
A FRAMEWORK FOR THE EVALUATION
OF HIGH-LEVEL LANGUAGES

FOR DI STRIBUTED COMPUTING

by

Michael L. Scott

Computer Sciences Technical Report #563

October 1984

A Framework for the Evaluation
of High-Level Languages

for Distributed Com puting

\!{ichael L Scott

Department of Computer Sciences

University ot Wisconsin - Madison

1210W. Dayton

Madison. WI 5.3706

October 1984

ABSTRACT

The development of appropriate high-level languages for the expression of distributed

algorithms is an active area of current research. This paper presents a framework within

which such languages may be fruitfully contrasted and compared. Specitically. it

attempts to organize and clarify the major design decisions involved in the creation of

programming languages suitable for the writing of distributed programs for a multi­

computer. It then examines several recent proposals, showing how they fit into the

framework, and describing the novel features of each. The concluding section contains a

limited number of suggestions for future research,

This wOlk was supported in part by NSF grant number MCS-8105904. by Arpa conu'act number N0014/82/C/2087.
and by a Bell Telephone Laboratories Doctoral Scholarship,

CONTENTS

l. Introduction

2. The Framework

2.1. Processes and Modules

2.2. Communication Paths

2.3. Naming

2.4. Synchronization ..

2.S. Implicit and Explicit Message Receipt

2.6. Details of the Receive Operation

2.6.1. Message Screening

2.6.1.1. Semantics

2.6.1.2. Syntax

2.6.2. Multiple Rende?\ou~

2.7. Side Issues

3. Several Languages

3.1. Path E '<pI essions

3.2. Monitor language,

3.3. blended POP-2

3.4. Com mun icati ng Sequential Processes

3.5. Distributed Processes

3.6. Gypsy

3.7. PLITS and ZENO

2

2

5

7

III

1\
, ,
i _,

15

I"

3.8. Extended CLU and Argus 16

3.9. Communication Port.. 17

3.10. Edison 17

3.11. StarMod ... 17

3.12. ITP 18

3.13. Ada............ 19

3.14. Synchronizing Resources... 19

3.1S. Linda....... " 20

3.16. NIL 21

4. Related Notions

4.1. Concurrent Languages

4.2. Nelson's Remote Procedure Call

4.3. Distributed Operating Systems

4.3.1. Links

4.3.2. SODA .. .

5. Conclusion

21

21

22

22

23
23

24

Acknowledgments ... 25

References 25

1. Introduction

It has been recognized for some time that certain algorithms (operating systems in particular)

are most elegantly expressed by concurrent programs in which there are several independent and,

at least in theory, simultaneously active threads of control. On the assumption that the threads

interact by accessing shared data, a whole body of research has evolved around methods for syn­

chronizing that access [15, 16,23.26.27,38.-+2.43]. Even on a conventional uni-processor, effec­

tive synchronization is crucial in the face of context switches caused by interrupts,

With the development of multi-computers it has become practical to distribute computations

across multiple machines, This prospect has lent a new urgency to the stud\ of distributed
programs - concurrent programs in which separate threads of control may run on separate physi­

cal machines, There are two reasons tor the urgency:

(I) On a multi-computer, a distributed program may solve a problem substantial Iv faster than its

sequential counterpart

(2) The systems programs for a multi-computer must by their very nature be distributed

Unfortunately, there IS no general consensus as to what language katl! res al e most applOpri

ate for the expression of distributed algorithms, Shared data is no longer the obvious approach, 'Ince

the underlying hardware supports message passing instead, The alternatives proposed to date sholA a

remarkable degree of diversitv This paper attempts to deal with that diversity hv developing a trarne­

work for the study of distributed programming languages. The framework allows us to ,:ompare

existing languages for semantic (as opposed to purely cosmetic) differences. and it allows us to

explore new and genuinely different possibilities

Section 2 presents the framework, Section.3 uses that framework to evaluate a number of

existing languages, No attempt is made to survey techniques for managing shared data (good surveys

have appeared elsewhere [4]). The evaluations are intentionally biased towards languages that lend

themselves to implementation on top of a distributed operating system. where message passing is the

only means of process interaction.

2. The Framework

This section discusses what seem to me to be the major issues involved in distributed language

design:

- processes and modules
- communication paths and naming
- synchronization
- implicit and explicit message receipt
- message screening and multiple rendezvous
- miscellany: shared data, asynchronous receipt. timeout, reliability

The list is incomplete. The intent is to focus on those issues that have the most profound effects on

the flavor of a language or about which there is the most controversy in the current literature.

2

2.1. Processes and Modules

A process is a logical thread of control It is the working of a processor, the execution of a

block of code, A process is described bv a state vector that specifies its position in its code, the

values of its data, and the status of its interfaces to the rest of the world,

A module is a syntactic construct that encapsulates data and procedures. A module is a

closed scope. It presents a limited interface to the outside world and hides the details of its internal

operation.

In a sense, a module is a logical computer and a process is what that computer does. Several

language designers have chosen to associate exactly one process with each module, confusing the

difference between the two. It is possible to design languages in which there may be more than one

process within a module, or in which a process may travel between modules ~uch languages may

pretend that the processes within a module execute concurrently, or they mav acknowledge that the

processes take turns. In the latter case, the language semantics must specit"- the circumstances under

which execution switches from one process to another. In the former case. the language must pro­

vide some other mechanism for synchronizing access to shared data

Modules are static objects in that thev are defined when a program IS written. Some

languages permit them to be nested like Algol blocks; others insist they be disJoint. fn some cases, it

may be possible to create new instances of a module at run time, Separate instances have separate

sets of data.

Some languages insist that the number of processes in a program be fixed at compile time

Others allow new ones to be created during execution Some languages insist that a program's

processes form a hierarchy, and impose special rules on the relationships between a process and its

descendants. In other languages, all processes are independent equals. A process may be perm itted

to terminate itself. and perhaps to terminate others as well. It will usually terminate automatically if

it reaches the end of its code.

2.2. Communication Paths

The most important questions about a distributed language revolve around the facilities it pro­

vides for exchanging messages. For want of a better term, I define a communication path to be

something with one end into which senders may insert messages and another end from which

receivers may extract them. This definition is intentionally vague. It is meant to encompass a wide

variety of language designs.

Communication paths establisll an equivalence relation on messages. Senders assign messages

to classes by naming particular paths (see section 2.3). Receivers accept messages according to

class by selecting particular paths (see section 2.6.1). Messages sent on a common path enjoy a

special relationship. Most languages insert them in a queue, and guarantee receipt in the order they

were sent. Some languages allow the queue to be reordered.

One important question is most easily explored in terms of the abstract notion of paths: how

3

many processes may be attached to each end" There are tour principal options: 1

(1) Many senders, one receiver - This is by far the most common approach It mirrors the

client/server relationship found in many useful algorithms: a server (receiver) is willing to

handle requests from any client (sender). A single server caters to a whole community of

clients. Of course, a server may provide more than one service: it may be on the receiving

end of more than one path. Separate paths into a receiver are commonly called entry points.
In theory, one could get by with a single entry point per server The advantage of multiple

entries is that they facilitate message screening (see section 2.6.1) and allow for strict type

checking on each of several different message formats. From an implementor's point of view.

multiple entry points into a single recei\er are handled in much the same way as multiple

senders on a single communication path

(2) One sender. many recei\ ers - Th is dpproach is symmetric to that in (l). It is seldom used,

however. because it does not reflect the structure of common algorithms

(.3) Many senders, many receivers - This is the most general approach. In its purest form it is

very difficult to implement The problem has to do with the maintenance of bookkeeping

information for the path. In the one-receiver approach, information is comenientlv stored at

the receiving end. In the one-sender approach, it is kept at the sending end With more than

one process at each end of the path, there is no obvious location It we store all information

about the status of the path on a single processor, then all messages will end up going through

that intermediary, doubling the total message traffic. If we attempt to dislribute the informa­

tion, we will be led to situations in which either a) a sender must (at least implicitly) query all

possible receivers to see if they want its message, or b) a receiver must query all possible

senders to see if they have any messages to send.

Neither option is particularly desirable. Protocols exist whose communication requirements

are linear in the number of possible pairs of processes [10,21], but this is generally too

costly. One way out is to restrict the model by insisting that multiple processes on one end of

a path reside on a single physical machine. This approach is taken by several languages: mes­

sages are sent to modules, not processes. and any process within the module may handle a

message when it arrives.

(4) One sender, one receiver - This approach is the easiest to implement. but is acceptable only

in a language that allows programmers to refer conveniently to arbitrary sets of paths. In

effect, such a language allows the programmer to . 'tie" a number of paths together. imitating

one of the approaches above.

The preceeding descriptions are based on the assumption that each individual message has

exactly one sender and exactly one receiver, no matter how many processes are attached to each end

of the communication path. For some applications, it may be desirable to provide a broadcast facil­

ity that allows a sender to address a message to all the receivers on a path, with a single operation.

Several modern network architectures support broadcast in hardware. Unfortunately, they do not all

guarantee reliability. Broadcast will be complex and slow whenever acknowledgments must be

I These fOUl options COl respond. respectively. to the distributed operating system concepts of input ports, output ports.
free POltS, and bound ports. I have avoided this nomenclature because of the contlicting uses of the word "port" by various
language designs.

4

returned by each individual recei\ er

Several language and operatll1g system designers have attempted to implement send and receive

as symmetric operations (see in particular sections 3A and 4".3.2). Despite their efforts. there

remains an inherent asymmetry in the senderireceiver relationship: data tlows one way and not the

other. This asymmetry accounts for the relative uselessness of one-many paths as compared to

many-one. It also accounts for the fact that no one even discusses the symmetric opposite of broad­

cast: a mechanism in which a receiver accepts identical copies of a message from all the senders on a

path at once.

2.3. Naming

In order to communicate. processes need to be able to name each other. or at least to name

the communication paths that connect them ;\fames may be established at compile time. or it may be

necessary to create them dynamically The issue of naming is closely related to the above discus­

sions of processes. modules. and communication paths" Several comments should be made:

In the typical case ot many senders/one receiver. it is common for the sender to name the

receiver explicitlv. possiblv naming a ::ipecific path (entry) into the receiver if there is more

than one. Meanwhile the receiver specifies only the entry point. and accepts a message from

anyone on the other end of the path

Compileel-in names can only distinguish among things that are distinct at compile time. Mul­

tiple instantiations 01 a single block of code will require dynamically-created names.

In languages where messages are sent to modules. it may be possible tor names (of module

entry points) to be established at compile time. even when the processes that handle messages

sent to the module are dynamically created. Processes within a moelule may be permitted to

communicate with each other via shared data.

