
Metareasoning as an Integral Part of Commonsense and Autocognitive Reasoning

Fabrizio Morbini and Lenhart Schubert
University of Rochester

Abstract

In this paper we summarise our progress towards building
a self-aware agent based on the definition of explicit self-
awareness. An explicit self-aware agent is characterised by
1) being based on an extensive and human-like knowledge
base, 2) being transparent both in its behaviour and in how
the knowledge is represented and used, and 3) being able to
communicate in natural language and directly display aware-
ness through its dialogues. We first review the requirements
posed by explicit self-awareness on the knowledge represen-
tation and reasoning system and then describe how these have
been realized in the new version of the EPILOG system. We
argue that meta-level reasoning is very important to achieve
self-awareness but that it doesn’t need to be on an entirely
different level from object-level reasoning. In fact, in our
agent meta-level reasoning and object-level reasoning coop-
erate seamlessly to answer each question posed to it.

Introduction
We report on progress towards building a self-aware agent
based on the EPILOG inference system, an evolving imple-
mentation of the Episodic Logic (EL) knowledge represen-
tation. (Schubert 2005; Morbini & Schubert 2007) laid the
foundations for our approach to self-aware agents; in sum-
mary:

• In ’05 Schubert defined explicit self-awareness (as a goal
in agent design) as requiring

– self-knowledge of human-like scope, encompassing
physical, mental, autobiographical, and contextual
properties;

– encoding of self-knowledge in a form that is exam-
inable (transparent) and usable by general inference
processes; and

– overt display of self-knowledge through communica-
tion.

• In ’07 we reported a first proof of concept of the basic
ideas behind explicit self-awareness using EPILOG.

We have extended this preliminary work by strengthening
the KR&R capacities of EPILOG in a number of ways, par-
ticularly with respect to handling of attitudes, substitutional

Copyright c© 2008, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

quantification, recursive self-inquiry, and systematization of
various facets of the inference process such as formula nor-
malization, loop detection, multiple answer computation,
and term evaluation. We will conclude our discussion with
some subtle examples involving time-sensitive (indexical)
self-knowledge and topical self-knowledge.

Metareasoning
In (Schubert 2005) Schubert lists a series of requirements
on the KR&R system to enable explicit self-awareness. We
first summarise these requirements, and then describe in
some detail how two of these requirements have been im-
plemented in EPILOG.
• Logic framework: we require an explicit, transparent rep-

resentation for the agent’s commonsense knowledge and
metaknowledge, amenable to browsing and and inferen-
tial manipulation. We chose EL as an extension of FOL
more fully adapted to the expressive devices of NL.

• Events and situations: the agent must be able to refer to
events described by complex sentences (e.g., the event de-
scribed by my (i.e. EPILOG’s) failure to answer a ques-
tion). This capability has always been an integral part of
EL and therefore of EPILOG.

• Generic knowledge: much of everyday knowledge is ex-
pressed using generic or probabilistic adverbs like usu-
ally or probably. In EPILOG generics are expressed using
probabilities, though this support is basic and in need of
further development.

• Attitudes and autoepistemic inference: the ability to rea-
son about one’s own knowledge and to represent one’s
beliefs is fundamental to a self-aware agent. Our com-
mitment is to Kaplan’s computational notion of knowing
(Kaplan 2000; Kaplan & Schubert 2000). We describe
below how the basic machinery needed for this has been
implemented in EPILOG.

• Metasyntactic devices: a self-aware agent needs to be able
to refer in its logical language to the syntax of that lan-
guage itself. How some of these devices have been imple-
mented in EPILOG will be described later in this section.
We will now describe how the last two requirements have

been implemented in EPILOG. As a notational alert, we
should mention that EL uses infix notation for predication

and prefix notation for function application; e.g., (EL (very
expressive)) states that EL is very expressive; the predicate
(very expressive) is infixed, while the predicate modifier very
(a function that maps monadic predicates to monadic predi-
cates) is prefixed.

