
TIlE INTERFACE BETWEEN DISTRIBUTED OPERATING SYSTEM
AND HIGH-LEVEL PROGRAMMING LANGUAGE

Michael L Scott

Computer Science Department
Universil)' of Rochester
Rochester. NY 14627

Abstract - A distributed operating system provides a pro
cess abstraction and primitives for communication between
processes. A distributed programming language regularizes the use
of the primitives. mating them bolh safer and more convenienL
The level of abstraction of the primitives, and therefore the dh"ision
of labor between the operating system and the language suppnn
routines. has serious ramifications for efficiency and flexibility.
Experience with three implemenrations of the I. Y'lX distributed
progmmning language SUBBests that functions that can be imple
mented on either side of the interface are best left to me language
run·time package.

Introduction
Recent years have seen the development of a large number of

distributed programming languages and an equally large number of
distributed operating systems. While th... ... exceptions to the
rule. it is generally aue that individual rosearcb groups bave focused
on a single language. a single operating system. or a siogle
languagetO.S. pair. Relatively little attention has been devoted to
the relationship between languages and 0.5. kernels in a distributed
setting.

Amoeba [IS). Demos-MP [161. locus (26~ and the V ker
nel (7) are _ the beuer-know. distributed operating ,ystems.
Each by-passes language issues by ",lying on a simpie library
routine interface to kernel communication primitives. Eden [5] and
Cedar [24} have both devoted a considerable amount of attention to
progmmning language issues. but each is ,,·cry much a single
language system. The Accent project at CM"C (17] is perhaps the
only well-known effon to suppon more than Doe pmgramming
language on a single underlying kernel Even so, Accent is only
able to achieve its multi-lingual character by insisting on a single,
universal model of interprocess communication based on remote
procedure calls (11]. languages with other models of process
interaction are not considered.

In the language community. it is unusual to find implementa
tions of the sante distributed programming language for more than
one operating system. or indeed for any existing operating system.
Dedicated. special1'urpose kernels are under consttuction for
Argus [141 SR [1.21. and NIL (22. 231. Several dedicated implemen
rations bave been designed for Linda [6.10]. No distributed imple
me.rations have yet appeared for Ada (25).

If parallel or distributed hardware is to be used for general
purpose computing, we must eventually learn how to support multi
ple languages efficiently on a single operating syStem. r award that
end. it is wonh considering the division of labor nerween the
language run-time package and the underlying kernel. Which func
tions belong on which side of the intenacc? What is the appropri
ate level of abstraction for universal primitives? Answers [0 mese

At lhe University of Wisconsin. this wort was supported in pan by
SSF pan' number MCS-81OS904. DARPA con""" number NOOI4-82-(;-
2087. and a Bell Telephone Laboratories DocumII SchoIanhip. At the
University of Rocbester, the work is supported in pan by NSF grant
number DCR-8320136 and DARPA O)Otract number DACA76-8S-C-(ool.

0190-391818610000/0242 $01.00 © 1986 IEEE

IC-PP
242

questions will depend in large pan on experience with a variety of
languagetO. S. pairs.

This paper reports on implementations of the LYNX distri
buted programming language for thn:e existing. but IlIdicoDr
dilferen~ distributed operating systemS. To the surprise of die
imptemenlOlS. me implementation effon turned out to be su~
tially easier for kernels with low-level primitives. If continned by
similar results with other lansuases. the lessons pro vided by _
on LYNX should be of considerable value in the design of fu_
systems.

The Iirst implementation of L YNJ(was consuuctecl tIuriJII
1983 and 1984 at Ibe University of Wisconsin. whe", it runs UDder
the Charlotte distributed operating system [3. 91 on the Crystal mul
ticomputer [8]. The second implemenration was designed. but never
actually buil~ for Kepecs and Solomons SODA (12.13~ A thiJd
implementation has recently been released at the University of
Rocbester. where it roDS 00 BBN Bunertly multiprocesson [41_
the Chrysalis operating system.

Section 2 of·this paper summarizes the fealUn:s of L YNJ(
that have an impact aD Ihe services needed from a distributed
operating system kernel Sections 3. 4. and S describe the _
LYNX implementations. comparing them one to the other. The
final section discusses possible lessons to he leanted from the c0m

parison.

LYNX Overview
The L YNJ(progranuning language is not itself the SUbject of

this article. Language features and their rationale are described in
detail elsewhe,. (19.20.211. For pn:sent purposes. it suffices to say
that LYNX was designed to suppnn the loosely-coupled style of
progranuning eocouraged by a distributed operating system. l' nlike
most existing lansuases. LYNX extends the advanrages of h,gIi-level
communication facilities to processes designed in isolation. and com
piled and loaded at disparate times. LYNX supports interaction DOl

only between the pieces of a multi-process application. but also
between separate applications and between user programs and
long-lived system servers.

Processes in LYNX execute in paralle~ possibly 0. separate
processors. Th ... is no provision for shared memory. lnterp""",,
communication uses a mechanism similar to remote procedure caIIs
(RPC). on vinual circuits called links. Links an: two-directional and
bave a single process at each end. Each process may be divided
into an arbitrary number of threads of control. but the threads exe
cute in mutual exclusion and may be managed by the language
run-time pacUge. much like the coroutines of Modula-2 [27].

Communication Characteristics
(The following paragraphs describe the communication

behavior of LYNX processes. The description does not provide
much insight into the way [hat LYNX programmers think aboUt
their programs. The intem is to describe the externally-visible
characteristics of a proce-.'S that must be supported by kernel prim!
ties.)

