Digital Circuits

CSC-173 Lecture
Tuesday, 11/27/2001

Athanasios E. Papathanasiou
Computer Science Department
University of Rochester

Circuit Design

- Gate:
 - Basic electronic device.
 - Computes a Boolean function.
 - AND, OR, NOT, NAND:
 - Easy to implement.
 - Any number of inputs.
 - Used in practice.

Circuit Design

- Circuit:
 - A combination of gates
 - Output of some gates are the input of others.
 - Has one or more inputs:
 - These are inputs to the gates in the circuit.
 - May have one or more outputs.

3-input NAND:
 - Two 2-input AND.
 - One Inverter.

Combinational & Sequential Circuits

- Combinational:
 - Output is a Boolean function of input values.
 - Are Acyclic:
 - No cycles between inputs of a gate and its outputs.
 - No memory:
 - Cannot remember previous inputs or outputs.
 - Example of use:
 - Decode instructions and perform arithmetic.

Combinational & Sequential Circuits (2)

- Sequential:
 - Output depends on the current input values and the previous sequence of input values.
 - Are Cyclic:
 - Output of a gate feeds its input at some future time.
 - Memory:
 - Remember results of previous operations
 - Use them as inputs.
 - Example of use:
 - Build registers and memory units.

Combinational Circuit: Encoder for a 7-Segment Display

- Goal: Design a circuit...
 - With 10 inputs: i_0, i_1, i_2, ..., i_9.
 - Each one corresponds to the decimal digits (0-9).
 - Lights up the display segments A, B, C, ..., G.
 - As needed to display the digit specified by the input.
 - Total: 7 outputs.

Number 2:
- Input i_2 = 1,
- i_0, i_1, i_3, ..., i_9 = 0.
- Outputs:
 - A=B=D=E=G=1
 - C=F=0
Encoder for a 7-Segment Display (2)

- Boolean expression for the outputs:
 \[A = i_7 + i_6 + i_5 + i_4 + i_3 + i_2 + i_1 \]
 \[B = i_6 + i_5 + i_4 + i_3 + i_2 + i_1 + i_0 \]
 \[C = i_5 + i_4 + i_3 + i_2 + i_1 + i_0 + i_9 \]
 \[D = i_4 + i_3 + i_2 + i_1 + i_0 + i_8 \]
 \[E = i_3 + i_2 + i_1 + i_0 \]
 \[F = i_2 + i_1 + i_0 + i_9 + i_8 \]
 \[G = i_1 + i_0 + i_9 + i_8 + i_7 + i_6 \]

- Build the circuit with 7 OR gates:
 - One for each segment of the display

Constraints on Circuit Design

- Numerous constraints impact:
 - The speed and cost of a circuit.
- Speed:
 - Every gate in a circuit introduces a small delay.
 - Circuit delay depends on the number of gates between inputs and outputs.

Divide and Conquer Adder

- Already seen Ripple-Carry adder
- Need:
 - Adder with a smaller delay for larger words.
- Solution:
 - Use a divide and conquer strategy.
 - Use two N/2-bit adders and combine results.
 - Left and right halves added in parallel.

Constraints on Circuit Design

- Size limitations:
 - More gates lead to larger circuits.
 - Large circuits are more expensive
 - Higher failure rate.
 - And slower.
 - Signals must propagate from one end to the other.
- Fan-in and Fan-out:
 - Number of inputs and outputs of a gate.
 - Large fan-in makes a gate slower.

Divide and Conquer Adder (2)

- Carry: Not known in advance:
 - How can the adders operate in parallel?
 - Compute to sums for the upper half
 - One assuming there is a carry.
 - One assuming there is NO carry.
 - Use additional circuit to select the correct sum.
Design of an N-adder

- Assume two N-bit operands: \(x_1\ldots x_N\) & \(y_1\ldots y_N\).
- Design N-adder that computes:
 - Sum without carry-in: \(s_1\ldots s_N\).
 - Sum with carry-in: \(t_1\ldots t_N\).
 - The carry-propagate bit, \(p\):
 - It is 1 if there is a carry-out assuming there is carry-in.
 - The carry-generate bit, \(g\):
 - It is 1 if there is a carry-out even if there is NO carry-in.
 - NOTE: if \(g\) is one then \(p\) will be one too (implies \(p\)).
- First, build an 1-bit adder.

A 1-bit Adder

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>s</th>
<th>t</th>
<th>p</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
 s &= \overline{x}y + xy \\
 t &= \overline{x}y' + xy' \\
 p &= x + y \\
 g &= xy
\end{align*}

A 2-bit Adder from 1-bit Adders

``FIX'' Circuit

- Carry-propagate bit: \(p = p_H p_L + g_H\)
 - If there is a carry-in \(p\) is 1 if:
 - Both the low and high order part propagate a carry \((p_H p_L)\).
 - Or: The high order part generates a carry \((g_H)\).
- Carry-generate bit: \(g = g_H + g_L p_H\)
 - If there is NO carry-in \(g\) is 1 if:
 - If the high order part generates a carry \((g_H)\).
 - Or if there is a carry from the low order part and the high part propagate that carry \((g_L p_H)\).

``FIX'' Circuit (2)

- High order sum, NO carry-in:
 - It is:
 - \(s_H = \overline{s}_L p_H + t_H s_L\)
 - \(s_L\) if there is no carry from low order part \((\overline{g}_L)\).
 - \(t_H\) if there is carry from low order part \((g_L)\).
- High order sum, with carry-in:
 - It is:
 - \(t_H = \overline{s}_H p_L + t_L p_L\)
 - \(s_L\) if there is a carry from the low order part.
 - \(s_L\) otherwise.

Sequential Circuits for Memory Elements.

- Memory element:
 - A collection of gates capable of producing its last input as output.
 - They are sequential circuits.
 - Their behavior depends on current and past inputs.
- Flip-flop:
 - Typical flip-flop:
 - Takes two inputs (load and data-in).
 - Produces one output (data-out).
Flip-Flops

- **Load==0:**
 - The circuit produces the stored value as output.

- **Load==1:**
 - The circuit stores the value `data-in` and
 - Produces it as output.

Flip-Flop Circuit

- **Load=1⇒A1=0⇒data-out=A2=data-in.**
- **Load=0⇒A2=0⇒data-out=A1**
 - Which is the previously stored value.