
Proe • {q~tt Iw/-eI'VI«f,'t»;Oi CG-rrt. Parallel Process/v::]
rf 3QS-1t01

LYNX: A DYNAMIC DISTRIBUTED PROGRAMMING LANGUAGE

Michael L. Scott
Raphael A. Finkel

Department of Computer Sciences
University of Wisconsin - Madison

1210 W. Dayton
Madison, WI 53706

Abstract This paper describes a new
language for multi-computer systems programming.
Processes in the language communicate by sending
messages over communication channels called
links. Links may be created, manipulated, and
destroyed dynamically to provide complete run
time control over the interconnections among
processes. Message type checking is performed at
run time. Messages may be received explicitly or
may trigger the execution of entry procedures. A
control-flow mechanism similar to coroutines sim
plifies the ordering of entry procedures.

Introduction

Charlotte [1] is a distributed operating sys
tem under development at the University of
Wisconsin at ~fudison. Charlotte runs on a col
lection of VAX 11/750 processors connected by a
high-speed token ring. The Charlotte kernel is
replicated on each machine~ It provides two
principal abstractions: processes and links.
Processes do not share data. Their only means of
interaction is through the exchange of messages
on links. A link is a duplex communication chan
nel between a pair of processes. Links can be
created and destroyed, and their ends can be
moved from one process to another. Most tradi
tional operating systeru functions are provided by
server processes that run on top of the kernel.
This paper discusses LYNX, a language for writing
such servers.

Motivation

There are two principal characteristics of
operating system server processes that have com
plicated our search for an appropriate language:

(1) Servers must deal with an intricate web of
interconnections among user processes and
other servers. This web changes constantly
as processes come and go. A programming
language for servers must allow processes to
examine and manipulate their interconnec
tions. It must provide strict type checking
on messages, yet allow the same communication

This work was supported in part by NSF grant
number MCS-8105904, by Arpa contract numb~r

NOOI4/82/C/2087. and by • Bell Telephone Labora
tories Doctoral Scholarship.

channel to be used for multiple message
types.

(2) At a given time, a typical server will be in
the process of handling several different and
largely independent requests in various
stages of completion. For the sake of clar
ity, a programming language for servers must
allow these requests to be handled by
separate threads of control, without incur
ring the overhead of operating system support
for each individual thread. It must also
allow new threads of control to be created
implicitly, in response to new requests,
without requiring an explicit search for
incoming messages.

To our knowledge, no
language meets the above
set out to design one that

existing distributed
requirements. We have
does.

This paper is divided into two main sections.
The first contains an informal language descrip
tion. The second discusses the language and com
?ares it with previous proposals. The Conclusion
is followed by a brief description of the current
status of our work.

Language Description

Main Concepts

The three most important concepts in LYNX are
the module, the entry, and the link. A module
encapsulates data, procedures. and entrieS.
Modules may nest. An entry is a block of code
resembling a procedure, but designed to be exe
cuted as an independent thread of control. A
link is a two-way channel for messages.

A module is a syntactic structuring tool. It
is an abstraction of a single node of a multi
computer. Each outermost module is implemented
by a separate process, provided by the operating
system. Separate modules execute concurrently.

Each process begins with a single thread of
control, executing the initialization code of its
outermost module. It can create new thr~ads by
calling entries or by arranging for them to be
called automatically, in response to incoming
messages. Separate threads do not execute con
currently; a given process contin;;S to execute a
given thread until it blocks. It then takes up
some other thread where it last left off. If no

thread is runnable. the process waits until one
is. In a sense, the threads are coroutines, but
the details of control transfer are hidden in the
run-time support package. Blocking commands are
discussed in a later section.

Lexical scope in LYNX is defined 8S in
Modula [2]. There are no restrictions on the
nesting of modules, procedures, and entries.
Non-global data may therefore be shared by more
than one thread of control. The activation
records accessible at any given time will form a
tree, with a separate thread of control
corresponding to each leaf. ~~en a thread enters
8 scope in which a module is declared, it exe
cutes the module's initialization code before
proceeding. A thread is not allowed to leave a
given scope until all its descendants still
active in that scope have been completed.

The sequential features of LYNX are Algol
like. We will not discuss them here.