Several naming strategies appropriate for use among independent programs in a distributed

operating system are not generally found in programming language proposals Finkel [33] suggests

that processes may refer to each other by capabilities. by reference to the facilities they provide. or

by mention of names known to the operating system. These approaches allow for much looser cou­

pling than one would normally expect among the pieces of a single program. They may be appropri­

ate in languages designed to support communication among processes that have been developed

independently [73]"

2.4. Synchronization

Since all inter-process interaction on a multi-computer is achieved by means of messages. it is

neither necessary nor even desirable for a language to provide synchronization primitives other than

those inherent in the facilities for communication. The whose question of synchronization can be

treated as a sub-issue of the semantics of the send operation [24,33 . .'58]. There are three principal

possibilities:}

2 In any palticular implementation. the process III sending a message will require a large number of individual steps
Conceivably, the sender could be unblocked after any nne nt those steps" In terms of programming language semantics. how­
ever. the only steps that matter are the ones that we visible to the user-level pi oglam

5

(I) No-wait send - In this approach the sender of a message continues execution immediatelv.

even as the message is beginning the journey to wherever it is going. The operating system or

run-time support package must buffer messages and apply back-pressure against processes that

produce messages too quickly. If a communication error occurs (tor example. the intended

recipient has terminated). it may be quite difficult to return an error code to the sender. since

execution may have proceeded an arbitrary distance beyond the point where the ,end was per­

formed.

(2) Synchronization send - In this approach the sender of a message waits until that message has

been received before continuing execution Message traffic may increase. since the imple­

mentation must return confirmation of receipt to the sender of each message. Overall con­

currency may decline. On the other hand. it is easv to return error codes in the event of

failed transmission Furthermore. there is no need tor buffering or back-pressure (though

messages from separate processes mav still need to he queued on each communication path).

(3) Remote invocation send - In this approach the ~ender of a message waits until it receives an

explicit reply trom the message ~ recipient The name remote invocation is meant to sug­

gest an analogy to calling a procedure the sender transmits a message (111 parameters) to a

remote process that performs some operation ane! returns a message (0111 parameterq to the

sender. who may then continue e\ecution The period of time during which the sender is

suspended is referred to as a rendezvous. For applications in which it mirrors the natural

structure of the algorithm. remote invocation send is both clear and efficient. Both the origi­

nal message and the (non-blocking) reply carry useful information: no unnecessary confirma­

tions are involved. As Liskov [58] points out. however. many useful algorithms cannot be

expressed in a natural way with remote invocation

The choice of synchronization semantics is one of the principle areas of disagreement among

recent language proposals. Section.3 includes examples of all three strategies.

2.5. Implicit and Explicit Message Receipt

Cashin [24] discusses a duality between "message-oriented" and "procedure-oriented"

inter-process communication. Rather than semantic duals. I maintain that his approaches are merely

varying syntax for the same underlying functionality. What is at issue is whether message receipt is

an e_tplicil or an implici I operation

In the former case. an active process may deliberately receive a message. much as it might

perform any other operation. In the latter case. a procedure-like body of code is activated automati­

cally by the arrival of an appropriate message. Either approach mav be paired with any of the three

synchronization methods.

Implicit receipt is most appropriate when the functions of a module are externally driven. An

incoming message triggers the creation of a new process to handle the message. After the necessary

operations have been performed, the new process dies. Alternately. one may think of the message as

awakening a sleeping process that performs its operations and then goes back to sleep, pending

arrival of another message. There may be one such "sleeping process" for each of the module's

entry procedures. or it may be more convenient to imagine a single sleeper capable of executing any

of the entries. If remote invocation send is used. it may be intuitive to think of the "soul" of a

6

sender as traveling along WI[h its message This ~olll then animates the recel\/lng block of code.

eventually returning to its original location (along with the reply message). and leaving tllat code as

lifeless as before. Each of these options suggests a different implementation.

Implicit receipt is a natural svntax tor the client/server model. It is better suited than the

explicit approach to situations in which requests may arrive at unpredictable times or in which there

is no obvious way to tell when the last message has arrived. Explicit receipt. on the other hand. is

more appropriate tor situations that lack the client/server asymmetry It is useful tor expressing

coroutines and similar applications in which communication is among active. cooperating peers.

Typically both parties have useful work to do between conversations. An obvious example is a

producer/consumer pair in which both the creation of new data and the consumption ot old are time­

consuming operations.

The choice of syntax for message receipt is a second major area of disagreement among recent

language proposals (Synchronization was the I~ rSt). Most languages employ one or the other. though

StarMod (section .3. II) and NIL (section .1 16) provide both.

2.6. Details of the Recei1'f? Operation

As noted above. most languages permit multiple senders. but onlv one receiver on each com­

lllunication path. In addition. they tYPll,!ll\ allow a process to be non-deterministic in choosing the

entry point it wants to service next: instead ot having to specify a particular path. a receiver is free to

accept messages from any of a variety \)1 palhs \)11 which they may be present. By comparison. !Jelld

is relatively simple 3 This section discusses IINO of the more important aspects of the receive opera­

tion.

2.6.1. Message Screening

Assume for the moment that a process Illav tOI III the receiving end of several communication

paths. Further. assume that each of these paths may carry a variety of messages from a variety of

senders. In a completely non-deterministic situation. a receiver might be expected to cope with any

message from any process on any path. This burden is usually unacceptable. A process needs to be

able to exercise control over the sorts ot messages it is willing to accept at any particular time. It

needs to qualify its non-deterministic options with guards that specify which options are open and

which are currently closed.

2.6.1.1. Semantics

There is a wide range of options for message screening semantics. Every language provides

some means of deciding which message should be received next. The fundamental question is: what

factors may be taken into account in reaching the decision? The simplest approach is to "hard­

code" a list of open paths. In effect. this approach allows the decision to be made at compile time.

Most languages, however, allow at least part of the decision to be made at run time. Usually, the

3 Among the languages discussed in section.3 eSPIRO [-'IX] is the only exception to this rule Though it permits only a
single sender and 1 eceiver on each comillunication path. the language allows both sender s ,Ult! receivers to choose among
several alternative paths, depending 011 whether ,Ulyone is listening on the other end This added tlexibility entails implementa­
tion problems similar to those discussed in section 2.2 (3) For a more complete discussion of esp. see section.3..+

7

programmer will specify a Boolean condition that must evaluate to "'true' before a particular mes­

sage will be accepted The question now becomes on what may the Boolean condition depend? It is

not difficult to implement guards invol\ing only the local variables of the receiver. Complications

arise when a process tries to base its choice on the contents of the incoming messages. In most

languages. messages arriving on a particular communication path are ordered by a queue. In a few

cases. it may be possible to reorder the queues In any case. a simple implementation is still possible

if path selection or queue ordering depends on some particular well-known slot of the incoming mes­

sage. PLITS and ZENO for example. allow .\ process to screen messages by sender name (path) and

transaction slot (see section.) 71

In the most general case .. a language ma" permit a receiver to insist on predicates involving

arbitrary fields of an incoming message The implementation then has no choice but to go ahead and

receive a message sight unseen. then look at its contents to see if it really should have done so.

Unless unwanted messages can be returned to their sender. the receiver may require an arbitrary

amount of buffer space.

2.6.1.2. Syntax

The precise way in which guards ale specitied depends largely on the choice hetween implicit

and explicit message receipt With implicit I eceipt. there are two basic options'

(a) The language may allow an entrv procedure to suspend itself while waiting tor an arbitrary

Boolean expression to become trlle

(b) The language may provide condition queues or semaphores 011 which all entry procedure

may suspend itself. assuming that some other procedure will release it \,;hen it is safe to

proceed.

The first approach is the more general of the two,. The second is easier to implement. and is

generally more efficient. Brinch Hansen discusses the tradeoffs involved [19] (pp. 15-21). Both

approaches assume that an entry procedure may suspend itself at any time. and is thus free to exam­

ine an incoming message before doing so. Since the messages will differ from one instance to the

next. separate activation records will be required for each suspended entry. Campbell and Haber­

mann [23] suggest the simpler (and more restrictive) approach of allowing guards to involve local

data only. and of insisting they occur at the very beginning of their entry procedures. A language

that took such an approach would be able to avoid the separate activation records, It would also be

less expressive.

Guards are more straightforward with explicit receipt. Nonetheless. a fair amount of syntactic

variety is possible. The most common approach looks something like a Pascal case statement. with

separate clauses for each possible communication path. Each clause may be proceeded by a guard.

The physical separation of clauses allows messages of different types to be received into ditferent

local variables. In a language with looser message typing (for example PLITS and ZENO. of section

.3,7), there may be a statement that specitles receipt into a single variable from any of a set of open

paths. An ordinary sequential case statement then branches on some field of the message just

received.

9

mechanism for synchronizing access to the data those processes may share.

(3) Timeout and related issues - In most proposals employing synchronization or remote invoca­

tion send. the sender of a message mav he suspended indetinitely if no one is willing to listen

to it. Likewise a process that attempts to receive a message may have to wait forever if no one

sends it anything. Such delays may be acceptable in a distributed program where communica­

tion patterns are carefully defined and each process is able to assume the correctness of the

others. In certain real-time applications. however. and in language systems that attempt to

provide for reliability under various sorts of hardware failure. it ma!, he desirable to provide a

mechanism whereby a process that waits 'too long" times out and is able to take some sort of

corrective action.

One particular sort of timeout is especially useful. and may he prO\ ided even in cases where

the more general facility is not. By specifying a timeout of zero. a process can express its

desire to send or receive a message only when such a request can be satisfied immediate".

that is when some other process has already expressed its willingness [0 f01m the other end ot

the conversation.

(4) Robustness - Where hardware reliability is in doubt. or \vhen ,I program is expected to

respond in a I'easonable fashion [0 unpredictable real-time c\l'lHS. the language may need to

provide for errOl detection and recovery. Liskov' s Extended CU' <lndArgus (section 3 8) are

noteworthy examples rile problems involved in providing tor reliabilitv in distributed pro­

grams have not been adequatelv investigated. Like many others. I ignore thenL

(5) Unreliable send - In certain applications. particularly in the processing of real-time data.

speed may be more important than reliability. It may be more appropriate to send new data

than to resend messages that faiL For such applications. a language may provide fast but

unreliable messages" If aknowledgments are not required. it may be possible to provide a

broadcast service at no more cost than point-to-point communication.