Messages in lYNX are not received asynchronously. They
'" queued instead. on a link·by-link basis. Each link end has one
queue for incoming requests and another for incoming repUes.
Messages are received from a queue only when the queue is open
;"d the process that owns its end has _ed a well-defined block
poiDt Request queues may be opened or closed under explicit pro
-ess control. Reply queues are opened when a request has been
~[and a reply is expected. The set of open queues may therefore
\.ary from one block point to the next

A blocked process waits until one of its previously-sent meso
sages has been received. or until an incoming message is available in
at least one of its open queues. In the latter case. the process
chooses a non-empty queue. receives that queue's first message, and

link 3

figure I: liak mo.ing at batll ends

executes through to the next block point. For the sake of fairness,
an implementation must guarantee that no queue is ignored forever.

Messages in the same queue are received in the order sent
Each message blocks the sending coroutine within the sending pro
cess. The process must be notified when messages are received in
order to unblock appropriate coroutines. It is therefore possible for
an implemenlation to rely upon a stop-and-wait protocol with no
actual buffering of messages in transit Request and reply queues
can be implemented by lists of blocked coroutines in the run-time
package for each sending process.

The most challenging feature of links. from an implementor's
point of view, is the provision for movIng their ends. Any message.
request or reply. can contain references to an arbiuary number of
link ends. Language semanlics specify that receipt of such a mes
sage has the side effect of moving the specified ends from the send
ing process to the receiver. The process at me far end of each
moved link must be oblivious to the move. even if it is currently
relocating its end as well. In figure I. for example. processes A and
o are moving their ends of link 3. independently. in such a way that
what used to connect A to 0 will now connect B to C.

It is best (0 think of a link as a ftexible hose. A message put
in one end will eventually be delivered to whatever process happens
to be at the other end. The queues of available but uo-received
messages for each end are associated with the link itself. not with
any process. A moved link may tIIerefore (logically at least) have
messages inside. waiting to be received at the moving end. In keep
ing with the comment above about stop-and-wait protocols. and to
prevent complete anarchy. a process is not pennined to move a link
on which it has senl unreceived messages. or on which it owes a
reply for an already-received request

243

Kernel Requirements
To permit an implementation of LYNX. an operating system

kernel must provide processes.. communication primitives. and a
naming mechanism that can be used to build links. The major
questions for the designer are then 1) how are links to be
represented? and 2) how are RPC -"Yle request and reply messages
to be transmitted on those lints? It must be possible to move links
without losing messages. In addition. the termination of a process
must destroy all tile link. attached to that process. Any attempt to
send or receive a message on a link that has been destroyed must
fail in a way that can be retlected back into the user program as a
run·lime exception.

The Charlotte Implementation

OYe"iew of Charlotte
Charlotte 13.9} runs on tile Crystal multicomputer 18}. a col

lection of 20 VAX 111750 DOd. machines connetred by a 10-
MbiVsecond token ring from Protean Corporation.

The Charlotte kemel is replicated on each node. It provides
direct suppon for both processes and links. Charlotte links were the
original motivation for the circuit abstraction in lYNX. As in the
language. Charlotte links are two directional. witll a single process at
each end. As in the language. Charlotte links can be created. des
troyed. and moved from one process to another. Charlotte even
guarantees that process tennination destroys all of the process's
links. It was originally expected that the implementation of
LYNX -style interprocess communication would be almost trivial.
As described in the rest of this 'ieCtion'. that expectation rumed out
to be naive.

Kernel calls in Charlotte include the following:

MakeLink. (var end!. endl : link)
Create a link and return references to its ends.

Destroy (myend : link)
Destroy !:he link with a given end.

Send (L : link: buffer: lddress: lengm : integer: enclo'iourc : link)
Stan a send acti't'ity un a given link end. np(iGnan~ enclosing
one end of some other link.

Receive (L : link: buffer: address: length iP[cgerl
Stan a receiYe adi,ity on a given hnk .!uJ.

Cancel (L : link; d : direction)
Attempt to cancel a previously-started 'iend or recei'ie activity.

Wait (var e : description)
Wait for an activity to complete. and return its description (link
end. direction. length. enclosure).

All calls rerum a status code. All but Wait are guaranteed to com
plete in a bounded amount of time. Wait blocks the caller until an
activity completes.

The Charlotte kernel matches send and receive activities. [t
allows only one outstanding activity in each direction on a given end
of a link. Completion must be reponed by Wail before another
similar activity can be sL1rted.

Implementation of L Y:-.iX
The language run~time package represenlS every lYNX link

with a Charlotte link. It uses !:he activities of the Charlotte kernel to
simulate the request and repl}' queues described in section 2.1. It
starts a send activity on a link whenever a process attemplS to send
a request or reply message. It srans a rccehe activity on a link
when the corresponding request or reply Queue is opened. if both
were closed before. It attemplS to cancel d pre\ llJUs-slarted receive
activity when a process closes its request Queue. if the reply queue is

also dosed. The multiplexing of req Ue!lt dnd rep!) queues onto
receive activities was a major source of problems for the implemen·
tation effort A second source of problems was the inability to
enclose more than one link in a Single Charlotte message.

Screening Messages. For the vast mdjority of remote
operations, only two Charlotte messages are required: one for the
request and one for the reply. Complications arise. however. in a
number of special cases. Suppose that process A requests a remote
operation on link L.