A link is a two-ended communication channel.
Since all data is encapsulated in modules, and
since each outermost module corresponds to a sin
gle process, it follows that links are the only
means of inter-process interaction. The language
provides a primitive type called I1link.11 A link
variable accesses one end of a link, much like a
pointer in Pascal [3]. The distinguished value
"nolink" is the only link constant.

New values for link variables may be created
by calling the built-in function "newlink":

endA := newlink (endB) i

One end of the new link is returned as the func
tion value; the other is returned through a
result parameter. This asymmetry is useful for
nesting calls to newlink inside the various com
munication statements (see below). In practice,
calls to new link seldom appear anywhere else.

Links may be destroyed by calling the built
in procedure "destroy":

destroy (myend)

Destroy is similar to "dispose" in PascaL All
link variables accessing either end of the link
become unusable (i.e. dangling). An attempt to
destroy a nil or dangling link is a no-op.

Ends of links may be sent in messages. The
semantics of this feature Bre somewhat subtle.
Suppose process A has a link variable X that
accesses the "green" end of link L. Now suppose
A sends X to process B, which receives it into
link variable Y. Once the transfer has occurred,
Y will be the only variable anywhere that
accesses the green end of L. Loosely speaking.
the sender of a link variable loses access to the
end of the link involved. This rule ensures that
a given end of a given link belongs to only one

process at a time.

It is an error to send a link that is bound
to a entry (see below), or on which there are
outstanding sends or receives.

Sending Messages

Message transmission looks like a remote
invocation:

connect opname (<expr list> 0 <var list>)
.Q!!. linkname ;

Run-time support routines package the expression
list into a message and send it out on the link.
The current thread in the sender is blocked until
it receives a reply message containing values for
the variable list.

Receiving Messages Explicitly

Any thread of control can receive a message
by executing the accept and ~ commands:

accept opname (<var list>) ~ linkname

~ (<expr list>) ;

Accept blocks the thread until a message is
available. ~ causes the expression list to
be packaged into a second message and returned to
the sender. The compiler enforces the pairing of
accepts and ~s.

Entries

An entry looks much like a procedure.
used for rece~v~ng messages implicitly.
headers are templates for messages.

It is
Entry

entry opname (<in args>) : <out types)
begin

end opname;

All arguments must be passed by value. The
header may be followed by the keyword forward or
remote instead of a begin ••• end block. Remote
has the same meaning as forward, except that an
eventual appearance of the entry body is not
required. Source file inclUsion can therefore be
used to insert the same entry declarations in
both the defining and invoking modules.

Any process may bind its links to entries:

bind <link list> to <entry list> ;

After binding, an incoming message on any of the
mentioned links may cause the creation of a new
thread to execute one of the mentioned entries,
with parameters taken from the message. An entry
unblocks the sender of the message that created
it by executing the ~ statement (without a
matching accept).

A link may be bound to more than one entry.
The bindings need not be created at the same
time. A bound link can even be used in subse
quent accept statements. These provisions make
it possible for separate threads to carryon
independent conversations on the same link at
more or less the same time. When all a process1s
threads are blocked, the run-time support package
attempts to receive a message on any of the links
for vhich there are outstanding accepts or bind
ings. The operation name contained in the mes
sage is matched against those of the accepts and
the bound entries in order to decide which thread
to create or resume. If the name differs from
those of all the outstanding accepts and bind
ings. then the message is discarded and an excep
tion is raised in the sender (see below for a
discussion of exceptions).

Bindings may be broken:

unbind <link list> from <procedure list> ;

An attempt to break a non-existent binding is a
no-op.

Entries visible under the usual scope rules
can be used to create new threads directly.
without links or bindings:

call entryname (<expr list> 0 <var list>)

In order to facilitate type checking. the
operation names and message formats of connect
and accept statements must be defined by entry
declarations. The entries can of course be
declared remote.

Exceptions

The language incorporates an exception han
dling mechanism in order to 1) cope with excep
tional conditions that arise in the course of
message passing. and 2) allow one thread to
interrupt another. The mechanism is intended to
be as simple as possible. It does not provide
the power or generality of Ada [4] or PL/I [5].