Substitutional Quantification and Quasi-Quotation
As motivated and exemplified in (Schubert 2005; Morbini
& Schubert 2007) it is important to be able to refer to syn-
tactic elements of EL in an EL formula itself. To do so EPI-
LOG currently supports two devices: substitutional quanti-
fiers and quasi-quotation.

Their implementation is straightforward and posed no ma-
jor problems. The two main modifications required were

• to the parser: we added substitutional quantifiers and
metavariables. A metavariable is a particular type of vari-
able that is bound by a substitutional quantifier. A substi-
tutional quantifier is much like a normal quantifier except
that it quantifies over substitutions of expressions of a par-
ticular category for the metavariable. For example: (∀wff

w (w⇒ (me Know (that w)))) quantifies over substitutions
of EL well-formed formulas for the variable w. The truth
conditions of the formula are that all instances of the for-
mula are true under the object-level semantics, when EL
well-formed formulas (not containing metavariables) are
substituted for w.
Quasi-quotation, written with a quote sign (apostrophe)
accepts an expression as argument that may contain
metavariables; substitution for such metavariables treats
quasi-quotes as transparent. As an example of the use
of (quasi-)quotation, we can express in EL that the “=”
predicate is commutative by writing (’= (Commutative
El-predicate)) where Commutative is a predicate modifier
and El-predicate is a predicate.

• to the unification routines: since we have provided for
metavariables, unification should be able to unify not only
variables with terms but also metavariables with EL ex-
pressions of the appropriate categories. For example, we
should be able to unify (me Know (that w)) with (me Know
(that (?x Foo))), yielding unifier {(?x Foo)/w}.

Recursive QA
In (Morbini & Schubert 2007) we described the basic prop-
erties a computational notion of knowing should have. We
indicated why knowing is very different from being able to
infer, and referred to Kaplan & Schubert’s algorithmic ASK
mechanism as a basis for knowing. Here we describe how
that notion is supported in EPILOG. The intuitive way to
implement ASK (and thus to answer questions that involve
predicates Know or Believe) is to allow for question-asking
within a question/answering (QA) process. Answering ques-
tions about nested beliefs thus involves further nesting of
QA processes. That is the basic idea behind recursive QA.

Again implementing this is straightforward in any system
with a clean and modular implementation of the QA process.
What is needed is that the QA process must work only on
local variables and the same must be true for all systems

on which QA depends (e.g., knowledge base, unification,
inference, normalization, etc).

In addition to having a modular system, one needs a way
to connect inference with the QA process so that this pro-
cess can be started whenever it is required by some infer-
ence. In EPILOG this is achieved by using the metasyn-
tactic devices described in section and by providing a sin-
gle special-purpose function, called “APPLY”, that the QA
process knows how to evaluate whenever its arguments are
quoted and metavariable-free. (It executes a Lisp function
of the same name for the given arguments; this linkage from
reasoning to computation can also be used for many other
purposes). In particular, to implement the ASK mechanism
we added the following axiom to EPILOG’s standard knowl-
edge base: (∀wff w (’w WithoutFreeVars) ((me Know (that
w)) ⇔ ((APPLY ’knownbyme? ’w) = ’t))), where known-
byme? is a Lisp function that implements the ASK mecha-
nism as a recursive QA-process. WithoutFreeVars is a pred-
icate with one argument denoting an expression, typically
specified using quotation, that is true whenever the argu-
ment doesn’t contain free variables. To evaluate this predi-
cate EPILOG will have another axiom in its knowledge base:
(∀subst x ((’x WithoutFreeVars) ⇔ ((APPLY ’withoutfree-
vars? ’x) = ’t))) where it withoutfreevars? is the Lisp func-
tion that detects whether or not an EL expression contains
free variables.

Currently, all formulas involving APPLY are equivalences
(like the two above) in which the variables are universally
quantified and that may have simple conditions (like (’w
WithoutFreeVars) above) applied to those universally quan-
tified variables.