(0 L 8
- --- -- --~"-~- - -- - -;>

Process B receives the request and begins seoing the operation. A
now expects a reply on L and swts a receive activity with the k.er
nel. Now suppose that before replying B requests anolber operation
on L. in the revene direction (the coroutine mechanism mentioned
in section 2 mates such a scenario entirely plausible). A will receive
8's request before the reply it wanted. Since A may not be willing
to serve requests on L at this point in time (its request queue is
closed), B is not able to assume that ilS request is being served sim·
ply because A bas ,"""ived it

A similar problem arises if A opens ilS request queue and
then closes it again. before reaching a block point In the intereslS
of concurrency, the run·time suppon routines will have posc:ed a
Receive with the kernel as ~n as the queue was opened. When
the queue is closed. they wilt attempt to cancel the Receive. If B
has requested an operation in the meantime. the Cancel will fail.
The next time .\·S run·time package calls Wait, it will obtain
notification of the request from B. a message it does not want
Delaying the start of receh·e activities until a block point does not
help. .\ must still start activities for all its open queues. It will con
tinue execution after a message is received from exacdy on~ of lbose
queues. Before reaching the next block point, it may change the set
of messages it is willing to receive.

It is tempting to let ,\ buffer unwanted meSSciges until it is
again willing to receive from B, but such a solution is impossible for
two reasons. First.. the occurrence of exceptions in I. ¥!'IX can
require A to cancel an outstanding Send on L. If 8 has alread}
received the message (inadvenently) and is buffering it internally.
the Cancel cannot succeed. Second, the scenario in which .\
receives a request but wants a reply can be repeated an arbitrary
number of times. and .\ cannot be expected to provide an arbitrary
amount of buffer space.

A must return unwanted messages to B. In addition to the
request and reply messages needed in simple situations. the imple·
menTation now requires a retry message. Retry is a negative ack
nowledgment. It can be used in the second scenario above, when A
has closed its request queue alier receiving an unwanted message.
Since .\ will have no Receive outstanding. the re-sent message from
B will be delayed by the kernel until the queue is re-opened.

In the first scenario, unfortunately, A will still have a Receive
posted for the reply it wants from B. If A simply returned requests
to B in retry messages, it might be suhjccted to an arbitrary number
of reU'ansmissions. To prevent these retransmissions we must intra·
duce the rorbid and allow messages. Forbid denies a process the
right to send requests (it is still free to send replies). Allow restores
that right Retry is equivalent to forbid followed by allow. It can be
considered an optimization for use in cases where no replies are
expected, so retransmitted requests will be delayed by the kernel.

Both forbid and relry return any link end that was enclosed in
the unwanted. message. A process that has received a forbid mes·
sage keeps a Receive posted on the link in hopes of receiving an

244

allow message.l A process that has sent a forbid message
remembers that it has done so and sends an allow message as SOOn
as it is either willing to receive requests (its request queue is open)
or has no Receive outstanding (so the kernel will delay all messages).

Moving Multiple Links. To move more than one link
end with a single LYNX message. a request or reply must be b~
ken into several Charlotte messages. The first packet contains non
link. dala, together with the fim enclosure. Additional enclosures
are passed in empty enc messages (see figure 2). For requests, the

(0f-------"--l ---18
simple case

connect ________ ~U."!t ___ ... ~ accept

I compute
~ _______ ~X ________ reply

multiple enclosures

connect
________ ~u_C!t ______ -:>

goahead
~-----------------
---------~~--------:>
_________ c:n~ _______ :>

accept

compule
~. ____ . _te.P1L ____ .. _ reply

enc
~--- ... ------- ... -.

~-------~~---------

figure Z: link ... closure protocol

receiver must return an explicit loa head message after the first
packet SO the sender can tel1 that the request is wanled. No goahemJ
is needed for requests with zero or' one enclosures. and none is
needed for replies, since a reply is always wanted.

One consequence of packetizing LYNX messages is that links
enclosed in unsuccessful messages may be lost Consider the follow
ing chain of events:

a) Process _\ sends a request to proCess B. enclosing the end of a
link..

b) B receives the request unintentionally: inspection of the code
allows one to prove that only replies were wanted.

c) The sending coroutine in A feels an exception. aborting the
requcsL

d) B crashes before it can send the enclosure back to A in a forbid
message. From lhe point of view of language semdntiCs. the
message to B was never sent, yet the endosure has been lost
Under such circumstances the Charlotte implementauon cannot
confonn to the language reference manuaL

The Charlotte implementation also disagrees with. the
language definition when a coroutine that is waiting for a reply mes·
sage is aborted by a local exception. On the other end of the link

I This or rourse makes it vulnerable 00 rcccivina; UDwanted messages
... Ir.

the server should feel an exception when it attempts to send a no
longer-wanted reply. Such exceptions are not provided under Char
ione beCause they would require a final, top-level acknowledgment
ior reply messages. increasing message rraffic by SO%.

~Ieasurements
The language run-time package for Charlotte consists of just

O\ier 4000 lines of C and 200 lines of V AX assembler. compiling to
JbOut 2lK of object code and data. Of this total. approximately
45% is devoted to the communication routines that interact with the
Charlotte kernel, including perhaps 5K for unwanted m~es .md
multiple enclosures. Much of this space could be saved with a more
.lppropriate kernel interface.

A simple remote operation (no enclosures) reqUires approxi
mately 57 ms with no data transfer and about 65 ms with 1000 bytes
of parameters in both directions. C programs that make the same
;eries of kernel caUs require 55 and 60 ms, respectively. [n addition
w being rather slow, the Charlotte kernel is highly sensitive to the
jlrderin@ of kernel calls and to the interleaving of calls by indepen
dent processes. Performance figures should therefore be regarded as
~uggestive. not definitive. The difference in timings between LYNX
.md C pr\Jgrams is due to efforts on the pan of the run-time pack
age to gather and scatter parameters. block and unblock coroutines.
tStablish default exception handlers. enforce dow control. perfonn
type checking. update tables for enclosed links. and make sure the
links are valid.