3. Several Languages

This section surveys more than two dozen distributed language proposals. For each. it

describes how the language fits into the framework of section 2. and then mentions any features that

are particularly worthy of note Languages are considered in approximate order of their publication"

For those without the patience of a saint. I particularly recommend the sections on monitor

languages. CSP. Distributed Processes. Argus. and Ada.

3.1. Path Expressions

Path Expressions [23.39] are more of a mechanism than a language. They were invented by

Campbell and Habermann in the early 1970' s to overcome the disadvantages of semaphores for the

protection of shared data. Rather than trust programmers to insert P and V operations in their code

whenever necessary, the designers of path expressions chose to make synchronization rules a part of

the declaration of each shared object.

The path expression proposal makes no mention of modules. nor does it say much about the

nature of processes. It specit\es only that processes run asynchronously. and that they interact solely

8

2.6.2. Multiple Rendezvous

[n a language using remote invocation send. it is often useful for a receiver to be in rendez­

vous with more than one sender at a time One ingenious application involves a process

scheduler [18,64]. The scheduler has two entry points: schedule-me and I'm-done. Every process

with work to do calls schedule-me. The scheduler remains in rendezvous with all of these callers but

one. While that caller works. the scheduler figures Ollt which process P has the next-highest prior­

ity. When the worker calls f'm-done. the scheduler ends its rendezvous with P

In a language with both remote invocation send and implicit message receipt. a module mav

be in rendezvous with several senders at one time. If each entry procedure runs until it blocks. then

the module is a monitor [43]. If the implementation time-slices among entries. or if it employs a

multi-processor with common store. then the language must provide additional mechanisms tix con­

trolling access to the module s common data.

Multiple rendezvous is also possible with explicit message receipt Se\eral languages require

the receive and reply statements to be paired svntactically. but allo\\; the pairs to nest In such

languages the senders in rendezvous with a single receiver must be released in UFO order. If

senders are to be released in arbitral" order. then the replv (or disCOIlIll'lf) statement must be able to

specify which rendezvous to end \lutual excilision among the senders is not an issue. since onlv

one process is involved on the receiving end .\/1ao and Yeh [641 note that careful location of a

discollilect statement can minimize the amount of time J sending process waits. leading to higher con­

currency and better performance Similar tuning is not generally possible with implicit receipt.

senders are released implicitly at the end of entry procedures. It would be possible to provide an

explicit disconnect with implicit receipt. but it would tend to violate the analogy to sequential pro­

cedure calls.

2.7. Side Issues

The issues discussed in this section are less fundamental than those addressed above. Thev

fall into the category of convenient' 'extra features' '- things that mayor may not be added to a

language after the basic core has been designed.

(1) Shared data - In order to permit reasonable implementations on a multi-computer. a distri­

buted language must in general insist that all interaction among processes be acheived by

means of messages. For the sake of efficiency. however. a language may provide for shared

access to common variables by processes guaranteed to reside on the same physical machine.

It may be necessary to provide additional machinery (semaphores. monitors. critical regions.

etc.) to control "concurrent'· access.

(2) Asynchronous receipt - Several communication schemes place no bound on the length of

time that can pass before a message is noticed by the process to which it was sent. There is

certainly no such bound for explicit receipt. There are times. however. when it is desirable to

receive c1ata as soon as it becomes available. One solution is to provide so-called immediate
procedures [33] - special entry procedures that guarantee immediate execution. The

existence of immediate procedures implies that multiple processes may be active in the same

module" Moreover. it implies that execution may switch from one process to another at

unpredictable times. As noted in section 2. I. the language will need to provide some special

10

by invoking the operations provided b~ shared objects Like the monitors described below. path

expressions can be forced into a distributed framework by considering a shared object to be a passive

entity that accepts requests and returns replies. Under this model. the proposal uses remote invoca­

tion send with implicit message receipt. Communication paths are many-one. There may be several

identical objects. Processes name both the object and the operation when making a request

The declaration of a shared object specifies three things: the internal structure of the object..

the operations that may be invoked from outside and that are permitted to access the internal struc­

ture. and the path expressions that govern the synchronization of invocations of those operations.

There is no convenient way to specify an operation that works on more than one object at a time

A path expression describes the set of legal sequences in which an objecfs operations Illav he

executed. Svntactically. a path expression resembles a regular expression "(A. B); :C:; D lor

example. is a path expression that permits a single execution of either A or B (but not both) tollowed

by one or more simultaneous executions of C. followed in turn by a single execution of D There is

no restriction on which executions may he performed on hehalf of which processes.

The original path expression proposal [23] permitted Kkene closure only for expressions as a

whole: internal pieces could not be repeated an dlhitran !lumber of times. Operations could (all

each other. but no operation could ,lppear 011 mUle lhan lJnC path Later modification~ to the propo-'

sal [39] relaxed these restrictions and proposed additional ~\ llta\ for bounding the difference in the

number of executions of parts of a path The original proposal included a proof that path c:xpressions

and semaphores are equally powerful. each can be used 10 implement the other.

Robert and Verjus [70] have sugge'ired an alternative syntax tor path expressions. Like Camp­

bell and Habermann. they dislike scattering synchronization rules throughout the rest of the code.

They prefer to group the rules together in a control module that authorizes the executions of a set of

operations. Their synchronization rules are predicates on the number of executions of various

operations that have been requested. authorized, and/or completed since the module was initialized.

Their solutions to popular problems are both straightforward and highly intuitive.

3.2. Monitor languages

Monitors were suggested by Dijkstra [27], developed by Brinch Hansen [16], and formalized

by Hoare [4.3] in the early 1970s. Like path expressions. monitors were intended to regularize the

access to shared data structures by simultaneously active processes. The first languages to incor­

porate monitors were Concurrent Pascal [17]. developed by Brinch Hansen. and SIMONE [51].

designed by Hoare and his associates at Queen's University, Belfast. Others include SB-Mod [11].

Concurrent SP/k [45.46]. Mesa [57]. Extended BCPL [63]. Pascal-Plus [78], and Modula [80]. Of

the bunch. Concurrent Pascal. Modula. and Mesa have been by far the most influential. SIMONE

and C-SP/k are strictly pedagogical languages. Pascal-Plus is a successor to SIMONE. SB-Mod is a

dialect of Modula.

In all the languages. a monitor is a shared object with operations. internal state. and a

number of condition queues. Only one operation of a given monitor may be active at a given point

in time. A process that calls a busy monitor is delayed until the monitor is free. On behalf of its

calling process, any operation may suspend itself by wailing on a queue. An operation may also ,ig­

na! a queue. in which case one of the waiting processes is resumed. usually the one that waited first.

11

Several languages extend the mechanism by allowing condition queues to be ordered on the basis of

priorities passed to the wai { operation. Mesa has an even more elaborate priority scheme for the

processes themselves.

Monitors were originally designed for implementation on a conventional un i-processor TI1ey

can, however, be worked into a distributed framework by considering processes as active entities

capable of sending messages, and by considering monitors as passive entities capable of receiving

messages, handling them. and returning a reply. This model agrees well with the semantics of Con­

current Pascal and SIMONE. where monitors provide the Ull/V form of shared data. It does not

apply as well to other languages. where the use of monitors is optional Distributed implementations

would be complicated considerably by the need to provide for arbitrary data sharing.

Concurrent PascaL SIMONE. E-BCPL ,lnd eSP'k ha\e no modules In the other four

languages surveyed here. monitors are a speCial kind of module ylodules ma" nest In Modula and

SB-Mod. the number of modules is ti\ed at compile time. In Pascal-Plus and VIesa. nC',v instances

may be created dvnamicallv Pascal-Plus modules are called envelopes They hene an unusually

powerful mechanism f·or initialization and linaliz.ation Vlodules in 5B-Mod .Ire declared in

hierarchical levefs Inter-module procedure calls are not permitted from higher to lower levels.

SIMONE. C-SP/k and Pascal-Plu, plOvlde built-in mechanisms tor simulation ~Hlcl the manipulation

of pseudo-time

Concurrent Pascal and C-SP!/(programs contain a fi\ed number of processes. Neither

language allows process declarations to nest. but Concurrent Pascal requires a hierarchical ordering

(a DAG) in vvhich each parent process lists explicitly the monitors to which its children are permitted

access. In the six other languages. new processes can be created at run time. Process declarations

may be nested in Pascal-Plus. and the nesting defines an execution order: each parent process starts

all its children at once and waits for them to finish before proceeding. In Mesa. process instances

are created by forking procedures. Mesa compounds the problems of shared data by allowing arbi­

trary variables to be passed to a process by reference. Nothing prevents an inner procedure from

passing a local variable and then returning immediately, deallocating the variable and turning the

reference into a dangling pointer.

Under the distributed model described above. monitor languages use remote invocation send

with implicit receipt. Communication paths are many-one. In languages that permit mUltiple moni­

tors with identical entries (Concurrent Pascal. Pascal-PI us. and Mesa), the sender must name both

the monitor and entry. It also names both in SIMONE. but only because the bare entry names are

not visible under Pascal rules for lexical scope. In E-BCPL the sender calls the monitor as a pro­

cedure. passing it the name of the operation it wishes to invoke.

The precise semantics of mutual exclusion in monitors are the subject of considerable

dispute [4,40,47 . .52,55.62.67.79]. Hoare's original proposal [43] remains the clearest and most

carefully described. It specifies two bookkeeping queues for each monitor: an entry queue. and an

urgent queue. When a process executes a signa! operation from within a monitor. it waits in the

monitor's urgent queue and the first process on the appropriate condition queue obtains control of

the monitor. When a process leaves a monitor it unblocks the tlrst process on the urgent queue or.

if the urgent queue is empty. it unblocks the first process on the entry queue instead.

12

These rules have two unfortunate consequences

(I) A process that calls one monitor from within another and then waits on a condition leaves the

outer monitor locked, If the necessarv signal operation can only be reached by a similar

nested call. then deadlock will result

(2) Forcing the signaller to release control to some other waiting process may result in a prohibi­

tive number of context switches, It mav also lead to situations in which the signaller wakes up

to find that its view of the world has been altered unacceptably

One solution to the first problem is to release the locks on the outer monitors of a nested \VClIl

This approach requires a means ot restoring the locks when the waiting process is finallv resumed

Since other processes may have entered the outer monitors in the intervening time. those locks might

not be available, On a uni-processoL the problem can be solved by requiring all operations of all

monitors to exclude one another in time, Outer monitors will thus be empty when an inner process

is resumed. Most of the languages mentioned here use global monitor exclusion. The e'(ceptions

:1re Concurrent Pascal. Mesa. and SB-MO(L

Concurrent P:1scal :1nd Mesa provide a separate lock for each monitor. Nested calls leave the

outer levels locked. SB-Mod provides a lock for each set of monitors '.vhose data are disjoint, There

are two forms of inter-monitor calls One leaves the calling monitor locked. the other leaves it

unlocked. Neither affects monitors higher up the chain, A process that returns across levels from a

nested monitor call is delayed if the calling monitor is busv

The second problem above can be addressed in several wavs. Modula [81]. SB-Mod .. E­

BCPL, and C-SP/k all reduce the number of context switches bv eliminating the urgent qllellels).

