adapts the advantages of a high

level language to processes designed in nearly total isolation. 

Ongoing work with LYNX is focused on two fronts: mechanisms and implementation. For 

the fonner, researchers at both Wisconsin and Rochester are working to evaluate the language 

through practical experience [15, 16]. Several enhancements have already been suggested: 

• A cobegin construct may be offered as an additional means of creating new threads of control. 

Such a construct would, for example, allow a thread to request operations on two different 

links when order is unimportant. As currently defined, LYNX requires the thread to specify 

an arbitrary order, or else create subthreads through calls to entries that are separated lexically 

from the principal flow of control. 



30 

• For the Butterfly, mechanisms may be added to take more direct advantage of the shared

memory architecture. It is currently possible for two processes to obtain pointers (from the 

operating system) to a shared block of Butterfly memory. Communication over links can then 

be used to synchronize access. Changes to the language might support this sharing in a more 

safe and structured way. Alternatively, the semantics of mutual exclusion of threads might be 

relaxed in favor of parallel execution. Such a change would represent a significant departure 

from the philosophy of section IV.B, but might be of use in a number of emerging hardware 

configurations. including networks of multiprocessor workstations. Finally. it might be possi

ble to design a compiler that would permit non-interfering threads to execute in parallel 

without changing the language semantics. It is unclear exactly how much parallelism could be 

exploited in this fashion. The prospect is reminiscent of past attempts to discover parallelism 

in ordinary sequential languages [32]. and may be ill-advised. 

• Farther down the road, the entire notion of links might be removed from the language itself 

and placed under user control. There is some reason to be skeptical of any "systems" 

language that requires "a fixed. hidden. and large so-called run-time package [48]." With suit

able facilities for data and control abstraction, such IPC facilities as connect. accept, and 

bind might be provided by library routines. We have been pleased by the effectiveness of 

links, but have no illusions that they are the only useful abstraction for distributed computing. 

In the context of work on the Butterfly we have begun to investigate the extent to which a 

wide variety of programming models. from pure shared memory through connection-less mes

sage passing, might be made to coexist within a single. common framework for interprocess 

interaction. Such a goal would be facilitated by a language in which users could choose the 

model most appropriate for the application at hand. 

The research on implementation techniques is panicularly concerned with the speed of mes

sage passing. We are experimenting with novel data structures and algorithms to enhance the 

efficiency of common communication patterns. In addition. we are exploring the relationship 

between efficiency and the level of abstraction of kernel primitives. Preliminary comparisons 

among the Charlotte/Crystal, SODA. and Butterfly implementations suggest that efficiency is best 

achieved with a comparatively low-level interface between the language and the operating sys

tem [39]. Through extensive profiling and examination of code paths, we hope to obtain a detailed 

analysis of message overhead and of the inherent limits on its speed. 

The design of LYNX was an exercise in practical problem-solving. The language must 

therefore be judged on the basis of the solutions it provides. Only long-term experience can sup

port a final verdict. New problems will undoubtedly arise and will in tum provide the impetus for 

additional research. At present. however. the evidence suggests that LYNX is a success. 



31 

Acknowledgments 

Much of the research described in this article was conducted in the course of doctoral stu

dies at the University of Wisconsin under the supervision of Associate Professor Raphael Finkel. 

Critical comments from the referees led to significant improvements over an earlier draft 

References 

[1] G. R. Andrews, 'The Distributed Programming Language SR - Mechanisms. Design and 

Implementation." Software - Practice and Experience, vol. 12, pp. 719-753. 1982. 

[2] G. R. Andrews and R. A. Olsson, "The Evolution of the SR La'nguage:' TR 85-22, 

Department of Computer Science, The University of Arizona, 14 October 1985. 

[3] BBN Laboratories, "Butterfty® Parallel Processor Overview," Report #6148, Version 1, 

Cambridge. MA. 6 March 1986. 

[4] A. D. Birrell and B. 1. Nelson, "Implementing Remote Procedure Calls," ACM TOCS, vol. 

2. no. L pp. 39-59, February 1984. Originally presented at the Ninth AC\-f Symposium on 

Operating Systems Principles, 10-13 October 1983. 

[5] A. P. Black. "An Asymmetric Stream Communication System," Proceedings of the Ninth 

ACM Symposium on Operating Systems Principles. pp. 4-10, 10-13 October 1983. In ACM 

Operating Systems Review. vol. 17. no. 5. 

[6] A. P. Black, "Supporting Distributed Applications: Experience with Eden." Proceedings of 

the Tenth AC M Symposium on Operaling Systems Principles, pp. 181-193, 1-4 December 

1985. 

[7] P. Brinch Hansen, "Distributed Processes: A Concurrent Programming Concept," CACM. 

vol. 21, no. 11, pp. 934-941, November 1978. 

[8] D. R. Cheriton and W. Zwaenepoel, "The Distributed V Kernel and its Performance for 

Diskless Workstations," Proceedings of the Ninth ACM Symposium on Operating Syslems 

Principles, pp. 129-140, 10-13 October 1983. In ACM Operating Systems Review. vol. 17, 

no. 5. 