The SODA Implementation

Oveniew of SODA
As part of his Ph. D. research [12.131. Jonathan Kepecs set

out to design a minimal kernel for a multicomputer. His
"Simplified Operating system for Distributed Applications-' might
better be described as a communications protocol for use on a
broadcast medium with a very large number of heterogeneous
nodes.

Each node on a SODA network consists of two processors: a
cliot processor, and an associated kernel processor. The kernel
processors are all alike. They are connected to the network and
communicate with their client processors through shared memory
and interrupts. Nodes are expected to be more numerous than
processes. so ~lient processors are nO(multi-programmed.

Every SODA process has a unique id. It also adurtises a col
lection of names to which it is willing to respond. There is a kernel
call to generate new names. unique over space and time. The dis'
coyer kernel call uses unreliable broadcast in an attempt to find a
process that has advenised a given name.

Processes do not necessarily rend messages. rather lhey
request the transfer of clata. A process that is interested in com
munication specifies a name. a process id a small amount of out
of-band information. the number of bytes it would like to send and
the Dumber it is willing [0 receive. Since either of the last two
numbers can be zero. a proce-ss can request to send data. receive
data. neither. or both. The four vaneties of request are termed put.
get. sipll. and exchange. respecti vely.

Processes are informed of interesting events by means of
software interrupts. Each process establishes a single handler which
it can dose temporarily when it needs to mask. out interrupts. A
process feels a software interrupt when its id and one of its adver
tised Dames are specified in a request from some other process. The
handler is provided with the id of the requester and the arguments
of the request, including the out-of-band information. The inter
rupted. process is free to save the information for furore reference.

At any time. a process can accept a request that was made of
it at some time in me past When it does so, the request is com
pleted (data is transferred in both directions simultaneously). and

245

the requester feels a software interrupt informing it of the comple
tion and providing it with a small amount of out-of-band infhrma
tion from the accepter_ Like the requester. the accepter specifies
buffer sizes. The amount of data transterred in each direction is me
smaller of the specified amounts.

Completion interrupts are queued when a handler is busy or
closed_ Requests are delayed: the requesting kernel retries periodi
cally in an attempt to get through (the requesting user can proceed).
If I process dies before accepting a request the requester feels an
interrupt that informs it of me crash.

A Different Approacb to Links
A lint in SODA can be represented b) a pair of unique

names. one for each end. A process that ov. ns an end of a link
advertises the associated name. Every proc~ knows the names of
the lint ends it owns. Every process keeps a hint as to the current
location of the far end of each of its Iinks_ The hints can be wrong,
but are expected to wort most of the time.

A process that wants to send a LYNX message. either a
request or a reply. initiates a SODA put to the process it thinks is
on the other end of the link:_ A proc~\ moves link ends by enclos·
ing their names in a message. When the message is SODA-accepted
by the receiver, the ends are understood to have moved. Processes
on the fixed ends of moved links will have incorrect hints..

A process that wants to receive a LYNX message, either a
request or a reply. initiates a SODA lignal to the process it thinks is
on the other end of the link. The purpose of the signal is aJJow the
aspiring receiver to tell if its lint is destroyed or if its chosen sender
dies. In the latter case_ the receiver will feel an interrupt infonnin@
it of the crash. In the fonner c~. \\oo,! require a process that des
troys a link to accept any pre"iousl~-posted status signal on its end.
mentioning the destruction in the I}ut-or"-band information_ We also
require it to accept any outstanding pill requesL but with a lero·
length buffer. and again mentiomng the desuuction in the OU(-Or

band information_ After dearing the rignall and puts. the proces~
can unadvertise the name of the end and forget that it ever existed.

Suppose now that process A has a link L to process C and
that it sends its end to process 8.

8

L after 0'l c

If C wants to send or receive on L. but B terminates after reeeh·ing
L from A, then C must be informed of the termination so it knows
that L has heen destroyed. C will have had a SODA request posted
with A_ A must accept this request so that C knows to walCh B
instead. We therefore adopt the rule that a process that moves a
link end must accept any previously-posted SODA request from the
other end. just as it must when it destroys the link_ It specifies a
zero-length buffer and uses the out-of-band infonnation to tell the
other process where it moved its end In the above example, C will
re-start its request with B instead of A_

The amount of work involved in mO\lmg a link end IS very
small. since accepting a request does n(,(e\cn hlock the JCcepter.
More than one link can be enclosed in the 'Ci.me meSSJ~': with no
more difficulty than a singl~ cnd. If the fixed end of a m\wing link
is not in active use. there is no expense ,O\ol\t'd Jt aU. In:.he .lb4,\C

example. if C recei\'es a SODA request fn.ln 8. It \\,11 koo"" thai I.
has moved.

The onl~' real problems l)l;cur when an ~nd Pi' d rionndnt link
is moved. If our example. if L is first used by (' after it is muved. C
will make a SODA request of A. nm R. since its hint is out-of.date.
There must be a way (0 fix the hint. If each process kc..:ps a cache
of links it has known about recently . .lnd keep" the names of those
links advertised. then .0\ may remember it sent L to B. and can tell
C where it went. .If A has forgotten, {' can use the discover com
mand in an attempt to find a process that knows about the far end
ofL.

A process that is unable to find the far end of a link. must
assume it has been destroyed. If L exislS. the heuristics of caching
and broadcast -s.hould suffice to find it in the vast majority of cases.
If the failure rate is comparable to that of other "acceptable" error;.
such as garbled messages with "valid" checksums, then lhe heuris'
tics may indeed be all we e\'er need.