Exception handlers may be inserted at the end
of any begin end block. Such blocks
comprise the bodies of procedures, entries, and
modules, and may also be inserted anywhere a
statement is allowed, except inside handlers.
The syntax is

vhen <exception list> do

when <exception list> do

end· --'
A handler (vhen clause) is executed in place of
the portion of its begin ••• end block that had
yet to be executed when the exception occurred.

Built-in exceptions are prOVided for a number
of conditions:

Attempts to send or receive messages on a nil
or dangling link.

Failure of the operation name of a message to
match an accept or binding on the far end of
the link.

Type clash between the sender and receiver of
a message.

Termination of a receiving thread that has
not replied.

Hardware failures of various sorts.

Built-in exceptions are raised in the block
in which they occur. If that block has no
handler, the exception is raised in the next
scope down the dynamic chain. This propagation
halts at the scope in which the current thread
began. If the exception is not handled at that
level. the thread is aborted. If the propagation
·of an exception escapes the scope of an accept
statement. or if an exception is not handled at
the outermost scope of an entry that has not yet
replied. then an exception is raised in the
appropriate thread in sending process.

User-defined exceptions are raised with the
command

raise <exception name> ;

A user-defined exception must be declared in a
scope visible to all the threads that use it.
When raised, it will be felt by all and only
those threads that have declared a handler for it
in some scope on their current dynamic chain.
The coroutine semantics guarantee that threads
feel exceptions only when blocked. User-defined
exceptions are useful for interrupting a thread
that is waiting for something that viII never
happen.

Blocking Commands

As suggested earlier, connect, accept, and
~ may cause a context switch by blocking the
thread that uses them. A context switch ,...tIl
also occur when control reaches the end of a
scope in which nested threads are still active,
or in vhich bindings still exist.

There is one additional vay to cause a con
text switch:

await <condition>

viII guarantee that execution of
thread will not continue until the
complex) Boolean condition is true.

the current
(arbitrarily

Discussion

Links

The notion of links is borrowed directly from
Charlotte [1]. Charlotte in turn is a descendant
of the Demos [6] and Arachne (7] operating sys
tems. In Demos and Arachne a link is a capabil
ity to an input port [8]. In Charlotte, a link
1s an inseparable pair of capabilities, neither
one of which may be copied. We have found links
to be an invaluable abstraction, and would seri
ously consider their use in a programming
language for other environments as well. We do
not envision serious implementation problems with
most of the distributed operating systems with
which we are familiar.

Links allow a process to reason about its
connections with the rest of the world on the
basis of the services they provide, not the
processes to which they are connected. For exam
ple, a client may hold a link to one of a commun
ity of servers. The servers may pass their end
o{ the client's link around among themselves in
order to balance their workload, or to connect
the client to the member of their group most
appropriate for servicing its requests at a par
ticular point in time. The client need not even
be aware of such goings on.

We anticipate a great deal of link creation,
movement, and destruction in Charlotte. In the
example below, links are used to represent open
files. We have used them to represent other phy
sical devices as well, including blocks of memory
for down-loading processes. We are aware of only
one other language that provides a comparable
degree of flexibility in process interconnec
tions. NIL [9], in active use at IBM's T. J.
Watson Research Center, performs all type check
ing at compile time. Our scheme has two major
advantages:

(I) A process can possess large numbers of links
without being aware of the types of messages
they may eventually carry. A name server,
for example, can keep a link to each
registered process, e ... ·en though many such
processes will have been created long after
the name server was compiled and placed in
operation.

(2) A process can use the same link for different
types of messages at different times, or even
at the same time. A server capable of
responding to several radically different
types of requests need not create an artifi
cial, and highly complicated, variant record
type in order to describe the message it
expects to receive.

Though run-time type checking will admittedly
involve costs that compile time checking does
not, we expect the amount of work involved to be
insignificant in comparison to the overhead of
communication. At the expense of absolute secu
rity we can use a hash function to reduce the

self-descriptive portion of messages into a very
small number of bits [101.

Synchronization Semantics

Liskov [11] describes three principal
varieties of message synchronization:

No-Wait Send. A sender continues execution
immediately,even as its message is beginning the
journey to wherever it is going.

Synchronization Send. The sender waits until
the message has been received before continuing
execution.

Remote Invocation Send. The sender waits
until it receives a reply from the receiver.