Whenever the QA process uses any of the formulas in-
volving the APPLY function it does the following:
1. unify the universal variables and check that all conditions

on them are satisfied. This check is done by starting a QA
process for each condition.

2. if the previous check is satisfied, execute the Lisp function
specified as first argument of the APPLY function, with the
arguments provided for it, after having applied the unifier
found at the previous step.

Inference in EL
In this section we will describe other characteristics of EPI-
LOG’s inference machinery not directly related to metarea-
soning but important to EPILOG’s functioning.

Normalization
Because EL uses non-first-order constructs, e.g., substi-
tutional quantification, quotation, lambda abstraction, and
modifiers, the standard FOL normalization to clause form
cannot be used. (Besides, clause form can be exponentially
larger that the original form, for example for a disjunction
of conjunctions.) Normalization for EL is based on term-
rewriting systems (), in particular on the following algo-
rithm. (Think of EL expressions as trees, where the children
of a node are the immediate subexpressions.) The two main
parts of the algorithm are
1. a set of rewriting rules each divided into two parts:

(a) a set of preconditions. Each precondition is defined by
a child identifier and by a function name. The child
identifier extracts one or more descendants (subexpres-
sions) of the EL expression currently being analysed,
and the function name specifies a boolean Lisp function
that takes as argument(s) the descendant(s) specified by
the first part.

(b) a function that defines the effects of the rule. This func-
tion is executed when all preconditions are satisfied.

2. an application procedure that traverses the EL tree check-
ing at each node if a rule applies. If a rule applies, it is ex-
ecuted, and if this modifies the node, control backs up N
levels from the current node and the traversal is restarted
from there. N is the maximum depth of the descendants
used in the preconditions of the normalization rule. For
example, if the rule uses only children then N = 1, while
if some use a grandchild then N = 2, etc.
Currently the normalization process employs a total of 14

rules. They perform such transformations as moving nega-
tions inward, Skolemizing top-level existentials, ordering
the arguments of ANDs and ORs, perform basic tautology
elimination, move inward quantifiers, etc.

Inference Graph Handling
EPILOG’s QA is in its simplest form a natural deduction
back-chaining system. It starts with the initial question, then
generates a proof subgoal and a disproof subgoal (i.e. the
negation of the initial question). The QA process maintains
an agenda of subgoals based on an AVL tree that decides
which subgoal to process first. We have not finalised how
the subgoals are sorted in the agenda; some criteria may be:
subgoal complexity, their probability, their level, etc. More
testing is required to decide which combination of criteria is
advantageous in the majority of situations.

Each subgoal is first checked to see if it can be simplified:
• conjunctions are split into their conjuncts, and each con-

junct is handled independently of its siblings until it is
solved. If a conjunct appears in the current knowledge
base, it is trivially solved. When a solution to a conjunct
is obtained, it is properly combined with the solutions of
the siblings.

• for disjunctions, if a disjunct appears in the current knowl-
edge base, then the disjunction is trivially solved. Other-
wise, disjunctions are split for each disjunct by assum-
ing the negation of the remaining disjuncts. Here we
make use of another feature, namely knowledge base in-
heritance. Each question is associated with a knowledge
base that defines what knowledge can be used to an-
swer the question. When assumptions are made, they are
loaded into a new knowledge base (to be discarded at the
end of the QA process) that inherits the contents of the
knowledge base used before the addition of the assump-
tions. Currently the consistency of the assumptions is not
checked, but problems will be detected from the contra-
dictory answers produced.

• implications, A ⇒ B, are converted into two subgoals,
(notA) and B assuming A.

• equivalences are split into conjunctions.

• universally quantified goals are simplified by generating a
new constant and unifying the universal variable with it.
If the universal quantifier has a restrictor, that is assumed.