Without an actual implementation to measure, and without
reasonable assurnpuons abuut the reliability of SODA broadcasts. It

is impossible to predict the success rate of the heuristics. The
SODA discover primitive mig"r he especially strained by nod.:
crashes. :ilnce they would tend to precipitate a large number of
brO<idca'i{ searches for lost link~. If U1':- heurbtics failed [00 often. J

fall·back. mechanism would be need.:J

Se';eral absolute algorithms L'an 1'-.: Jl''.II~ed for findmg mio;s'
ing links. Perhap'i the simplC'iit look.:; lilte .hl:-·

• b-ery proceS!t Advertises A freeze n.lnte. When C discovers ilS
hint tor L is bad. it pOSts J SODA rcque'St on the freeze name
of every process currentl> In existen!.\.· ,SODA makes It easy [0

guess their Ids}. It includes the name. ,r' L in the request.

• Each prOCes.i accepts a freeze request l.ID111ediately, ceases exe·
cution of everying but ilS own searches (if any), increments a
counter. and post'i an unfreeze request with C. [f it has a hint
for L. it includes that him in me freeze accept or the unfreeze
request.

• When C obtains a new hint or has unsuccessfully queried
everyone, it acceplS the unfreeze requeslS. When a frozen pro
cess teels an interrupt indicating that its unfreeze request has
been accepted or that C has crashed. it decremenlS ilS counter.
If me counter hilS zero. it continues execution. The existence
of the counter pennits multiple concurrent ~hes.

This algorithm has the considerable disadvantage of bringing every
LYNX process in existence to a temporary halt On the other hand.
it is simple, and should only be needed when a node crashes or a
destroyed link. goes unused for so long that everyone has forgotten
about it.

Potential Problems. As mentioned in the introduction.
the SODA version of LYNX was designed on paper only. An
.!Ctual implementation would need. to address a number of potential
problems. To begin with, SODA places a small. but unspecified.
limit In the ~ize of the out-of-band information for requesl and
Jccepl. If all the self·descriptive information included 10 messages
under Charlotte were to be provided out-of-band. a minimum of
about -l8 bilS would be needed. With fewer bilS available, some
information would have to be included in the messages them-.eh·es.
as in Charlotte.

A second potential problem with SODA. invohes another
unspecified constant: the pennissible number of outstanding
requeslS between a given pair of processes. The implementation

described in the previous section would work easily if the limit were
large enough to accommodate three requeslS for every link between
!he processes (a LYNX-request PUI. a L YNX·reply pUI. and a status
signal). Since reply messages are always wanted (or can at least be
discarded if unwanted), the implementation could make do with two
oUlStanding requeslS per link and a single extra for replies. Too
imall a limit on outstanding requeslS would leave the possibility of"
deadlock when many links connect the same pair of processes. In
practice. a limit of a half a dozen or so is unlikely to be exceeded (it
Implies an improbable concentration of simultaneously·active
resources in a single process). but there is no way to reftect the limit
to the user in a semantically-meaningful way. Correctness would
itart to depend on global characteristics of the procC5)'
interconnection graph.

246

Predicted Measurements
Space requiremenlS for run-time suppon under SODA would

reftect the lack of special cases for handling unwanted messages and
multiple enclosures. Given the amount of code devoted to such
problems in the Charlotte implementation. it seems reasonable to
expect a savings on the order of 4K bytes.

For simple messages, run-time routines under SODA would
need to perform most of the same functions as their counrerpans for
Charlotte. Preliminary resuilS with the Butterfly implementation
(described in the following section) suggest that the lack of special
cases might save some time in conditional branches and subroutine
calls. but relatively major differences in run-time package overhead
appear to be unlikely.

Overall perfonnance. including kernel overhead., is harder to
predict. Charlotte has a considerable hardware advantage: the only
implementation of SODA ran on a collection of PDP-ll123's wilh a
Hlbitlsecond CSMA bus. SODA. on !he o!her hand. was
designed with speed in mind. Experimental figures reveal that for
small messages SODA was three times as fast as Chariotte.1 Char
loue programmers made a deliberate decision to sacrifice efficiency
in order to keep the project manageable. A SODA version 'of
LYNX might well be imrinsically faster than a comparable version
for Charlotte.

The Chrysalis Implementation

Overview or Chrysalis
The BBN Butterfly Parallel Processor [4J is a 68()()(}-bascll

shared-memory multiprocessor. The Chrysalis operating system
provides primitives. many of them in microcode, for the manage
ment of system abstractions. Among these abstractions are
processes, memory objects. event blocks, and dual queues.

Each process runs in an address space that can span as many
as one or two hundred. memory objeclS. Each memory object can
be mapped into the address spaces of an arbitrary number of
processes. Synchronization of access to shared memory is achieved
through use of the event blocks and dual queues.

An event block is similar to a binary semaphc ~. except mal
1) a 32-bit darum can be provided to the V op..-:r.llion. to be
returned by a subseqUl!nt P. and 2) only the owner 'Jf In e .. ent
block can wait for Ihe event to be posted. Any process Ihat know'
the name of me evem can perfonn the post operation. [hI! most
common use of e\'ent block'i IS In conjunction with dual queues.

A dual queue is so ndm-ed because of ilS ability to hold either
data or e .. ent block names. -\ queue containing data is a simple
bounded buffer. and enqueLo~ J.nd dequeue operations proceed as

1 The difference is less dramanc ti,r larger messages; SODA's slow
network e.ucted a heavy 1011. The TigurQ hreai c~en somewhere between
lK and 2K byteS.

one would expect. Once.1 queue necomes empty. however. subse
quent dequeue operations l\:[u:llly ena'l"UP ~¥ent block. names. on
which me calling procesM."'S :dn ~ :iit. \ n ~nqueue operation on a
queue containing event bkll..k n..un1!S lCllJa1h posts a que.led event
instead of adding its datum to the queue.