The principal advantage of the no-wait send
is a high degree of concurrency. The principal
disadvantages are the complexity of buffering
messages and the difficulty in reflecting errors
back to a sender who may have proceeded an arbi
trary distance past the point of call. For LYNX,
the concurrency advantage is not as compelling as
it might first appear, since we allow a process
to continue with other threads of control when a
given one is blocked, and since we expect our
machines to be multiprogrammed anyway. The
disadvantage of buffering is not particularly
compelling either. It makes the run-time support
package larger and more complicated, and it
necessitates flow control, but solutions do
exist. The deciding factor is the problem of
error-reporting. Unlike traditional ilo (which
oiten is implemented in a no-wait fashion),
inter-process message passing involves type
checked communication with potentially erroneous
or even malicious user programs. The likelihood
of errors is high, as is the need to detect and
cope with them in a synchronous fashion.

We have chosen the remote invocation send
over the synchronization send because it is a
more powerful mechanism and because it requires
fewer underlying messages in common situations.
Synchronization send does overcome the disadvan
tages of the no-wait send, but it requires a
top-level acknowledgment. Since we expect most
messages to need a reply, why not let the ack
nowledgment carry useful data?

There is some motivation for providing syn
chronization send as an addjtional mechanism.
For messages that really need no reply, top-level
acknowledgments can be sent by run-time support
routines, rather than by the user's program,
allowing us to unblock the sender after two fewer
context switches on the receiving end. The sav
ings are small, however, and we do not feel they
justify cluttering the language with a second
kind of send.

Explicit and Implicit Message Receipt

LYNX provides two very different means of
receIvIng messages: the accept statement and the
mechanism of bindings. We call the former expli
cit message receipt, and the lDtter implicit ~
sage receipt. In [12] we argue that both are
essential in a practical programming language.
Explicit receipt is most useful for the exchange
of messages between active. cooperating peers,
say a producer and a consumer. Implicit receipt
more accurately reflects the externally-driven
nature of most server processes. A language that
provides only one option will have applications
for which it is awkward, confusing. or both.

Some existing languages, notably Star
Mod [13], already provide both forms of message
receipt. We go one step farther in LYNX by
allowing a process to decide at run time which
formes) to use on which communication links.

The accept statement does not open
scope in LYNX. We prefer not to have
message parameters into variables that
visible after the scope of the accept is
the way one must in Ada [4].

a new
to copy

remain
closed,

Unlike most proposed languages with explicit
receipt. we have not provided a mechanism for
accepting a message on anyone of a set of links.
So far, we have found such non-determinism to be
useful only in those cases where implicit receipt
1s the more appropriate approach. If at some
point it proves necessary, we may add a non
deterministic variety of explicit receipt as
well.

Multiple Threads of Control

There are several reasons for writing con
current programs. Systems programs for a multi
computer must by their very nature be distri
buted. Applications programs may choose to run
on multiple machines as well, in order to reduce
execution time. Even on a single machine. how
ever, many processes can most easily be written
8S a collection of largely independent threads of
control. Many language designers have made this
observation, and have allowed mUltiple threads of
control to operate inside a single module and
share that module's data. Generally, the threads
have been designed to operate in simulated paral
lel, that is, ~ if they were running simultane
ously on separate processors with access to a
common store.

We feel this simulated parallelism is 8 mis
take. On a single machine, only one thread of
control can execute at 8 time. There is no
inherent need for synchronization of simple
operations on shared data. By pretending that
separate threads can execute concurrently, we
introduce race conditions that should not even
exist; we force the programmer to provide expli
cit synchronization of even the most basic opera
tions.

In Extended CLU [II] and StarMod [13]. moni
tors and semaphores are used to protect shared
data. These mechanisms are provided in addition
to those already needed for inter-module interac
tion. They lead to two very different forms of
synchronization in almost every program.

In Ada and Synchronizing Resources [14],
processes with access to common data synchronize
their operations ith the same message-passing
primitives used for inter-module interaction.
Small-grain protection of simple variables is
therefore rather costly.

We believe a much more attractive solution
can be seen in the semantics of Brinch Hansen's
Distributed Processes [15]. Instead of pretend
ing that entry procedures can execute con
currently, the DP proposal provides for each
module to contain a single process. The process
jumps back and forth between its initialization
code and the various entry procedures only when
blocked by a Boolean guard. Race conditions are
impossible. The comparatively simple await
statement suffices to order the executions of
entry procedures. There is no need for monitors,
semaphores, or expensive message passing.

