
Final Exam

CSC 173

18 December 2001

Directions; PLEASE READ

This exam has 10 questions, many of which have subparts. Each question indicates its point
value. The total is 100 points. Questions 5c and 6 are for extra credit only; they are
not part of the 100 points.

Please show your work here on the exam, in the space given. Do not write on
the backs or in the margins. Put your name on every page. If your answer won’t fit in the
given space then you’re trying to write too much. Scratch paper is available if you need it,
but the proctor will collect only the exams.

I have tried to make the questions as clear and self-explanatory as possible. If you do
not understand what a question is asking, make some reasonable assumption and write that
assumption down next to your answer. The proctor has been instructed not to answer
questions during the exam.

You will have a maximum of three hours to work. Good luck!

1. (6 points) Give three reasons why, from a programmer’s point of view, it is good to
work with abstract data types, rather than working directly with the data structures
from which the ADTs are built.

Abstractions serve several purposes. (1) They reduce “conceptual load”, making it
easier for programmers to think about and understand their code. They are, to some
degree, “self-documenting”. (2) By establishing narrow, well-defined interfaces, they
help to isolate errors, making debugging easier, and making errors less likely in the
first place. (3) By hiding knowledge of data structure details behind the interface, they
localize the changes that need to be made if a data structure is changed. (4) Because
interfaces can be well defined, they make it easier to reuse code in other applications.
(5) On a large project they make it easier to divide work among programmers.

2. (a) (3 points) For assignment 5 you implemented Prim’s minimum spanning tree
algorithm for dense graphs. What is its asymptotic running time? Assume that
the graph has N nodes and M edges.

O(N2).
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(b) (3 points) You will remember from lecture and from the book that Kruskal’s
algorithm is faster for sparse graphs. What is its asymptotic running time?

O(M log M) = O(M log N).

(c) (6 points) Explain why Prim’s algorithm is better for dense graphs, while Kruskal’s
algorithm is better for sparse graphs.

In a dense graph M = O(N2), so O(N2) < O(M log N); in a sparse graph M =
O(N), so O(N2) > O(M log N).

(d) (4 points) What data structure is used to represent the graph in Prim’s algorithm?
What data structure is used in Kruskal’s algorithm?

Like most dense graph algorithms, Prim’s algorithm uses an adjacency matrix.
Like most sparse graph algorithms, Kruskal’s algorithm uses adjacency lists.

3. Consider the following CFG:

decl list −→ decl list decl ;
decl list −→ decl ;
decl −→ id : type
type −→ int

type −→ real

type −→ char

type −→ array const .. const of type
type −→ record decl list end

(a) (6 points) Give a parse tree for

foo : record

a : char;

b : array 1..2 of real;

end;

decl   ;

decl_list

record  decl_list  end

id   :   type

decl   ;   id   :   type

decl_list   decl   ;

char real

id   :   type   array   const   ..  const   of   type
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(b) (5 points) Explain why the grammar is not LL(1) (can’t be parsed with a non-
backtracking recursive descent parser).

The first production for decl list is left-recursive, so we can’t tell when to predict
it (as opposed to predicting the second).

(c) (4 points) Show how to modify the grammar to make it LL(1).

Replace the first two productions with

decl list −→ decl ; decl list tail
decl list tail −→ decl ; decl list tail
decl list tail −→ ε

4. (6 points) Describe two common types of program bugs in C that can result in a
“segmentation fault” message at run time.

(1) Dereferencing an uninitialized or dangling pointer. (2) Indexing into an array with
an invalid subscript (C has no array bounds checking). (3) Passing an inappropriate
type of parameter to a routine such as scanf, which expects pointers, but takes a
variable number of arguments and hence cannot be type-checked by the compiler.

NB: Students received partial credit for listing certain other run-time errors (e.g. infi-
nite recursion) that fail with other kinds of messages.

5. Consider a database with the following scheme (borrowed from the Fall 2000 midterm):

Route: flight number (FN), departure city (DC), arrival city (AC), distance in miles
(DI), scheduled departure time (SD), scheduled arrival time (SA), plane model
(PM).

Flight: flight number (FN), date (DT), number of passengers (NP), actual departure
time (AD), actual arrival time (AA).