32 

[9] R. P. Cook. "*Mod - A Language for Distributed Programming." IEEE Transactions on 

Software Engineering. vol. SE-6. no. 6, pp. 563-571. November 1980. 

[10] R. P. Cook. "The StarMod Distributed Programming System." IEEE COMPCON Fall 

1980. pp. 729-735. September 1980. 

[11] P. 1. Counois. F. Heymans. and D. L. Parnas. "Concurrent Control with 'Readers' and 

'Writers'." CACM. vol. 14. no. 10, pp. 667-668, October 1971. 

[12] D. 1. DeWitt, R. Finkel, and M. Solomon. "The CRYSTAL Multicomputer: Design and 

Implementation Experience," Computer Sciences Technical Repon # 553, University of 

Wisconsin - Madison, September 1984. 

[l3] R. Finkel, R. Cook, D. DeWitt. N. Hall. and L. Landweber. "Wisconsin \.1odula: Pan III 

of the First Repon on the Crystal Project." Compu ter Sciences Technical Repon # 501. 

University of Wisconsin - Madison. April 1983. 

[14] R. Finkel. M. Solomon. D. DeWitt and L. Landweber. "The Charlotte Distributed 

Operating System: Part IV of the First Repon on the Crystal Project," Computer Sciences 

Technical Repon # 502, University of Wisconsin - Madison, October 1983. 

[15] R. Finkel, A. P. Anantharaman, S. Dasgupta, T. S. Goradia, P. Kaikini, c.-P. Ng, M. Sub

barao, G. A. Venkatesh. S. Venna, and K. A. Vora, "Experience with Crystal, Charlotte. 

and LYNX." Computer Sciences Technical Repon # 630. University of Wisconsin -

Madison. February 1986. 

[16] R. Finkel, B. Barzideh, C. W. Bhide, M.-O. Lam, D. Nelson. R. Polisetty, S. Rajaraman, I. 

Steinberg, and G. A. Venkatesh, "Experience with Crystal, Charlotte. and LYNX: Second 

Repon," Computer Sciences Technical Repon #649, University of Wisconsin - Madison. 

July 1986. 

[17] 1. P. Fishburn, "An Analysis of Speedup in Parallel Algorithms," Ph. D. thesis, Computer 

Sciences Technical Repon #431, University of Wisconsin - Madison, May 1981. 



33 

[18] D. Gelernter, "Generative Communication in Linda," ACM TOPLAS, vol. 7, no. 1, pp. 

80-112, January 1985. 

[19] C. Ghezzi and M. Jazayeri, Programming Language Concepts, New York: John Wiley and 

Sons. 1982. 

[20] E. A. Hauck and B. A. Dent "Burroughs' B6500/B7500 Stack Mechanism." Proceedings of 

the AFlPS Spring Joint Computer Conference. vol. 32. pp. 245-251. 1968. Chapter 16. pp. 

244-250. in Computer Structures: Principles and Examples, by D. P. Siewiorek. C. G. Bell. 

and A. Newell. New York: McGraw-Hill, 1982. 

[21] C. A. R. Hoare. "Communicating Sequential Processes." CACM, vol. 21. no. 8, pp. 666-

677. August 1978. 

[22] 1. D. Ichbiah. J. G. P. Barnes. 1. C. Heliard, B. Krieg-Brueckner, O. Roubine, and B. A. 

Wichmann. "'Rationale for the Design of the Ad.a® Programming Language," ACAI SIG

PLAN Notices, vol. 14. no. 6. June 1979. 

[23] M. B. Jones, R. F. Rashid, and M. R. Thompson. "Matchmaker: An Interface Specification 

Language for Distributed Processing." Conference Record of the Twelfth Annual ACH 

Symposium on Principles of Programming Languages. pp. 225-235, January 1985. 

[24] 1. Kepecs and M. Solomon. "SODA: A Simplified Operating System for Distributed 

Applications." AC\! Operating Systems Review. vol. 19. no. 4, pp. 45-56, October 1985. 

Originally presented at the Third ACM SIGACT/SIGOPS Symposium on Principles of 

Distributed Computing, 27-29 August 1984. 

[25] B. W. Lampson and D. D. Redell, "Experience with Processes and Monitors in Mesa," 

CACM, vol. 23, no. 2, pp. 105-117, February 1980. 

[26] B. Lisko v, A. Snyder, R. Atkinson, and C. Schaffert, "Abstraction Mechanisms in CLU," 

CACM, vol. 20, pp. 564-576. August 1977. 



34 

[27] B. Liskov and R. Scheifier. "Guardians and Actions: Linguistic Support for Robust. Distri

buted Programs." ACM TOPLAS. vol. 5. no. 3, pp. 381-404, July 1983. 