For the semantics of LYNX, we have adopted
the Distributed Processes approach. with five
extensions:

(1) Messages may be received explicitly, as well
8S implicitly.

(2) A process may service external requests While
waiting for one of its own.

(3) New threads of control may
locally, as well as remotely.

be created

(4) Blocked threads can be interrupted by excep
tions.

(5) Modules and procedures may nest without res
triction.

The fifth extension is, perhaps, the most
controversial. As in Ada, it allows the sharing
of non-global data. Techniques for managing the
necessary tree of activation records are well
understood {16J. We feel the added convenience
of nested environments justifies the expense
involved.

We anticipate some additional expense in the
repeated evaluation of await-ed conditions. We
expect our compiler to optimize the special case
of waiting on a simple Boolean variable. The
rules for context switching in LYNX allow such a
variable to perform the work of a traditional
Boolean semaphore.

Exceptions

We are aware of no precedent for our
of semantics for user-defined exceptions.
the existence of built-in exceptions, we

choice
Giv(>n
found

the user-defined variety to be the simplest way
to allow one thread to interrupt another. To
demonstrate the use of exceptions, and to give a
general impression of the flavor of LYNX, we end
this section with an example.

The code below is meant to be a part of a
file-server process. It begins life with a sin
gle link to the switchboard, a name server that
introduces clients to various other servers.
When the switchboard sends the file server a link
to a new client, the file server binds that link
to 8 number of procedures, one for each of the
services it provides. One of those services,
that of opening files, is shown in the example
below.

Open files are represented by links. Within
the server, each file link is managed by a
separate thread of control. Context is main
tained automatically from one request to the
next. As suggested by Black (17], we adopt an
asynchronous protocol in which bulk data
transfers are always initiated by the producer
(with connect) and accepted by the consumer.
When a file is opened for reading. the file
server plays the role of producer. We implement
seek requests by raising an exception in the
thread that is attempting to send data out over
the link.

Clients close their files by destroying the
corresponding links.

module fileserver (switchboard: link);
~t of a no-frills file server
-- starts with single link to switchboard

entry open (filename : string;
read, write, seek : Boolean)

file Ink : link;
readptr, writeptr : integer;
seeking : exception;

link;

entry writeseek (fileptr
begin

integer);

writeptr := fileptr;
~;

end writeseek;

entry write (data: bytes);
begin

put (data, filename, writeptr);
inc (writeptr);
~;

end write;

entry readseek (newptr: integer);
begin

readptr := newptrj
raise seeking;
~;

end readseeki

begin
if available (filpname) then
- ~ (newlink (filelnk»;

-- release client
readptr := 0;
writeptr ::::: 0;

if write then
- if seek then

- bind filelnk to writeseek;
end·-- -
bind filelnk to write;

end;-- -

if read then

end;

if seek then
-- bind filelnk to readseek;
end·-- -
loo~

begin
connect (

get (filename, readptr)
B) on filelnkj

inc (readptr);
when seeking do
---- nothing; continue loop
when filelnk.DANGLING do
--exit; -- leave loop
end·

end;~: loop

else -- not available
--reply (nolink); release client
end;
-- control will not leave open
-- until nested entries have died

end open;

entry newclient (client: link);
begin

bind client to open;
reply;

end newclient;

begin -- main
bind switchboard to newclient;

end fileserver.

Conclusion

We have described a new distributed program
ming language specifically designed for the writ
ing of systems programs for a multi-computer.
Our language differs from previous proposals in
three important ways:

(1) It introduces the notion of links. Links
allow processes to examine and manipulate
their interconnections at run time. Self
descriptive messages allow for full type
security with no loss in flexibility.

(2) Hessages may be received both explicitly and
implicitly. Processes can decide at run time
which approach(es) to use when, and on which
links.

(3) A control-flow mechanism similar to corou
tines allows individual processes to be bro
ken up into multiple threads of control. The
predictability of context switches eliminates
intra-module race conditions and simplifies
the ordering of external requests.