Plane: plane model (PM), capacity (CA), type (TP).

(a) (6 points) Translate the following query into relational algebra: “What were the
departure and arrival cities of all flights on December 10th that were completely
full?” For the purposes of this one question, don’t worry about efficiency.

πDC,AC(σDT=12-10-01 ∧ NP=CA(Flight �� (Route �� Plane))
or
πDC,AC(σDT=12-10-01 ∧ NP=CA((Flight �� Route) �� Plane).

NB: Plane �� Flight does not work as a natural join: the relations have no field
in common. Also, Plane ��CA=NP Flight does not have the desired effect: it will
pair tuples representing little planes with tuples representing partially full flights
on big planes.

(b) (5 points) Explain why the following cannot be expressed in relational algebra:
“How many flights into Boston were late on December 10th?”

Relational algebra provides no way to compute new information; it only retrieves
information already explicitly present in the database. The answer to this “query”
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is not explicitly stored; it would have to be computed by counting the number of
tuples returned by a more conventional query. One could easily imagine imple-
menting a database capable of performing the counting operation, but it would step
outside the realm of relational algebra to do so.

(c) (EXTRA CREDIT; 10 points) Assume that the Route and Flight relations have
indices for attribute FN (only), the Plane relation has an index for attribute PM
(only), and we don’t want to bother creating any additional indices. Modify your
answer to part (a) above by pushing selection and projection operations inward
wherever it is both possible and profitable to do so.

πDC,AC(σNP=CA(Plane �� πPM,NP,DC,AC(πFN,NP(σDT=12-10-01(Flight)) �� Route)))
or
πDC,AC(σNP=CA(πFN,NP(σDT=12-10-01(Flight))

�� πFN,CA,DC,AC(Route �� πPM,CAPlane))).

In both alternatives we can (and should) push the selection for day all the way in
to the Flight relation. Because this forces us to iterate over the whole relation,
the inner index join in the first suggested answer performs lookups on the Route
relation. We therefore avoid pushing a project all the way in to Route. Because we
are iterating over all elements of the result of the inner join (in order to produce
them!) we do lookups on Plane in the outer index join, and avoid pushing a project
in to Plane.

In the second suggested answer, the Plane relation is probably smaller than the
Route relation, so we iterate over Plane and do lookups in Route. We therefore
push a project in to Plane, but not in to Route. Because we have pushed a select
in to Flight, we are forced to iterate over all tuples of both arguments of the outer
join. The first suggested answer is probably the faster of the two.

6. (EXTRA CREDIT; 10 points) Prove that regular languages are closed under comple-
mentation. That is, given a finite automaton M that accepts certain strings composed
of symbols from the input alphabet Γ, show that there exists a finite automaton M ′

that accepts all and only those strings over the same alphabet that are not accepted
by M .

Assume without loss of generality that M is a deterministic machine with a dead state,
so it always consumes its entire input (never gets “stuck”). Let M ′ be identical to M ,
except that all the accepting states in M ′ are non-accepting states in M , and all the
non-accepting states in M ′ are accepting states in M . Clearly after consuming a given
input string, M and M ′ are in the same state. But now M ′ accepts only if M does
not, and vice versa.

NB: Replacing each edge label a with Γ − {a} doesn’t work. To see why not, consider
a state with several outgoing transitions. Complementing the labels on each transition
will produce overlapping label sets, introducing new paths, changing a DFA into an
NFA, and changing the accepted language in complex and undesired ways.

7. (6 points) Determine, using a truth table, whether or not the following formula is a
tautology: (A ∧ (¬B ∨ C)) ∨ (¬C ∧ B) ∨ ¬A.
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X Y Z
A B C (¬B ∨ C) (A ∧ X) (¬C ∧ B) Y ∨ Z ∨ ¬A
0 0 0 1 0 0 1
0 0 1 1 0 0 1
0 1 0 0 0 1 1
0 1 1 1 0 0 1
1 0 0 1 1 0 1
1 0 1 1 1 0 1
1 1 0 0 0 1 1
1 1 1 1 1 0 1

The formula is a tautology, because the right-hand column is all ones. BTW, this
problem is straight off the 1999 final.