Careful scheduling of the un i-processor takes the place of mutual exclusion In general. process

switches occur only at WClIl and signal operations. and not at module exit..j When the current process

signals, execution moves to the first process on the appropriate condition queue. When the current

process waits. execution may move to any other process that is not also waiting. 5 A process that

would have been on one of Hoare's entrv queues may well he allowed to proceed before a process on

the corresponding urgent queue.

Concurrent Pascal requires that signal operations occur only at the end of monitor routines.

There is thus no need for an urgent queue. To simplify the implementation, Concurrent Pascal

allows only one process at a time to wait on a given condition. Mesa relaxes these restrictions by

saying that a signal is only :1 hint. The signaller does not relinquish control. Any process suspended

on a condition queue must explicitly double-check its surroundings when it wakes up: it may find it

cannot proceed after all. and has to wait again. Wettstein [79] notes that if signals are only hints

then it is indeed feasible to release exclusion on all the monitors involved in a nested wait (though

Mesa does not do so). Before continuing, a signalled process could re-join each of the entry queues.

one by one. After regaining the locks it would check the condition again.

4 E-BCPL tillleslices among the runnable [lIocesses Clock interrupts are disabled inside monitor mutines SB-Mocl
reschedules pmcesses in res[lonse to hrudwrue interrupts. but the interrupts ale masked at all levels below that of the current
process. Interrupted processes ru"e I esullled when the cur rent process attempts to return to a lower interru[lt level

5 The next [lrocess to run after a wail is always the next runnable [lrocess on a circulru' list All processes stay on the
list in Modula, SB-Mod, and E-BCPL. Theil order is tixed. [n C-SP/k, waiting [lrocesses rue removed tiom the list. eventu­
ally to be re-inserted behind their signaller

Kessels [.55] suggests a different approach to the semantics of conditions. If every queue is

associated with a pre-declared Boolean expression. then the signal operation can be dispensed with

altogetheL When a process leaves a monitor. the run-time support package can re-evaluate the

Boolean expressions to determine which process to run next.

SB-Mod expands on Kessel's proposal. The Boolean expressions for condition queues are

optional. Wail suspends the caller if the expression is false or was not provided. 'iel1d (SIf{l1a{)

transfers control to the t1rst process on the queue if the expression is true or was not provided. A

new operation called "mark" sets a flag in the first process on the queue. When the current process

leaves its monitor. the queue is re-examined. If the expression is true or was not provided [hen the

marked process is moved to the ready queue. No process switch occurs.

Of all the languages surveyed. SIMONE is truest to Hoare. It does not pro\ Ide separate entrv

queues for every monitor. but it does provide an urgent slack. with processes le~ull1ed III LIFO

order

3.3. Extended POP-2

Kahn and MacQueen f50] ha\e implemented a small but elegant lan~lIage based on a general­

ization of coroutines Their language has much in common with CSP (section .3.-+. below) but was

developed independently

Process declarations in Extended POP-2 look very much like procedures. There are no

modules. Processes share no datLL They are instantiated with a cobeglll construct called" doco."

The doco statement uses a series of channels to connect input and output ports in the newly-created

processes.

Once running, processes can communicate by means of pUI and gel operations on ports.

Given the binding to channels achieved by doco. communication paths are one-one. Send is non­

blocking and butTered Receive is explicit. and names a single port. There is no provision for non­

deterministic or selective receipt. Processes with a single input and a single output port may be

instantiated with a special functional syntax.

3.4. Communicating Sequential Processes

CSP [44] is not a full-scale language. Rather, it is an ingenious proposal by C A. R. Hoare

for the syntactic expression of non-determinism and inter-process communication. CSP/80 [48],

Extended CSP [6], occam [65]. and a nameless language by Roper and Barter [71] are all attempts to

expand Hoare's syntax into a usable language. I will refer to Extended CSP as E-CSP and to Roper

and Barter's language as RB-CSP.

Processes are the central entities in CSP. There are no modules. Regular CSP, E-CSP.

occam, and RB-CSP all allow new processes to be created at run time with a modified cobegin con­

struct. CSP/80 provides for a fixed number of independent processes, statically detlned. Sub­

processes in E-CSP and RB-CSP are not visible to their parent's peers. Messages from outside are

addressed to the parent. The parent redirects them to the appropriate child. To avoid ambiguity. the

E-CSP compiler guarantees that no two subprocesses ever communicate with the same outsider.

RB-CSP performs the equivalent checks at run time. None of the CSP languages supports recursion.

14

Disjoint processes in CSP do not share data; all interaction is by means of a generalization of

the traditional concepts of input and outpuL In regular CSP. and in CSP/80 and occam. the result

is equivalent to explicit receipt and synchronization send, E-CSP provides both synchronization and

no-wait send, RB-CSP uses onlv no-wait send.

Communication paths in CSP are one-one: both sender and receiver name the process at the

other end. Forcing the receiver to name the sender prevents the modeling of common client/server

algorithms. It also precludes the lise of libraries. The four implementations mentioned here address

the problem in different ways, CSP'80 lets processes send and receive through ports Sender ports

and receiver ports are bound together in a special linking stage Occam processes ,end and receive

messages through channels Any process can use any channel that is visible under the rules ot lex.i­

cal scope. E-CSP and RB-CSP provide [)rocessname variubii!) .-\n E-CSP I'ecei\el' ~tlll ~pecifies a

sender. but the name it uses can be computed at run time. An RB-CSP receiver doe..; nor ~pt'cit\ rhe

sender at aiL It specifies a message type and must be willing to receile from ~\l1\ 5ender \-lith a

matching type.

Communication is typeless in re!;,:uiar CSP and in occam T\pe~ are associated \,1 ith pons in

CSP/80, They are associated with individual l;ommunication statements in E-CSP In(li\idual input

and output commands match onh if tht'ir t\'pe~ a~lee RB-CSP orO\ides .1 'pecial f\ pc cOIl..;tructor

called message with named slots mllch like those of PUTS tsection ,7) >\ given process need

only be aware of the slots it may actuall\ use

CSP incorporates Dijkstra s non-deterministic guarded commands [28J\ ,peual kind ot

guard. called an input guard. evaluates to true onlv if a specified input command can proceed

immediately. In regular CSP. and in E-CSP and RB-CSP. there is no corresponding Olllplil guard to

test whether a process is waiting to receive. Hoare notes that the lack of output guards makes it

impossible to translate certain parallel programs into equivalent. sequential versions" CSP with input

guards alone can be implemented by the usual strategy for many-one communication paths (see sec­

tion 2.2): information is stored at the receiving end. The provision of output guards as well leads to

the usual problems of many-many paths (for a discussion. see the appendix of Mao and Yeh's paper

on communication ports [64]). Moreover. as noted by the designers of CSP/80. the indiscriminate

use of both types of guards can lead to implementation-dependent deadlock. Nonetheless. CSP/SO

does provide both input and output guards. Special restrictions are imposed on the nature of paths to

eliminate the deadlock problem.

3.5. Distributed Processes

In the design of Distributed Processes [18], Brinch Hansen has unified the concepts of

processes and modules and has adapted the monitor concept for use on distributed hardware.

A Distributed Processes program consists of a fixed number of modules residing on separate

logical machines. Each module contains a single process. Modules do not nest. Processes com­

municate by calling common procedures detlned in other modules. Communication is thus bv

means of implicit receipt and remote invocation send. Data can be shared between common pro­

cedures. but not across module boundaries.

An entry procedure is free to block itself on an arbitrary Boolean condition. The main body

of code for a process may do likewise. Each process alternates between the execution of its main

15

code and the servicing of external requests. It jumps from one body of code to another only when a

blocking statement is encountered. The executions of entry procedures thus exclude each other in

time. much as they do in a monitor. Nested calls block the outer modules. a process remains idle

while waiting for its remote requests to complete. There is a certain amount of implementation cost

in the repeated evaluation of blocking conditions. Brinch Hansen argues convincingly that the cost is

acceptable. and well justified by the added tlexibility.

3.6. Gypsy

Gypsy [.37] was designed from the start with formal proofs in mind Programs in GVpsv are

meant to be verified routinely. with automatic tools.

Much of Gypsy. including its block structure. is borrowed from Pascal [4C)] [here is no

notion of modules. New processes are ,taned "",ith a C obegin construct. The clauses of the (Obl'g/ll

are all procedure calls. The procedures e\ecute concurrently. They communicate Iw means ot

buffer variables. passed to them /1\ rderence Since buffers may be accessible to more than one

process. communication paths are 11l31l\ ·manv Sharing of anything other than buffers is strictly for­

bidden. There is no global dara. ~llld no objects other than buffers can be passed by reference to

more than one process in a lOi}('~ln

Buffers are bou nded FIFO queues Semantically. they are defi ned by his tory sequences that

facilitate formal proofs Sl'nd and reCl'ivl' are buffer oper3tions Send adds an object to a buffer

Receive removes an object from a buffer.)I'nd blocks if the buffer is full Rce elve blocks if the

buffer is empty. In the nomenclature of section 2. Gypsv uses no-wait send and explicit receipt. with

the exception that back-pressure against prolific senders is part of the language definition. Declared

buffer lengths allow the synchronization semantics to be independent from implementation details

A variation of Dijkstra' s guarded commands [28] allows a process to execute exactly one of a

number of sends or receives. The awail statement contains a series of clauses. each of which is

guarded by a send or receive command. If none of the commands can be executed immediately. then

the mvail statement blocks until a buffer operation in some other process allows it to proceed. If

more than one of the commands can be executed. a candidate is chosen at random. There is n<i gen­

eral mechanism for guarding clauses with Boolean expressions.

3.7. PLITS and ZENO

PUTS [.30] is an acronym for" Programming Language in the Sky." an ambitious attempt at

advanced language design. In the area of distributed computing, it envisions a framework in which a

computation may involve processes written in l1luflipfe languages. executing on heterogeneous

machines. ZENO [7] is a single language based heavily on the PUTS design. Its syntax is bor­

rowed from Euclid [56].

A ZENO program consists of a collection of modules that may be instantiated to create

processes. Processes are assigned names at the time of their creation. They are independent equals.