Current Status

The design of LYNX is still in a state of
flux. Among the issues we are continuing to con
sider are mechanisms for forwarding requests, for
receiving asynchronous messages, and for perform
ing non-type-checked input/output. The Charlotte
kernel and servers are up and undergoing testing.
Preliminary versions of the servers have been
written in a local dialect of Modu1a [18J. pep
pered with direct calls to the kernel communica
tion primitives. An experimental LYNX compiler
is under construction. The run-time scheduler
and environment bookkeeping are operational.
Language support for links has yet to be com
pleted.

Acknowledgments

Marvin Solomon is a principal investigator
for Charlotte (along with Raphael Finkel). Other
researchers include Yeshiahu Artsy, Hung-Yang
Chang, Aaron Gordon, Bill Kalsow, Vinod Kumar,
Hari Madduri, Brian Rosenberg. and Cuiqing Yang.
Many others support our efforts through their
york on the larger Crystal project.

[I]

[2]

[3]

References

R. Finkel. M. Solomon, D. DeWitt, and L.
Landweber, llThe Charlotte Distributed
Operating System: Part IV of the First
Report on the Crystal Project," Computer
Sciences Technical Report #502, University
of Wisconsin - Madison (October 1983).

N. Wirth, "Modula: a Language for Modular
Multiprogramming,1I Software--Practice and
Experience 7 (1977), pp. 335. --

K. Jensen and N. Wirth. Pascal User Manual
and Report, Lecture Notes in Computer Sci
ence #18, Springer-Verlag (1974).

[4] United States Department of Defense, "Refer
ence Manual for the Ada Programming
Language," (ANSI/mL-STD-1815A-1983) (17
February 1983).

[5]

[6]

D. Beech, "A Structural View of PL/I." Com
puting Surveys 2:1 (March 1970). pp. 33-64.

F. Baskett, J. H. Howard, and J. T. Mon
tague, "Task Communication in Demos."
Proceedings of the Sixth ACM Symposium on
Operating Systems Principles (November
1977), pp. 23 31.

[7] R. A. Finkel and M. H. Solomon, "The Arachne
Distributed Operating System," Computer Sci
ences Technical Report #439, University of
Wisconsin - Madison (1981).

[8] P. Cashin, tlIntcr-Process Communication,"
Technical Report 8005014, Bell-Northern
Research (3 June 1980).

[9] R. E. Strom and S. Yemini. "NIL: An
Integrated Language and System for Distri
buted Programming," Proceedings of the SIG
PLAN '83 Symposium ~ Progra~~ing Language
Issues in Software Systems (27-29 June
1983), pp. 73-82.

[10] M. L. Scott and R. A. Finkel, "A Simple
Mechanism for Type Security Across Compila
tion Units." Computer Sciences Technical
Report #541, University of Wisconsin -
Madison (May 1984).

[11] B. Liskov, "Primitives for Distributed Com
puting," Proceedings of the Seventh ACM Sym
posium ~ Operating Systems Principles
(December 1979), pp. 33-42.

[12J M. L. Scott, "Messages v. Remote Procedures
is a False Dichotomy." ACM SIGPLAN Notices
18:5 (May 1983), pp. 57-62.

[13] R. P. Cook. "*Mod--A Language for Distri
buted Programming." IEEE Transactions on
Software Engineering SE-6:6 (November 1980).
pp. 563-571.

[14J G. R. Andrews. "Synchronizing Resources,"
ACM TOPLAS 3:4 (October 1981), pp. 405-430.

[15J P. Brinch Hansen, "Distributed Processes: A
Concurrent Programming Concept," CACM 21: 11
(November 1978), pp. 934-941. --

[16] D. G. Bobrow and B. Raphael, "Ne Program
ming Languages for Artificial Intelligence
Research,1I Computing Surveys 6:3 (September
1974), pp. 153-174.

[17] A. P. Black, "An Asymmetric Stream Communi
cation System," Proceedings of the Ninth ACM
Symposium on Operating Systems Principles
(10-13 October 1983), pp. 4-10.

[18) R. Finkel, R. Cook, D. DeWitt, N. Hall, and
L. Landweber, "Wisconsin Modula: Part III of
the First Report on the Crystal Project,"
Computer SCiences Technical Report #501,
University of Wisconsin - Madison (April
1983) •