[28] B. Liskov and M. Herlihy, "Issues in Process and Communication Structure for Distributed 

Programs," Proceedings of the Third IEEE Symposium on Reliability in Distributed 

Software and Database Systems. pp. 123-132, October 1983. 

[29] B. Liskov. M. Herlihy, and L. Gilbert. "Limitations of Remote Procedure Call and Static 

Process Structure for Distributed Computing," Programming Methodology Group Memo 

41, Laboratory for Computer Science, MIT, September 1984. revised October 1985. 

[30] S. 1. Mullender and A. S. Tanenbaum. "The Design of a Capability- Based Distributed 

Operating System," Report CS-R8418. Centre for Mathematics and Computer Science. 

Amsterdam. The Netherlands. 1984. 

[31] B. 1. Nelson. "Remote Procedure Call," Ph. D. Thesis. Technical Report CMU-CS-81-119. 

Carnegie-Mellon University. 1981. 

[32] A. Nicolau. "Uniform Parallelism Exploitation in Ordinary Programs," Proceedings of [he 

1985 International Conference on Parallel ProceSSing, pp. 614-618, 20-23 August 1985. 

[33] 1. D. Ousterhout, D. A. Scelza. and S. S. Pradeep. "Medusa: An Experiment in Distributed 

Operating System Structure." C ACAf. vol. 23. no. 2. pp. 92-104. February 1980. 

[34] M. L. Powell and B. P. Miller, "Process Migration in DEMOS/MP." Proceedings of [he 

Ninth AC M Symposium on Operating Systems Principles. pp. llO-U8, 10-13 October 1983. 

In ACM Operating Systems Review. vol. 17. no. 5. 

[35] R. F. Rashid and G. G. Robertson. "Accent: A Communication Oriented Network Operat

ing System Kernel," Proceedings of the Eighth ACM Symposium on Operating Systems 

Principles. pp. 64-75, 14-16 December 1981. 

[36] D. M. Ritchie and K. Thompson. 'The UNIX Time Sharing System," CACM, vol. 17, no. 

7, pp. 365-375, July 1974. 



35 

[37] M. L. Scott, "Messages v. Remote Procedures is a False Dichotomy," ACM SIGPLAN 

Notices, vol. 18, no. 5, pp. 57-62. May 1983. 

[38] M. L. Scott and R. A. Finkel, "A Simple Mechanism for Type Security Across Compila

tion Units," Computer Sciences Technical Report # 541, University of Wisconsin -

Madison, May 1984. Revised version to appear in IEEE Transactions on Software 

Engineering. 

[39] M. L. Scott, "The Interface Between Distributed Operating System and High-Level Pro

gramming Language." Proceedings of the 1986 International Conference on Parallel Pro

cessing, 19-22 August 1986. 

[40] R. E. Strom and S. Yemini, "NIL: An Integrated Language and System for Distributed 

Programming," Proceedings of the SIGPLAN '83 Symposium on Programming Language 

Issues in Software Systems, pp. 73-82, 27-29 June 1983. In ACM SIGPLAN Notices. vol. 

18, no. 6. 

[41] R. E. Strom and S. YeminL 'The NIL Distributed Systems Programming Language: A 

Status Report." ACAf SIGPLAN Notices, vol. 20, no. 5, pp. 36-44, May 1985. 

[42] D. C. Swinehart. P. T. ZeIIweger. and R. B. Hagmann. "The Structure of Cedar:' Proceed

ings of the AC\1 SIGPLAN 85 Symposium on Language Issues in Programming Environ

ments, pp. 230-244. 25-28 June 1985. In ACA.f SIGPLAN Notices, vol. 20, no. 7. July 

1985. 

[43] United States Department of Defense, "Reference Manual for the Ada® Programming 

Language:' (ANSlIMIL-STD-1815A-1983), 17 February 1983. 

[44] B. Walker, G. Popek, R. English, C. Kline, and G. Thiel. "The LOCUS Distributed 

Operating System," Proceedings of the Ninth ACM Symposium on Operating Systems Prin

ciples, pp. 49-70, 10-13 October 1983. In ACM Operating Systems Review, vol. 17, no. 5. 

[45] W. Weihl and B. Liskov, "Specification and Implementation of Resilient, Atomic Data 

Types," Proceedings of the SIGPLAN '83 Symposium on Programming Language Issues in 

Software Systems, pp. 53-64, 27-29 June 1983. In ACM SIGPLAN Notices, vol. 18, no. 6. 



36 

[46] 1. Welsh and A. Lister. "A Comparative Study of Task Communication in Ada." 

Sol/ware - Practice and Experience. vol. 11. pp. 257-290. 1981. 

[47] N. Wirth, Programming in ,\1odula-2. Third. Corrected Edition. Texts and Monographs in 

Computer Science. ed. D. Gries. Berlin: Springer-Verlag, 1985. 

[48] N. Wirth. "From Programming Language Design to Computer Construction," C AC M. vol. 

28, no. 2, pp. 159-164, February 1985. The 1984 Turing Award Lecture. 