When no more simplifications can be applied, goal-
chaining inference is attempted. From each subgoal, one
or more keys are extracted and used to retrieve knowledge.
These keys are the minimal well-formed formulas embed-
ded entirely by extensional operators such as quantifiers and
truth-functional connectives. Each subgoal maintains an-
other agenda that decides which key to use first for retrieval.
As in the case of subgoal ordering, we have not yet finalised
the sorting criterion. Possibilities are preferring keys that
contain more variables, or ones with the least associated
knowledge.

Goal-chaining inferences can be thought of as being
resolution-like, except that the literals being resolved may
be arbitrarily embedded by extensional operators. (For de-
tails, see, e.g., (Schubert & Hwang 2000).)

For each successful inference performed for a subgoal to-
gether with a retrieved formula, a child subgoal is attached
to this subgoal and the process is repeated (with termination
if the derived subgoal is truth).

The two processes just described (i.e., simplification and
inference) construct an inference tree. However loops and
repetitions can happen, worsening performance or prevent-
ing success altogether (in case the subgoal selection behaves
as a depth-first run-away). Therefore we added two opti-
mizations, the second of which transforms the inference tree
into an inference graph:

1. loop detection: a loop is created when the same subgoal
appears twice along an inference branch. In saying that
a new subgoal is the “same” as a previous one, we mean
that it has the same EL formula and is associated with
the same knowledge base, or with a knowledge base that
inherits that of the previous subgoal.

2. to avoid doing the same reasoning multiple times we de-
tect when the same node (where “same” is defined as
above) is present on a different branch (therefore not
forming a loop). In this case, we connect the two nodes
and in case the already present node uses the exact same
knowledge base as the new one, we completely stop fur-
ther processing of the new node. If instead the new node
uses a knowledge base that inherits from that of an old
node we continue to process the new node as if the old
didn’t exist (except for adding the connection between the
two nodes).
In case the old node is answered, the answer is propagated
to the new node as well.

Multiple answers
In many cases it is necessary to be able to handle multiple
answers for a given subgoal, for example, when the question
is not a yes/no question (i.e. wh questions).

The main capabilities required to support multiple an-
swers are:

• the ability to propagate the answers found from the leaves
of the inference graph up to the initial question. This in-
cludes taking care of merging, or waiting for1, the answers
of siblings nodes in case they where part of a conjunction
or disjunction; properly handling renaming of variables
and the merging of unifiers.

• the ability to avoid the propagation of duplicated answers.
We consider two answers the same if they use the same
knowledge and produce the same unifiers.

Term Evaluation

Sometimes the answer may contain complex terms, for
example functions, instead of their result as expected by
whomever asked the question. For example, to the question
“How old are you?” the system could answer with “The dif-
ference in years between 1st January 1993 and now” instead
of actually computing the difference.

Currently we employ a term evaluation procedure based
on the same QA process. Given a complex ground term T
the question (∃ x (x = T)) is posed and the unifications for
x are collected only if these are simpler than T itself. The
process is recursive, i.e., the unifications collected for x can
be evaluated if they are complex terms. Because the sys-
tem uses the same QA process it can detect loops and avoid
duplication in the evaluation process as described in section
.

However this is not ideal because the evaluation process
is preprogrammed and fixed. Instead, as indicated in (Schu-
bert 2005), we would like the QA process to automatically
look for the correct type of answer as specified by syntactic
constraints that are part of the question itself; if we ask the
age of an individual, the question should probably constrain
the answer to be a decimal integer providing the age in years.

Examples

In this section we describe some of the examples used to test
the features of this system.

In (Morbini & Schubert 2007) we included a preliminary
discussion of the questions “Do pigs have wings?” and “Did
the phone ring (during some particular episode E1)?”, now
these questions can be solved as described in that paper.

One of the most interesting questions we have tried so far
is the question “How old are you?”. Though one can eas-
ily imagine simple short-cut methods for answering such a
question, doing so in a principled, knowledge-based fashion
can be non-trivial. The following table shows the knowledge
used for this question:

1In case the siblings are part of a conjunction, the propagation
of the answer of one of them must wait for a positive answer from
all the siblings.