A Third Approach to Links
In me Butterfly implemenlation of L Y'X. every process allll"

cateS a single dual queue and event block. mrough which to receive
notifications of messages sent and received. A link: is represented by
a memory object, mapped into me address 'ipac:es of the two con
netted processes. The memory object contains buffer space for a
~ingle request and a single reply in each direction. It also contains J

set of flag bilS and the names of the dual queues tor the processes Jl

each end of the link. When a process gathers a message into J.
buffer or scaners a message out of a buffer into local variables. i(
selS a flag in me link object (atomically) and then enqueues a notice
of its activity on the dual queue for the process at the other end or'
me link. When the process reaches J block point it attempt" (0

dequeue a notice from its own dual queue, waiting if the queue is
empty.

As in the SODA implementation. link movement relies on a
system of hints. Both the dual queue names in link. objects and the
notices on the dual queues themselves are considered to be hints.
Absolute information about which tink ends belong to which
proc5eS is k.nown only to the owners of the ends. Absolute infor
mation about the availability of messages in buffers is conlained
only in the link object flags. Whenever a process dcqueues a notice
from its dual queue it checks to see that it o ns the mentioned link.
end and that the appropriate flag is set in the corresponding object.
(f either check fails. the notice is discarded. Every change to a Hag
is eventually reHected by a nmice on the appropriatc dual queue.
but not every dual queue notice reflects a change to a flag .. \ link is
moved by passing the (address-sp,ace-indepcndem) name of its
memory object in a message. Whe'n the message is received. me
sending process removes the memory object from its address space.
The receiving process maps the object imo its address space.
changes the information in the object to name its own dual queue.
and then inspeers the flags. It enqueues notices on its own dual
queue for any of the Rags that are 5eL

Primitives provided by Chrysalis make JtomlC changes to
!lags extremely inexpensive. Atomic changes to quantities larger
than 16 bits (including dual queue names) .lrc relath-ely costly. The
recipient of a moved link therefore write", [h~ name of its dual
queue into the new memory object in a non-atomic fashion. It is
possible that the process at the non-mo~ ing end (}f me link will read
an invalid name. but only ol/ter setting ~ags. Since the rCl:ipiem
completes its update of the dual-queue name be/ore inspecting the
flags. changes are never overlooked.

Chrysalis keeps a reference count tor each memory object.
To destroy a link.. the process at either end sets a flag bit in the link
object, enqueues a notice on the dual queue for the process at the
other end. unmaps the link object from its address space, and
infonns Chrysalis that the object can be deallocated when its refer
ence count reaches zero. When the process at the far end dequeues
me desttuction notice from its dual queue. it confinns the notice by
checking it against the appropriate ftag and then unmaps the link
object At this point Chrysalis notices that the reference count has
reached zero. and the object is reclaimed.

Before terminating. each proces.'i destrovs all of its links.
Chrysalis allows a process to catch all exceptional conditions that
might cause premature tennination. including memory protection
faults. so even erroneous processes can clean up their links before
going away. Processor failures are currently nOI detected.

247

Preliminary Measurements
The Chrysalis implementation of 1.,,'\ has only recently

become available. h consists of approximately ,6()(1 lines of C .md
100 lines of assembler. compiling to IS or 16K bytl.'S of object ·.:ode
and data on the 68000. Both measures are appreciably smaller than
the respective figures for the Charlone implementation.

Message transmission times are also faster on the Butterfly,
by more than an order of magnitude. Retent tests indicate that a
simple remote operation requires about 1.4 ms with no data transfer
and about 4.6 ms with 1000 bytes of parameters in both directions.
Code tuning and protocol optimi7ations now under development are
likely to improve both figures b)' JO to 40%.

Discussion
Even though the Charlone kernel provides a higher-level

interface than does either SODA or Chrysalis. and even though lhe
communication mechanisms of LYSX wcre patterned in large pan
on the primitives provided by Charlotte. the implementations !)f

lYNX for the latter two systems are smaller. simpler. and faster.
Some of the difference can be attributed to duplication of effNt
between the kernel and the language run-time package. Such dupli
cation is the usual target of so-called end-to-end arguments [181.
Among other things. end-to-end arguments observe that each level
of a layered software system can only eliminate errors that can be
described in the comcx(of the interface to the level above. O .. ·erall
reliability must he ~nsured Jt the application level. Since end'{Q
end checks gencralb ~aoch all errors. low-level checks are redun
dant They are justified only If I!rrors occur frequently enough ro
make I!arly detection e!\s.!nual.

L'r~X routin~s Ile\"~r pa'is Charlotte an invalid link end.
They never ~pecif}' .1n Impos'\lble buffer address or length. Ibe~
never try to send on J. mo~mg I!'nd or enclose an end on itself. 1"0 a
cenain extent they pr\)\IJe th~lr \J~n top·le\c1 acknowl~dgml.!ms. ;0

the tonn of goahead. retry. Jnd for.,id messages. and in th~
confirmation of operation names .md t· .. ~s implied by a repl} ml!~
sage. They would provide additionai acknowledgments for the
replies themselves if they were not "0 expensive. For the users .)f
LYNX. Charlotte wastes um~ b~ t.:hcckmg these things itself

Duplication alone. h() e\~r Ca0i1l.l(lccount for the wide
disparity in complexl[Y and etfich!ncy between me three L YSX
implementations. ~oSt uf the dllfercl1\.t!s -tppear to be due to the
difficulty of adapting higher-level Char'nu~ ?rimiuvcs to the needs
of an application for which the~ dre J.im!J'it. but not quae. ~urrecL
In comparison to Charlone. the langu..Ige run-time packages tor
SODA and Chrysalis can

(1) move more than one link in a message

(2) be sure that all received messages Me want~d

(3) recover the enclosures in aboned messages

(4) detect all the exceptional conditions described In me language
definition. without any extra acknowledgments.