A process dies when it reaches the end of its code. It may die earlier if it wishes. It cannot be killed

from outside. There is no shared data. Receive is explicit. Send is non-blocking and buffered.

There is only one path into each module (process). but each message includes a special transaction

16

slot to help in selective receipt. A sender names the receiver explicitly. The receiver lists the

senders and transaction numbers of the messages itis willing to receive. There is no other means of

message screening - no other form of guards. As in CSP (section 3.4). forcing receivers to name

senders makes it difficult to write servers. A .. pending" function allows a process to determine

whether messages from a particular sender. about a particular transaction. are waiting to be receIved

The most unusual feature of PLITS/ZENO lies in the structure of its messages. In contrast to

most proposals. these languages do not insist on strong typing of inter-process communication Mes­

sages are constructed much like the property lists of LISP [69]. They consist of namel\!alue pairs

A process is free to examine the message slots thaI interest it. It is oblivious to the existence of oth­

ers.

In keeping with its multi-language multi-hardware approach. PLITS prohibits the transmis

sion of all but simple types. ZENO is more flexible ..

Recent extensions to PLITS [29] are designed to simplify the organization ot large di~tributed

systems and to increase their reliabilitv Cooperating processes are tagged as members ot a single

activity. A given process may belong to more that one activitv .. It enjoys a special relationship with

its peers. and may respond automalicalh to changes in their status Acti\ities are supported bv

built-in atomic transactions. Illuch like tih.>,e 01 Argus (section .3 8)

3.8. Extended CLU and Argus

Extended CLU [58.591 is designed to be suitable for use on a long-haul network. It includes

extensive features for ensuring reliabilitv in the face of hardware failures. and provides tor the

transmission of abstract data types between heterogeneous machines [41]. The language makes no

assumptions about the integrity of communications or the order in which messages arrive.

The fundamental units of an Extended CLU program are called guardians. A guardian is a

module: it resides on a single machine. A guardian may contain any number of processes. Guardi­

ans do not nest. Processes within the same guardian may share data. They may use monitors for

synchronization, All interaction among processes in separate guardians is by means of message

passing.

Receive is explicit. Send is non-blocking and buffered. Each guardian provides ports to

which its peers may address messages. New instances of a guardian may be created at run time.

New port names are created for each instance. The sender of a message specifies a port by name It

may also specify a reply port if it expects to receive a message in response. The reply port name is

really just part of the message. but is singled out by special syntax to enhance the readability of pro­

grams. Within a guardian, any process may handle the messages off any port: processes are

anonymous providers of services. A facility is provided for non-deterministic receipt. but there are no

guards; a receiver simply lists the acceptable ports. In keeping with the support of reliability in the

face of communication tailure, a timeout facility is provided.

Argus [60.61] is the successor to Extended CLU. Argus lIses remote invocation send and

implicit message receipt. Instead of ports. Argus guardians provide handlers their peers may

invoke. Processes are no longer anonymous in the sense they were in Extended CLU. Each invoca­

tion of a handler causes the creation of a new process to handle the call. Additional processes may

be created within a guardian with a cobegin-like construct.

17

Argus programs achieve robustness in the face of hardware failures with stable storage and

an elaborate action mechanism. Actions are alOmlC they either commit or abort. If they commit.

all their effects appear to occur instantaneously. If they abort. they have no effect at all Actions

may nest. A remote procedure call is a nested action. Built-in atomic objects support low-level

actions. and may be used within a guardian to synchronize its processes.

3.9. Communication Port

Like CSP and Distributed Processes. Com m unication Port [641 is less a tull-scale language

than an elegant concept on which a language might be based A Communication Port program con­

sists of a fixed collection of processes fhere are no modules There is no shared data Processes

communicate with remote invocation sene! and explicit message receipt.

Each process provides a variety of ports to which any other process mav send messages

Ports provide strict tvpe checking. Senders name both the receiver and its port .. There may thus be

several receivers \>,·ith the same internal structure. The receive statement is non-deterministic. ellle!

guards mav he placed on its options The guards may refer to local data on" Recei\ ing a message

and resuming a sender Jre be'th explicit operations: it is possible for a receiver lO he In rendezvous

with several senders al ,)Ile lime The senders may be released in all\ ,)r(kl (_,Hetul placement of

release statements is a useful luning lechnique that can be used to minimize the length of rendezvous

and increase concurrencv

3.10. Edison

Edison [19.20] is a remarkable language in a number of ways. Based loosely on Pascal.

Concurrent Pascal. and Modula. it is a considerably smaller language than any of the three. Its

creation seems to have been an experiment in minimal language design.

Processes in Edison are created dYnamically with cubegm. Modules are used for data hiding.

Communication is by means of shared data. and mutual exclusion is achieved through critical

regions. There are no separate classes of critical regions: the effect is the same as would be achieved

by use of a single, system-wide semaphore. Entry to critical regions may be controlled by arbitrary

Boolean guards. It is possible to follow a programming strategy in which all access to shared data is

controlled by monitors created out of critical regions and modules It is equally possible to avoid

such ru les.

Despite its title ("a multiprocessor language"). I question the suitability of Edison for use on

multiple processors. The use of critical regions that all exclude each other will require the periodic

halting of all processors save one. On a multi-computer. shared data is an additional problem.

Unless a careful programming style is imposed above and beyond the rules of the language itself.

Edison does not fit into the framework of section 2.

3.11. StarMod

StarMod [25] is an extension to Modula that attempts to incorporate some of the novel ideas of

Distributed Processes. It provides additional features of its own. Modules and processes are dis­

tinct. Modules may nest. There may be arbitrarily many processes within a module. Processes

18

may be created dynamically: they are independent equals. Processes within the same processor

module may share data. The programmer may influence their relative rates of progress by the

assignment of priorities.

StarMod provides both explicit and implicit message receipt and both synchronization and

remote invocation send. The four resulting types of communication employ a common syntax on the

sending end. Communication paths are many-one. A sender names both the receiving module and

its entry point. Entries may be called either as procedures or as functions. A PrQcedlirol jl!l1d allows

the sender to continue as soon as its message is received. A jilllC/iolwl send blocks the sender until

its value is returned. Remote invocation send is thus limited to returning a single value

On the receiving end. a module may mix its two options. using explicit receipt on 'Ol11e of its

communication paths and implicit receipt on the others The sender has no '.vay ot kllOI,\ Ing ',vhich is

employed. As a matter of l~lCt. it is possible to change a receiver trol1l one Jpproach lO the mher

without any change to the sender Libraries can be changed without invalidating the programs that

use them. When a message arrives at a implicit enrrv point. a /leI,\. proccss is created [0 handle the

calL When a message arri\es at a e\plicil enti'\ point. it '.vaits until ,llmc nistlllg pr'ocess in the

module performs a rCCCI\'C on the corresponding port

processes in a module: they proceed In l,illlul,lIec\) p~ll:lilei

There is no mutual exclusion among

They Illay arran~e their O\vn svnchroni-. .. -

zation by waiting on sen13ph()re~ r he explicir ','(,'I\'L' is l1of]-deterllllnistic. but there are no guards

on its options. A single recei\el ,.<I1l be lil rel1dCz.\Oll~ \\ilh more lhan olle sender at a time. but it

must release them in LIFO order .Separate calls to the same implicit pon \\ iii cre::ne separate. possi­

bly paraliel. processes. Separate processes In a module may receive from the ~ame explicit port.

StarMod was designed for dedicated real-time applications. The StarMod kernel behaves like

a miniature operating system. highly efficient and tuned to the needs of a single type of user level

program. Simplicity is gained at the expense of requiring every program to specify the interconnec­

tion topology of its network. Direct communication is permitted only between modules that are

neighbors. The programmer is thus responsible for routing.

3.12. ITP

The Input Tool Process model [14] is an extension of van den Bos's Input Tool Method [13],

an unconventional language for input-driven programs.

An ITP program consists of a collection of processes. There are no modules Processes do

not nest. They share no data. Each process consists of a hierarchical collection of tools. A tool

looks something like a procedure. It is made available for activation by appearing in the input rule

of a higher-level tool (The root tools are always available). It is actually activated by the completion

of lower-level tools appearing in its own input rule, Leaf tools are activated in response to inputs

from other processes. or from the llser.

Input rules allow for message screening. Their syntax is reminiscent of path expressions (sec­

tion 3.1). They specify the orders in which lower-level tools may be activated. Unwanted inputs can

be disallowed at any layer of the hierarchy.

ITP uses synchronization send with implicit message receipt. Within a process, any tool can

send data to any other process. The naming mechanism is extremely tlexible. At their most generaL

the communication paths are many-many. A sender can specify the name of the receiving process,

19

the receiving tool. both. or neitheL It can also specify broadcast to aU the members of a process

set. A receiver (leaf tool) can accept a message from anyone. or it can specify a particular sender or

group of senders from which it wants to choose. A global communication arbiter coordinates the

pairing of appropriate senders and receivers.

The current ITP implementation runs on multiple processors. but does not allow the most

general many-many communication paths. Syntax for the sequential part of the language is borrowed

from C [54].

3.13. Ada

The adoption of Ada [771 by the C ') Department ot Defense is likely to make It the standard

against which concurrent languages are compared in future years

Processes in Ada are known as tasks Tasks mav be statical Iv declared 1)1 mav i)e created at . .

run time The code associated '-\-ith a task is a special kind of module. ::,ince mudules may nest. it is

possible for one task to he decl:tlecl inside another This nesting Illlposes d ~trICi nierarchical struc­

ture on a program s tasb "0 task is permitted to leave a lexical scope until all (hat 5cope', nested

tasks have terminated .\ :~Isk \.;tn he "borted from outside. Tasks ma\ share data rhev may also

pass messages

Ada lIses remote i Il\ oCLltion send. The sender names both the receiH:r and its entrv point.

DynamicaUy-created tasks are addressed through pointers. Communication paths are many-one.

Receive is explicit. Guards (dependi ng on both local and global \ ariables) are permitted on each

clause. The choice between open clauses is non-deterministic.. A receiver may be in rendezvous

with more than one sender at a time. but must release them in LIFO order There is no special

mechanism for asynchronous receipt: the same etfect may be achieved through the use of shared

data. Ada provides sophisticated facilities for timed pauses in execution and for communication

timeout. Communication errors raise the TASKING-ERROR exception. A programmer may pro­

vide for error recovery by handling this exception.

Since data may be shared at all levels of lexical nesting, it may be necessary for separate tasks

to share (logical) activation records. That may be quite a trick across machine boundaries. More

subtle problems arise from the implicit relationships among relatives in the process tree. For exam­

ple, it is possible for a task to enter a loop in which it repeatedly receives messages until all of its

peers have terminated or are in similar loops. The implementation must detect this situation in order

to provide for the normal termination of all the tasks involved.