8. Consider the following quotation: “If the unicorn is mythical, then it is immortal, but
if it is not mythical, then it is a mortal mammal. If the unicorn is either immortal or
a mammal, then it is horned.”

(a) (8 points) Restate the quotation in propositional logic, as a collection of CNF
terms.

Let A = mythical, B = mortal, C = mammal, and D = horned. Then

implications CNF #
A → ¬B (¬A ∨ ¬B) 1
¬A → (B ∧ C) (A ∨ B) 2

(A ∨ C) 3
(¬B ∨ C) → D (B ∨ D) 4

(¬C ∨ D) 5

(b) (8 points) Prove, using resolution, that the unicorn is horned, or demonstrate that
this cannot be proven from the given premises.

justification #
(A ∨ D) resolution of 3 and 5 6
(¬B ∨ D) resolution of 1 and 6 7
(D) resolution of 4 and 7 8

(c) (8 points) Prove, using resolution, that the unicorn is mythical, or demonstrate
that this cannot be proven from the given premises.

By considering all pairs of clauses, we can exhaustively enumerate all CNF clauses
that can be derived from our premises via resolution:

justification #
(¬B ∨ C) resolution of 1 and 3 9
(¬A ∨ D) resolution of 1 and 4 10
(C ∨ D) resolution of 3 and 10 11

These clauses complete the list (except for (T), which we can derive from, say,
1 and 2). Since resolution is complete for propositional logic, and (A) does not
appear in our list of clauses, we cannot prove that the unicorn is mythical.
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Alternatively, we can show the unprovability of mythical by giving a truth assign-
ment in which mythical is false but all of the premises are true. Experimentation
with a truth table reveals that there is exactly one such assignment: let mythical
be false and mortal, mammal, and horned be true.

NB: the fact that mythical is not the right-hand side of any explicitly stated im-
plication does not mean that it cannot be proven. If, for example, we know that
¬A → (B ∧ ¬B), then we can deduce A.

9. (8 points) Characterize each of the following problems as (1) tractable (a polynomial-
time algorithm exists), (2) intractable (best known algorithm requires exponential
time), or (3) uncomputable.

(a) Given a formula in propositional logic, does there exist a truth assignment for the
propositions (a choice of which propositions are true and which are false) that
makes the formula as a whole true?

(b) Given a directed graph, a distinguished node v, and a constant k, list all nodes
within distance k of v.

(c) Given a program P , tell whether P runs in time O(N), where N is the length of
its input.

(d) Given a finite automaton M and an input i, determine whether M accepts i.

(b) and (d) are tractable. (a) is intractable. (c) is uncomputable.

10. (8 points) Translate the following English statements into predicate logic.

(a) Not every day is cloudy.

(∃d)[¬cloudy(d)]

(b) Everyone has a cluster or a major in some department in the humanities.

(∀p)(∃d)[humanities(d) ∧ (major(p, d) ∨ cluster(p, d))]

(c) There is something we all agree on.

(∃t)(∀p)[agrees(p, t)]

(d) Anyone who outperforms everyone else in the class will get an A.

(∀a)[((∀b)[(a = b) ∨ outperforms(a, b)]) → gets-an-A(a)]

NB: In several of these problems there is some ambiguity as to what should be
expressed explicitly with a quantified variable, rather than being rolled into a pred-
icate. I gave full credit only when all entities mentioned explicitly in the question
were mentioned explicitly in the answer. In part (b), for example, I did not give full
credit for (∀p)[has humanities cluster(p)∨has humanities major(p)]. Note that in
the limit, one could say (∀p)[has humanities cluster or major(p)], or even (rolling
p itself into a zero-argument predicate) everybody has a humanities cluster or major,
for which hopefully no one would expect full credit.

There’s also some ambiguity as to what aspects of variables should be expressed as
predicates and what can simply be considered a characteristic of the domain. In
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part (a), for example, one could say (∃d)[day(d)∧¬cloudy(d)], but since we don’t
talk about things other than days, it’s reasonable simply to say that the domain
of d is the set of all days. In contrast, in (b) the wording implies the existence
of departments that are not in the humanities, so it seems necessary to capture
“humanities-ness” with a predicate.
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