These advantages obtain prCl:isely bCl:ause the facilities for man.tg
ing vinual circuits and rbr screening incoming messages are rfOI pro
vided by the kernel. By moving these functions into me language
run-time package. SODA and Chrysalis allow the implementation to
be tuned specifically to lYNX. In addition. by maintJining the
flexibility of the· kernel interface they pennit equally efficient
implementations of a wide variety of other distributed languages,
with entirely different needs.

It should be emphasized that Charlotte was not originally
intended to support a disuibuted programming language. like the
designers of most similar systems. the Charlotte group expected
applications to be written directly on top of the kernel. Without the
benefits of a high-level language. most programm~rs probably would

prefer the comparatively powerful facilities of Charlotte to the com
paratively primitive facilities of SODA or Chrysalis. With a
language. however. the level of abstraction of underlying software is
no longer of concern to the average programmer.

For the consideration of designer.; of future languages and
~ystems. we can cast our experience with LYNX in the fonn of the
following lhree lessons:

Lesson one: Hints can be better than absolutes.
The maintenance of consistent. up-to-dale., distributed infonna
tion is often more trouble than it is worth. It can be consider
ably easier to rely on a system of hints. SO long as they usually
work, and so long as we can tell when they fail.

The Charlotte kernel admits that a link end has been moved
only when all three parties agree. The protocol for oblaining
such agreement was a major source of problems in the kernel,
panicularly in the presence of failures and simultaneously
moving ends (3J. The implementation of Unks on top o/SODA
and Chrysalis was comparatively easy. It is likely that the
Charlotte kernel itself would be simplified considerably by
using hints when moving links.

Lesson two: Screening belongs in the application layer.
Every reliable protocol needs top-level acknowledgments. A
distributed operating system can anempt to circum ~'ent this
rule by allowing a user program to describe in utiYance the
sons of messages it would be wi11ing to ackno~led8e if the"
arrived. The kernel can then issue acknowledgments on the
user's behalf. The shoncut only works if failures do not occur
between the user and the kernel. and if the descriplh'e facilities
in the kernel interface are sufficiently rich to specify precisely
which messages are wanted. In LYNX. the tennination of a
coroutine that was waiting for a reply can be considered to be a
"failure" between the user and the kernel. More imponant,
the descriptive mechanisms of Charlotte are unable to distin
guish between requests and replies on the same link.

SODA. provides a very general mechanism for screening mes
sages. Instead of asking the user to describe its screening func
tion. SODA allows it to provide that function itself, In effect,
it replaces a static description of ~desired messages with a for
mal subroutine that can be called when a message arrives.
Chrysalis provides no messages at all. but its shared-memory
operations can be used to build whatever style of screening is
desired.

Lesson three: Simple primitives are best
From the point of view of the language implementor. the
"ideal operating system" probably lies at one of two extremes:
it either provides everything the language needs, or else pro
vides almost nothing, but in a flexible and efficient fonn. A
kernel that provides some of what the language needs. but not
all. is likely to be both awkward and slow: awkward because it
has sacrificed the flexibility of the more primitive system. slow
because it has sacrificed its ~implicity. Clearly. Charlotte could
be modified to suppon all that LYNX requires. The changes,
however. would not be trivial. Moreover. they would probably
make Charlotte significantly larger and slower. and would
undoubtedly leave out something that some other language
would want

A high-lev~1 interface is only useful t(\ mos>! applications for
which its abstractions are appropriate. An application that
requires only a subset of the features pcol;idcCl by an underly
ing layer of software must generally pay for the whole set any
way. An application that require~ feature-; hddl'n b~ an under
lying layer may be difficuh or Impo,",,,ible tl\ build. For
general-purpose computing a dismhU[ed '1peratmg "ystem must
suppon a wide variety of /angudges Jnd. applications. In such
an environment the kernel intertJcc will need to he relatively
primitive.

Acknowledgments
Much of the research described in this article was conducted

in the .course of doccoral studies at the Univer.;ity of Wiscoosin
under the supervision of Associate Professor Raphael Finkel.

(IJ

(2J

(3J

(4J

(5J

(6J

(7J

(8J

(9J

(IOJ

(llJ

(12J

248

Rererences

O. R. Andrews. "The Distributed ProgrdrIlming Language
SR Mechanisms. Desigfl and Implementation. ..
Software - Praellce and Expe",nce 12 (\ 982J. pp. 719·753.

G. R. Andrews and R. A. Olsson. ··The Evolution of the SR
Language:' TR 85-22. Department of Computer Science,
The University of Arizona. 14 October 1985.

Y. Artsy, H.-Y. Chang, and R. FinkeL "Charlotte: Design
and Implementation of a Distributed Kernel," Computer
Sciences Technical Repon #554. University of Wisconsin
Madison, August 1984.

BBN laboratories. "Buttertly8 Parallel Processor Over
view." Report #6148, Venion I, Cambridge, MA, 6 Marth
1986.

A. P. Black. ··Supporting Distributed Appljj:ations: Experi
ence with Eden,·· Prouedings 0/ the Tenth ACM SyrrqJO
sium on OptTaling Systems Principles. 1-4 December 1985,
pp.18H93.

N. Carriero and D. Gelemter. ·'The S/Net's Unda Kernel,"
Proctedings of the Tenth ACM Symposium on Ope"'ting
Systems Principies, 1-4 December 1985, p. 160. Abstract
only; full paper to appear in AC M TOCS.