3.14. Synchronizing Resources

SR [2,3] is an attempt to generalize and unify a number of earlier proposals.. It appears to

have grown out of earlier work on extensions to monitors [1].

An SR program consists of a collection of modules called resources A resource may contain

one or more processes. and may export operations those processes define. Operations are similar to

ports in Extended CLU and entries in Ada, The processes within a resource share data. Neither

resources nor processes may nest. There is special syntax for declaring arrays of identical

resources, processes, and operations. A procedure is abbreviated syntax for a process that sits in an

20

infinite loop with a receive statement at the top and a send at the bottom.

Receive is explicit. Its syntax is based on Dijkstra's guarded commands [28]. Input guards

have complete access to the contents of potential messages. Moreover. messages need not be

received in the order sent. A receiver may specify that the queue associated with an operation should

be ordered on the basis of an arbitrarily complicated formula involving the contents of the messages

themselves. It is possible for a process to be in rendezvous with more than one sender at a time. It

must release them in LIFO order.

SR provides both no-wait and remote invocation send. Messages are sent to specific opera­

tions of specific resources. Thus each communication path has a single receiving resource and,

potentially, multiple senders Operations can be named explicitly, or they can be referenced through

capability variables -\ capability variable is similar to a record: it consists of several fields. each of

which points to an \)peratlon of a specified type. Within a resource, a particular operation must be

serviced by onlv one process

There are no rae iii ties for :1svnch ronous receipt or timeout Each operation, however. has an

associated tunctlon tl1at returns the current length of its queue. This function mav be used to simu­

late a ((.'(('1\'(' \\ ith tillleout of ":ero the receiver simply checks the queue length before waiting

3.15. Linda

Linda [35 . .36] prmides the full generality of many-many communication paths. Processes

interact in Linda by inserting and removing tuples from a distributed global name space called

structured memory (STM). The name space functions as an associative memory: tuples are

accessed by referring to the patterns they contain.

Published papers on Linda contain few details on the language syntax. Presumably, there is

some sort of module concept. since processes that reside on the same machine are allowed to share

data in addition to STM. There is also some sort of mutual exclusion mechanism that protects

shared data.

Linda combines a no-wait send with explicit message receipt. Tuples are added to STM with

the non-blocking oufO command. They are removed with the in() command. A read() command

(also called in*()) allows tuples to be read without removing them from STM. All three commands

take an arbitrary list of arguments. The first is required to be an actual value of type name. The

rest may be actuals or "formals .. " An in() command succeeds when it finds a tuple in STM that

matches all its actuals and provides actuals for all its formals. In OUfO commands. formals serve as

"don't care" tlags; they match any actuaL In in() commands, formals are slots for incoming data

The matching of tuples according to arbitrary patterns of actuals provides a very powerful

mechanism for message screening. It also leads to serious implementation problems. Much of the

work on Linda involves finding tractable algorithms for managing STM. Current efforts are aimed at

implementation on the Stony Brook microcomputer Network. a wrapped-around grid (torus) architec­

ture.

21

3.16. NIL

NIL [22.75] is a language under development at IBM's T.J. Watson Research Center. It is

intended for use on a variety of distributed hardware. The current implementation runs on a single

IBM .370. Processes are the fundamental program units; there is no separate module concept.

There is no shared data: processes communicate only by message passing. The designers of NIL

suggest that a compiler might divide a process into concurrent pieces if more than one CPU were

available to execute it.

Communication paths are man v-one They are created dynamicallv by connecting output

ports to an appropriate input port. Any process can use the publisiz command to create capabilities

that point to its input ports. It may then pass the capabilities in messages to other processes that can

use them in (,OI1l)(!CI commands .. All type checking on ports is performed at compile time.

NIL provides both no-wait and remote ill\()catlon send Remote invocation sends may be for­

warded. The process receiving a forwarded message is responsible for releasing the sender \10-

wait sends are buffered and d,'\lrrtOIl'l' the sender loses access to the components of the message

F rom the programmer's poi nl of \ ie'\'. destructi\ e :,c!/d eli III i nates the disti nction hetween val ue and

reference parameters E\en <1 par:lflleter p~lssed b\ reference cannot be modified bv its sender after it

is sent

/?cccm.' in \ilL i, explicit It has two \arieties. one to correspond to each tvpe of Icna.

Exceptions are used to reco\ er from (:om m u nicalion errors. There are elaborate rules concerni ng

the propagation of exceptions ",hen a process terminates

4. Related Notions

Each of the proposals described in section .3 has been described in the literature (at least in

part) as a high-level language for distributed computing. For one reason or another. the proposals in

this section have not. They all contain useful ideas. however. and are worth considering in any dis­

cussion of interprocess communication and concurrency.

The survey in section 3 is meant to be reasonably complete. No such claim is made for this

section. I have used by own personal tastes in deciding what to include.

4.1. Concurrent Languages

Several early high-level languages. notably Algol-68 [76]. PilI [9]. and SIMULA [12]. pro­

vided some sort of support for "concurrent' processes. or at least corolltines These languages

relied on shared data for inter-process interaction .. They were intended primarily for uni-processors.

and may have been suitable for multi-processors as well. but they were certainly not designed for

implementation on mUlti-computers. Recently. Modula-2 [82. 83] has re-awakened interest in

coroutines as a practical programming tool. In designing Modula-2. Wirth has recognized that even

on a LIn i-processor. and even in the absence of interrupts. there are still algorithms that are most

elegantly expressed as a collection of cooperating threads of control.

Modula-2 is more closely related to Pascal [491 than to the Modula of section 3.2. For the

purposes of this survey, the principal difference between the Modulas is that the newer language

22

incorporates a much simpler and more primitive form ot concurrency. Processes in Modula-2 are

actually coroutines: they execute one at a time. New processes are created by a built-in procedure

that accepts a procedure name and an array to be used as stack space and returns the id of a newly

created process. There is no pre-emption: a given process continues to run until it explicitly relinqu­

ishes control and names the process to be resumed in its stead.

One goal of Modula-2 is to permit a large variety of process-scheduling strategies to be imple­

mented as library packages. By hiding all coroutine transfers within librarv routines. the program­

mer can imitate virtually any other concurrent language. The imitations can be straightforward and

highly efficient. For a uni-processor. Modula-2 provides the richnes~ \)f expression of mUltiple

threads of control at very little cost

4.2. Nelson's Remote Procedure Call

"ielson's thesi~ [06] is de\oted to the development of a IramllurC!1I I11tcCh::tlli"m for remote pro­

cedure calls :\ [emote procedure call combines remote invocation ~end \\Ith implicit message

[·eceipt. Transparenc\ is derined to mean that remote and local procedure calls appear to be the

same: they silare 'he ,ame

- atol1licil\ sCl11antic~,

- naming: and contiguration.
type checking.

- parameter passing. and
- exception handling.

Nelson describes a mechanism. called Emissary. for implementing remote procedure calls.

Emissary attempts to satisfy all five of the . essential properties" listed above. together with one

"pleasant property:" efficiency. The attempt at transparency is almost entirely successful. and the

performance results are quite impressive.

Emissary falls short of true transparency in the area of parameter passing. Not all data types

are meaningful when moved to a ditferent address space. Unless one is willing to incur the cost of

remote memory accesses. pointers and other machine-specific data cannot be passed to remote pro­

cedures. Moreover. in/out parameters must be passed by value/result, and not by reference. [n the

presence of aliasing and other side effects. remote procedures cannot behave the same as their local

counterparts. So long as programmers insist on pointers and reference parameters. it is unrealistic

to propose a truly transparent mechanism.

4.3. Distributed Operating Systems

The borderline between programming languages and operating systems is very fuzzy. espe­

cially in hypothetical systems. Interprocess communication lies very near the border. h is often dif­

ficult to tell whether a particular mechanism is really part of the language or part of the underlying

system. Much depends on the degree to which the mechanism is integrated with other language

features: type checking. variable names. scope rules. protection. exception handling. concurrency.

and so forth. The mechanisms described in this section, at least in their current form. are fairly

clearly on the operating system side of the line. Incorporating them into the language level is a job

for future research.

23

4.3.1. Links

Links were introduced in the Demos [8] operating system. They have been adopted. in one

form or another. by several descendant systems. Arachne (Roscoe) [.34.74], Charlotte [5.31]. and

DEMOS/MP [68]. My work with Raphael Finkel on the LYNX project [73] is an attempt to embed

the notion of links in a high-level programming language.

Links are a naming and protection mechanism. In Demos. and in Arachne and DEMOS/MP.

a link is a capability to an input port. ft connects an owner to an arbitrary number of holders. The

owner can receive messages from the link. It owns the input port. A holder can send messages to

the link. It holds the capability. A holder can create copies of its capability. and can send them in

messages on other links The owner can exercise control over the distribution of capabilities and the

rights that they confer

Where Demos links are manv-one. Charlotte links are one-one. Their ends are symmetric.

Each proce,s can send and receive There is no notion of owner anc! holder On Ivane process can

have acl.t:s~ to a gi\en end of a gi\en link at a given point in time

The protectIon properties of links make them useful for applications that are somewhat looselv

coupled - appl itations in 'Nil ic h processes are developed i nc!epenc!ently. Jnd cannot ,l:';sume that

thei r partners die cor rcC! r\ plcai l\ ,.1 i In k IS lIsed to I epresent a resoun:e "In J tI meshart ng SyS­

tem. a link might represent a file) \ince a single process may implement a whole collection of

resources. and since a single resource mav he supported by an arbitrary number of operations links

provide a grwllIiunlv of naming somew here In het\\ een process names and operati()il names

4.3.2. SODA

SODA [5.3] is an acronym for a "Simplified Operating system for Distributed Applications.

It might better be described as a communications protocol for use on a broadcast medium with a very

large number of heterogeneous nodes.

Each node on a SODA network consists of two processors: a client processor. and an associ­

ated kernel processor. The kernel processors are all alike. They are connected to the network and

communicate with their client processors through shared memory and interrupts. Nodes are

expected to be more numerous than processes, so client processors are not multi-programmed.

Communication paths in SODA are many-one. but there is a mechanism by which a process

can broadcast a request for server names that match a certain pattern. All communication state­

ments are non-blocking. Processes are informed of interesting events by means of software inter­

rupts. Interrupts can be masked.

From the point of view of this survey, the most interesting aspect of the SODA protocol is the

way in which it decauples control flow and data flow. In all the languages in section .3. message

transfers are initiated by the sender. In SODA. the process that initiates an interaction can arrange

to send data. receive data. both. or neither. The four options are termed. respectively. put. get.

exchange. and signaL Synchronization in SODA falls outside the classification system described in

section 2.4.

Every transaction between a pair of processes has a requester and a server. The server feels

a software interrupt whenever a requester attempts to initiate a transaction. The interrupt handler is

provided with a (short) description of the request. At its convenience. the server can accept a

24

request that triggered its handler at some point in the past When it does so. the transaction actually

occurs. and the requester is notified by an interrupt at its own. The user is responsible for writing

handlers and for keeping track of outstanding requests in both the server and requester. In simple

cases. the bookkeeping involved may be supported bv library routines.

5. Conclusion

There is no doubt that the best way to evaluate a language is to use it A certain amount of

armchair philosophizing may be justified (this paper has certainly done its share'). hut the real test of

a language is how well it works in practice It lNill be some time before most ot the languages in sec­

tion .3 have received enough use to make delinitive judgments possible.

One very useful tool would be a representative sample of the world's more ditficult distributed

problems. To evaluate a language. one could make a very good start b\ coding up solutions to these

problems and comparing the results to those achievedlNith various other methods \luch uf the :-ouc

cess of any language will depend on the elegance of its syntax - on whether it is pleasant and natur~1J

to use But even the best of svntax cannot make up for a fundamentally unsound deSIgn

Section 2 has discussed some major open questions. The two most important appear to he [he

choice of synchronization semantics for the send operation. and the choice between Implicit and

explicit message receipt. I have argued elsewhere [72] that a reasonable language needs to provide a

variety of options Just as a sequential language benefits from the presence of several similar loop

constructs. so can a distributed language benefit from the presence of several similar constructs for

inter-process communication

The ubiquity of the client/server relationship makes remote invocation with implicit receipt an

extremely attractive combination In situations where a reply is expected, remote invocation send has

cleaner syntax than either other synchronization method. It is also more efficient than the synchroni­

zation send. Clarity stems from the fact that the sender need not do anything special to receive a

reply. Efficiency results from the lack of a separate message to acknowledge the original request.

Unfortunately. there are applications for which the client/server model is clearly inappropri­

ate. Remote invocation may be overly slow in situations that lack a reply. Implicit receipt is both

awkward and counter-intuitive in the case of cooperating peers. It is possible that implicit message

receipt need only be paired with remote invocation send. Likewise. explicit receipt may best be

paired with one of the other synchronization mechanisms. Yet there is something to be said for pro­

viding all the combinations, since they can be supported without syntactic complexity. and since all

are occasionally useful.

There is a general consensus that concurrent programs are at least an order of magnitude

more difficult to write than their sequential counterparts. Research to date has done distressingly lit­

tle to reduce that level of complexity. The most important avenues of future research will be those

that pull the task of concurrent programming down to the conceptual level of the average human

being. Refinements of existing languages will help to some extent. much as modern control con­

structs have improved upon the old standbys of the '50's and ·60·s. Eventually. however. ways must

be found to automate much of the programmer's task. For specific classes of problems. it may be

possible to design application packages that hide the details of distributed implementations [.32]. For

25

more general solutions. major advances are needed in error recovery. veritlcation. synchronization,

and even the specification of parallelism itself It is worth noting that thirty years of effort have failed

to produce an ideal sequential language. It is unlikely that the next thirty will see aJl ideal distributed

language. eitheL

Aclmowledgments

The original draft of this paper was prepared for an independent study course supervised bv

Raphael Finkel. Subsequent drafts have benefited from the written comments of Marvin Solomon

and Prasun Dewan. and from informal discussions with various members of the Charlotte and Crv­

stal research groups

References

[11 Andrews. G R. and J R. \IcGraw, . Language F eatu res for Process Interaction. P, ()(<,,:a·

IIIX' 0/ UII iCH COII"-'/c'lI(e 011 LUII'.{lIoge De,,/'.{11 lor Nc'liu/JI.: SOl/Hare (28-30 \;Iarch 1977)' pp
I 14-127 IniCM ,)/CI'LrIN .V(}II(<'~ 12 .3 (March 1977)

[2].,""ncJrews G j{. '),nchrolliziilg Resources. -leVI /OI'L.45 >.4 (October 1981). pp. 4()5-

[3]

4.30.

Andrews. G. R
Implementation,

'The Distributed Programming Language SR - Mechanisms. Design and
50/iwure - !JrUCf!(': tlild E\p.:rt('I!((' 12 (1982) pp 719-75,

[4] Andrews. G. R. and F B Schneider. ·'Concepts and Notations for Concurrent Program­
ming." iCM Compuring Surveys 15 I (March 1983). pp. 3-44.

[5] Artsy, Y .. H.-Y. Chang, and R. Finkel. "Charlotte: Design and Implementation of a Distri­
buted Kernel." Computer Sciences Technical Report #554. University of Wisconsin -
Madison. August 1984.

[6] Baiardi. F. L. Ricci. and M. Vanneschi, "Static Checking of Interprocess Communication in
ECSP." Proceedings of lhe ACM SICPLAN '84 Symposium on Compiler Conslruclioll (17-22
June 1984), pp. 290-299. In ACM SfCPLAN NOlices 19:6 (June 1984).

[7] BaiL 1. E., G. J. Williams. and 1. R. Low, "Preliminary ZENO Lnaguage Description."
ACM SICPLAN Nolices 14:9 (September 1979). pp. 17-.34.

[8] Baskett. F .. J. H. Howard. and J. T. Montague. "Task Communication in Demos." Proceed­
ings of lhe Sixlh ACM Symposium on Operalil1g Systems Principles (November 1977). pp. 23-.31.

[9] Beech. D .. "A Structural View of PUI," Compllling Surveys 2: I (March 1970). pp. 33-64.

[10] Bernstein, A. J., "Output Guards and Nondeterminism in Communicating Sequential
Processes' ," Transactions on Programming Languages and SY5lems 2:2 (April 1(80). pp. 234-
238.

[11] Bernstein. A. 1. and 1. R. Ensor. "A Modula Based Language Supporting Hierarchical
Development and Verification," Sofiware - Praclice and Experience 11 (1981). pp. 2.37-255.

[12] Birtwistle, G. M .. O.-J. DahL B Myhrhaug, and K. Nygaard. SIMULA Begin. Auerback
Press. Philadelphia, 1973.

26

[1.3] Bos. J. van den. . Input Tools - A ;\few' Language for Input-Driven Programs." Proceedings
oj (he European Conference 0/1' 4pp/led Injonnaflon Technology. IFIP (25-28 September 1979).
pp. 273-279. Published as EURO IFIP 79. North-Holland, Amsterdam. 1979.

[14] Bos. J. van den. R. Plasmeijer. and J. Stroet. --Process Communication Based on Input
Specifications." ACM TOPLAS 3 . .3 (July 1981). pp. 224-250.

[15] Brinch Hansen. P. 'Structured Multi-programming." CACM 15:7 (Julv 1972). pp. 574-
578.

[16] Brinch Hansen. P. Opera/ing)\\/('117 PnnClplt!s. Prentice-Hall. 197.3

[17] Brinch Hansen. P .. "The Programming Language Concurrent Pascal. fEEE F'OIl\(/('/()Il)

on Sojiwure Engineering SE-12 (Julle 1(75). pp 199-207

[181 Brinch Hansen. P .. "Distributed Processes A Concurrent Programming Concept. l1lH

21 1 1 (November 1(78). pp 934-941

[19] Brinch Hansen. P. 'The Design of Edison." Technical Report. Cniversitv ot Soutl1elil CJi­
ifornia Computer Science Department. September 1980

[20] Brinch Hansen. P Edison.-\ Multiprocessor Language." Technical Report. llw cr~I(\ .'r
Southern Calilornia Computer Science Department. September 1980

[21] Buckley. G :\ and\. Silberschatz. .. An Effective Implementation tor the Generalized
Input-Output Construct of (SP .. ·10,1 TOPL·IS 5:2 (April 1(83). pp 22.3-235

[22] Burger. W F .. ;\f Halim. r .\ Pershing. F. N. Parr. R. E. Strom. Jnd 5 Yemini. Draft
NIL Reference y[anuaL RC 97.32 (#42993). I B.M. T. J Watson Research Center.
December 1982.

[23] Campbell. R. H. and A. N. Habermann. "The Specification of Process Synchronization by
Path Expressions." pp. 89-102 in Opera!ing Sys!ems. Lecture Notes in Computer Science #16.
ed. C. Kaiser. Springer-Verlag. Berlin. 1974.

[24] Cashin. P .. "Inter-Process Communication." Technical Report 8005014. Bell-Northern
Research, .3 June 1980.

[25] Cook. R. P.. "*Mod--A Language for Distributed Programming," IEEE Transactions on
So/iware Engmeering SE-6:6 (November 1(80). pp. 563-571.

[26] Dijkstra. E. W.. "Co-operating sequential processes." pp. 43-112 in Programming
Languages. ed. F. Genuys. Academic Press. London, 1968.

[27] Dijkstra, E. W .. "Hierarchical Ordering of Sequential Processes." pp. 72-9.3 in Opera!lIz!?
Systems Techniques, A. P. I. C. Studies in Data Processing #9. ed. C. A. R. Hoare and R. H.
Perrott. Academic Press, London. 1972. Also ACla In/ormatica I (1971). pp 115-U8

[28] Dijkstra. E. W., "Guarded Commands. Non-determinacy and Formal Derivation .. CACM
18:8 (August 1975), pp. 453-457.

[29] Ellis. C. S .. J. A. Feldman. and J. E Heliotis .. 'Language Constructs and Support Systems
for Distributed Computing," ACM SIGACT-SIGOPS Symposium on PrinCiples 0./ Disrnbured
Compliling (l8-20 August 1(82). pp. 1-9.

27

[30] Feldman,], A, "High Level Programl11lng tor Distributed Computing." C4C1Vl 226 (June
1979), pp. 35.3-.368,

[3l] Finkel, R" M. Solomon. D, DeWitt. and L Landweber. "The Charlotte Distributed Operat­
ing System: Part IV of the First Report on the Crystal Project." Computer Sciences Technical
Report #502, University of Wisconsin - Madison. October 1983,

[32] Finkel, R, and D, Manber. "DIB: A Distributed Implementation of Backtracking .. submit­
ted to the Fijilz International COI~ference 011 Dist/ibllled Compllling SYSTems. September 1984.