D. R. Cheriton and W. Zwaenepoel. ''The Distributed V
Kernel and its Performance for Diskless Workstations,"
Proctetiings of 'he Nimh ACM Symposium on Operating
Systems Principles, 10-13 October 1983. pp. 128-\39. In
ACM Operallng Systems Review 17:5.

D. 1. DeWitt, R. FinkeL and M. Solomon. ··The CRYSTAl.
Multicomputer: Design and Implementation Experience."
Computer Sciences Technical Repon #553. l!nh-ersit~ of
Wisconsin - Madison. September 1984.

R. Finkel M. Solomon. D. DeWitt and L. Lmdweber.
"The Charlotte Distributed Operating System: Pan (V of
the Fir.;t Repon on the Crystal Project" Computer Sciences
Technical Repon # 502. Unher.;it~ of Wisconsin -
Madison. October 1983.

D. Gelernter. "Dynamic Global ~ame Spaces on Network
Computers.·· Proceedings of 'he 1984 International Confe~
ence on Parallel Processing, 21-24 August 1984. pp. 25-31.

M. B. lones.. R. F. Rashid. and M. R. Thompson, ··MaICh
maker: An Interface Specification Language for Disbibuted
Processing," Conference Record oflhe Twelflh Annual AeM
Symposium on Principles of Programming Languages.. Janu
ary 1985. pp. 225-235.

1. Kepecs. "SODA: A Simplified Operating System for Dis
tributed Applications." Ph. D. Thesis. Univer.;ity of Wiscon
sin - Madison. January 1984. Published as Computer Sd
eDCes Technical Repon # 527, by I. Kepecs and M. Solo
mon.

(13]

(14]

(15]

(16]

(17]

(IS]

(19]

J. Kepecs and M. Solomon, "SODA: A Simplified Operat
ing System for Disuibuted Applications:' ACM Operatmg
Systems R"iew 19:4 (October 1985). pp. 45-56. OMginally
presented at me Third AeM SIGACT/SIGOPS Symposium
on Prin.ciples of Distributed Computing, Vancou·.er. B.C..
Canada. 27-29 August 1984.

B. liskov and R. Scheifter. "Guardians and Actions:
Linguistic Support for RobuSl Distributed Programs."
ACM TOPLAS 5:3 (July 1983). pp. 381-404.

S. 1. Mullender and A. S. Tanenbaum. "The Design or a
Capability·Based Disaibuted Operating System," Report
CS-R8418. Centre for Mathematics and Computer Science.
Amsterdam. The Netherlands. 1984.

M. L Powell and B. P. Miller. "Process Migration in
DEMOS/MP," Prrx:eedings of the /Vimh . .fC.\1 Symposium
on Operating Systems Principles. 10-13 October 1983. pp.
no-118. In AeM Operating Systems Rel/iew 17:5.

R. F. Rashid and G. G. Robertson ... Accent: A Communi
cation Oriented ~e(work Operating System Kernel,"
Proceedings of the Eighth ·Ie\(Symposium on Operating
Systems PrinciJl'e.\. !4·16 December 1981. pp. 64-75.

1. H. Saltz.er. D. P. Rc~J .. ltlJ D. D. Clark. "End-To·End
Arguments In System [Jc';lgn.·· IC,\(TOeS 2:4 (November
1984). pp. ~77-188

~. L. Scott Jnd R. A. Finkd. "LYNX: A Dynamic Distri
buted Programming Language." Proceedings of the 1984
Inlernalionai Conjerence on Parallel Processing, 21-24
August 1984. pp. 395-401.

(201 M. L. Scott. "Design and Implementation of a Disuibuted
Systems Language," Ph. D. Thesis. Technical Repol1 #5%.
Universil) of Wisconsin - Madison. May 1985.

(21]

(22]

(23)

(24)

(25]

(26]

(27]

249

M. L. Scott "Language Support for Loosely-Coupled Dis
tributed Programs," TR 183, Deparunent of Computer Sci
ence. University of Rochester, January 1986. Revised ver
sion to J.ppear in IEEE Transactions on Software Engineer
ing. December 1986.

R. E. Strom and S. Yemini. "NIL: An Integrated Language
aDd System for Distributed Programming:' Proceedings of
Ihe SIGPLAN '83 Symposium on Programming Language
Issues in Sojtware Syslems. ~7-29 June 1983. pp. 73-82. In
.KM SIGPLAN !Iiotices 18:6 (June 19S)).

R. E. Strom and S. Yemini. ''The NIL Distributed Systems
Programming Language: A SlatU, Report'- ACM SIG
PLAN Notices 20:5 (May 1985). pp. 36-44.

D. C. Swinehart. P. T. Zellweger. and R. B. Hagmann. ''The
Structure of Cedar." Proceedings of the ACM SIGPLAN 85
Symposium on Language Issues in Programming Environ·
men/So 25-28 June 1985. pp. 230-244. In ACM SIGPLAN
Nolices20:7 (July 1985).

United States Depanment of Defense. "Reference Manual
for the Ada$ Programming Language." (ANSlIMll.·
STD-1815A-1983).17 February 1983.

B. Walker. G. Popek. R. English. Co Kline. and G. Thiel.
''The LOCUS DistMbuted Operating System." Proceedings
of the Ninth ACM Symposium on Operating Systems Prind·
pIes. HHl October 1983. pp. 49-70. In ACM Operating
Systems Review 17:5.

N. Winh. Programming in Modula--l. Texts and \1ono
graphs in Computer Science. ed. D. Gries. Sprtnger·Verlag.
Berlin. Third, Corrected Edition. 1985.