[33] Finkel. R. A" "Tools for Parallel Programming," Appendix B of Second Report. Wisconsin
Parallel Array Computer (WISPAC) Research Project. University of Wisconsin Electrical and
Computer Engineering Report #80-27, August 1980,

[34] Finkel. R, A. and M. H. Solomon. "The Arachne Distributed Operating System. Computer
Sciences Technical Report #439. D niversity of Wisconsin - Madison. 1981.

[35] Gelernter. D, and A. Bernstein. "Distributed Communication via Global Buffer." Pro(ced­
ings of tlze rlCM SICrlCT-SICOPS Svmpoliulll 011 Principles oI DisTribllled COI1lPllllllg (IS-20
August 1982). pp, 10-IS.

[36] Gelernter. D , . 'Dynamic Global Name Spaces on Network Computers.' PrO(eedIlH(} oj the
1984 Intemallollal C ollje/cilee on Parallel Frocessing (21-24 August. 1984). pp, 25-3 \

[.37] Good. D, L. R. M Cohen. and J. Keeton-Williams. "Principles of Proving Concurrent Pro­
grams in Gypsy.' COIl/c'rcllce Necord oJ/ize 'ii.uiz innuLiI itCM SVl1lposium on Principle} oj Pro­
gramming Languages (29-3\ Januarv 1979). ppct2-.'i2

[3S] Habermann. A, N . Synchronization of Communicating Processes." CACM IS: 3 (March
1972), pp. 171-l76,

[39] Habermann. A, Noo "On the Timing Restrictions of Concurrent Processes." Fourth Annual
Texas Conjerence on Computing Systems (17-18 November 1975). pp. I A,J.I-1A.3.6.

[40] Haddon. B. K" "Nested Monitor Calls," ACM Operating Systerns Review 11:4 (October
1977). pp, 18-23.

[41] Herlihy, M. and B. Liskov, "Communicating Abstract Values in Messages," Computation
Structures Group Memo 200. Laboratory for Computer Science, MIT, October 1980.

[42] Hoare. C. A. R., "Towards a Theory of Parallel Programming." pp. 61-71 in Operating Sys­
tems Technique,. A, P. I. C. Studies in Data Processing #9. ed. C. A. R. Hoare and R. H.
Perrott, Academic Press, London. 1972.

[43] Hoare. C. k R,. "Monitors: An Operating Systems Structuring Concept," CACM 17:10
(October 1974). pp. 549-557

[44] Hoare, C. A, Roo "Communicating Sequential Processes." CACM 21:8 (August 1978). pp.
666-677.

[45] Holt, R. c., G. S. Graham, E. D, Lazowska. and M. A. Scott. "Announcing CON­
CURRENT SP/k," ACM Operating SYSTems Review 12:2 (April 1978). pp. 4-7.

[46] Holt, R. c., G. S. Graham. E. D. Lazowska. and M. A. Scott. Structured Concurrent Pro­
gramming with Operating Systems Applications. Addison-Wesley, 1978.

28

[47] Howard. J H SignalinginMon itors. Proceedings 0./ the Second International Conference
on So/iwareEl1gineering(13-15 October 1976), pp. 47-52.

[48] Jazayeri. M .. C. Ghezzi. D Hoffman. D. Middleton. and M. Smotherman. "CSP/80: A
Language for Communicating Sequential Processes." IEEE COMPCON Fall 1980 (September
1980). pp. 736-740.

[49] Jensen. K. and N. Wirth, Pascal User !'vfanual and Report. Lecture Notes in Computer Science
#18. Springer-Verlag. Berlin. 1974.

[50] Kahn. G. and D B i'vfacQueen.· 'Coroutines and Networks of Parallel Processes pp 993-
998 in fnFonnalioll ProceHing 77. ed. B. Gilchrist. North-Holland. 1977 Proceedings of the
1977 IFIP Congress. Toronto (8-12 August 1977).

[51] Kaubisch. W H .. R H. Perrott. and C. A. R. Hoare. Quasiparallel Pro;,zramming ..
So/ilvare Pmel/(I! and Experience 6 (1976). pp. 341-356.

[52] Keedy. J. L. "On Structuring Operating Systems with Monitors. lev! OU("c/!!I!~ ')\'){CI71.\

Rev/elv 13: I (January 1979). pp. 5-9

[53] Kepecs. L. "SODA: A Simplified Operating System for Distributed AppiicatIons." Ph D.
Thesis. University of Wisconsin - ~iladison. January 1984 Reprinted as Computer Sciences
Technical Report #527. bv J Kepecs and M. Solomon.

[54] Kernighan. B W. and D 'vf. Ritchie. The C Progral1l171/ng Lunguage Prentice-Hall. Engle­
wood Cliffs. 1978

[55] Kessels. J. L W .-\n Alternati'e to Event Queues for S,nchronization in 'vfonitors.
CACM 20:7 (July 1977). pp. 500-503

[56] Lampson. B. W .. J. .T. Horning. R L. London. L G. Mitchell. and G. J. Popek.'Report
On The Programming Language Euclid." .-tCM SIGPLAN Notices 12:2 (Februarv 1977)

[57] Lampson. B. W. and D. D. Redell. '·Experience with Processes and Ylonitors in Mesa.
CACM 2J ~2 (February 1980). pp. 105-1 17.

[58] Liskov. B .. ··Primitives for Distributed Computing." Proceedings 0/ the Seventh .4CM Svmpo­
sium on Operating SyytelTls Principles (December 1979), pp. 33-42

[59] Liskov. B .. "Linguistic Support for Distributed Programs: A Status Report.·· Computation
Structures Group Memo 20 I. Laboratory for Computer Science. MIT. October 1980.

[60] Liskov. B. and R. Scheifler. "Guardians and Actions: Linguistic Support for Robust. Distri­
buted Programs'-' .4CM TOPLAS 5:3 (July 1983). pp. 381-404.

[611 Liskov. B.. . COverview of the Argus Language and System." Programming Methodology
Group Memo 40. Laboratory for Computer Science. MIT, February 1984

[62] Lister, A .. "The Problem of Nested Monitor Calls," ACM Operating Systems Review I [~3
(Ju[y [977), pp. 5-7. Relevant correspondence appears in Volume 12. numbers 1.2. 3. and
4.

[63] Lister. A. M. and K. J. Maynard. "An Implementation of Monitors.-' Sortware - Practice and
Experience 6 (1976). pp. 377-385.

29

.[64] Mao. T. W. and R. 1. Yeh. "Communication Port:. A Language Concept for Concurrent
Programming." IEEE TrancaCllOns 011 Sojiware Engllleelln~ SE-6:2 (March 1980). pp.. 194-
204.

[65] May. D .. 'OCCAM."4CM SfGPLiN NOliees 18:4 (April 1983) pp. 69-79. Relevant
correspondence appears in Volume 19. number 2 and Volume 18. number II

[66] Nelson. B. J .. "Remote Procedure CalL" Ph. D Thesis. Technical Report C:vIU-CS-SI-
119. Carnegie-Mellon University. 1981

[67] Parnas. D. L .. "The Non-Problem of :'\iested y[onitor Calls'- iCM Operal!!lg)\·lle!1l1 1<,,\'!c''I'

12.1 (January 1978). pp. 12-14 -\ppears ",irh a response Lw A. Listet

[68] PowelL M. Land B P \;[iller. 'Pr()ces~ \ligratioll III DEY[OSIMP. I'r(lU'l'ill!!";) ,)/ 11,'

N/l1lh ACM SympOlillll1 (m Opera!!!l"; \\\1<'/7/1 I'nI1C1!Ji<,) (10-13 October 19831. pp 1111-118
In ACM Operallng 5,\1\1<'1711 ReTIC\t' 17 5

[69] Pratt. T. ProgrOlIllI1II1!{ LW1!iliU!iC\ DCII";11 und IlIlpicmenlollon, Prentice-Hall. Engle\\ood
Cliffs. 1975

[70] Robert. P and J. -P Verj us.. Toward Autonomous Descriptions of Synch ronization
\;lodules, pp 981-986 in fn/!)II1lUIiOIl I'rocessillg 77, ed. B. Gilchrist. :'\ionh-HollancL 1977
Proceedi ngs ot the 1977 IFIP Congress. Toronto (8-12 August 1977),

[71 J Roper. T. J and C J, Barter. .. A Communicating Sequential Process Language and Imple­
mentation.')01111'(11(' - l'rO(IICe owl E\perience II (1981), pp, 1215-1234

[72] Scott. M, L.. "\'lessages \ Remote Procedures is a False Dichotomy. iCt'v! "ifCPLiN
NOI/ees 18:5 (May 1983). pp. 57-62.

[73] Scott. M. Land R. A, FinkeL "LYNX: A Dynamic Distributed Programming Language.
Proceedings of Ihe /984 Illlernalionaf ConFerence on Parallel Processing (21-24 August. 1984).
pp, .395-401.

[74] Solomon, M. H. and R. A. Finkel. "The Roscoe Distributed Operating System," Proceedings
o{ Ihe Sevenrh ACM Symposium on Operaling Systems Principles (December 1979). pp. 108-
114.

[75] Strom. R. E. and S. Yemini. "NIL: An Integrated Language and System for Distributed Pro­
gramming, .. Proceedings a/lhe SICPLAN '83 Symposium on Programming Language Isslles III

Sol/ware Syslems (27-29 June 1983), pp. 73-82. In ACM SIGPLAN NOliees 18:6 (June 1983)

[76] Tanenbaum, A. S" "A Tutorial on Algol 68," ACM CompUlillg Surveys 8'2 (June 1976). p.
ISS.

[77] United States Department of Defense. "Reference Manual for the Ada Programming
Language," (ANSIIMIL-STD-1815A-1983). 17 February 1983.

[78] Welsh, Land D. W. Bustard, "Pascal-Plus - Another Language for Modular Multiprogram­
ming," SO}lware-Pracrce and Experiellce 9 (1979). pp. 947-957,

[79] Wettstein, H., "The Problem of Nested Monitor Calls Revisited," 401;1 Operalillg Svslems
Review 12: I (January 1978). pp. 19-23.

[80] Wirth. N .. "Modula: a Language for Modular Multiprogramming." SoJiware - Praclice and
Experience 7 (1977). pp. 3-35.

30

[81] Wirth. N .. '"Design and Implementation of Modula.·' Software - Practice and Experience 7
(1977), pp. 67-84.

[82] Wirth. N .. "Modula-2." Report 36. Institut fur Informatik. ETH Zurich. 1980.

[83] Wirth, N., Programming In Modula-2. Texts and Monographs in Computer Science. ed. D.
Gries, Springer-Verlag, Berlin. Second Edition, 1983.