EPILOG’s birth date is 12 o’clock on the 1st of January
1993
((date 1993 1 1 12 0 0) BirthDateOf Epilog)
If x is the birth date of y then for every event e the age
in years of y in e is the difference in years between x and
the time of e
(∀ y (∀ x (x (be (BirthDateOf y))) (∀ e

((y HasAgeInYear (DiffInYear x (TimeOf e))) * e))))
Time density axiom
(∀ y (∃ x (x AtAbout y)))
Approximation of the meaning of AtAbout
(∀ x (∀ y (x AtAbout y) ((TimeOf x) = (TimeOf y))))
Symmetry of the predicate AtAbout
(∀ x (∀ y ((x AtAbout y) ⇔ (y AtAbout x))))
Axiom that says how to evaluate the predicate DiffInYear
(∀ x (∀ y (y AbsoluteTimePoint)

(∀ z (z AbsoluteTimePoint)
((x = (DiffInYear y z)) ⇔

(x = (APPLY ’diff-in-years? ’y ’z))))))
Axiom that says how to evaluate the predicate Absolute-
TimePoint
(∀ x ((x AbsoluteTimePoint) ⇔

((APPLY ’abs-time-point? ’x) = ’t)))
The question in EL becomes (∃ x (∃ e (e AtAbout Now)

((Epilog HasAgeInYear x) ** e)))
The answer found is that in the event (FNSK-449 Now) the

age of EPILOG is (DiffInYear (date 1993 1 1 12 0 0) (TimeOf
(FNSK-449 Now))) where FNSK-449 is the Skolem function
derived from the density axiom; so (FNSK-449 Now) identi-
fies an event temporally near the event Now.

Given this answer, the evaluation of (TimeOf (FNSK-449
Now)) using the knowledge that ((FNSK-449 Now) AtAbout
Now) and that (∀ x (∀ y (x AtAbout y) ((TimeOf x) = (TimeOf
y)))) produces (TimeOf Now), which can be evaluated to the
current time.

After that (DiffInYear (date 1993 1 1 12 0 0) (TimeOf
Now)) can be directly evaluated using a dedicated function
to compute the difference of two time points.

In the current solution, as already said in section , we ex-
plicitly call the term evaluation routine for each complex
ground term returned as answer to a question.

The next question considered here is “What is your name
(now)?”. the knowledge used is displayed in the following
table:

Epilog-name is a name
(Epilog-name Name)
A name is a thing
(∀ x (x Name) (x Thing))
Now is during event E2
(Now during E2)
The event E2 is characterised by EPILOG having name
Epilog-name
((Epilog Have Epilog-name) ** E2)
Have is a continuous property: if x have y in e then x has
y in all events during e.
(∀ x (∀ y (∀ e ((x Have y) ** e)

(∀ z (z During e) ((x Have y) ** z)))
The question in EL is represented as (∃ e0 (e0 AtAbout

Now) ((∃ z ((z Name) and (Epilog Have z)) (∃ y (y Thing)

(y (BE (L x (x = z)))))) ** e0)). The apparently convoluted
form is due to the fact that this question is automatically
generated from the NL input.

After normalization we obtain the simpler question (∃ e0
(e0 AtAbout Now) (∃ z ((z Name) and (z Thing)) ((Epilog
Have z) ** e0))). The normalization procedure moves in-
ward the “**” operator using the knowledge that “Name”
and “Thing” are atemporal predicates. This knowledge is
stated in EL and is used by the normalization procedure.

In the current reasoning we manually add the fact that
EPILOG’s name is valid in an interval of time that includes
the Now point. However, in future we would like this prop-
erty to be automatically generated by a module in charge of
maintaining the self-model of the system.

The last example shows how the metasyntactic devices
could be used to answer topical questions. The question is
“What do you know about the appearance of pigs?”. The
following table contains the knowledge used:

Pigs have a relatively big diameter/length ratio.
((K (Plur Pig)) ThickBodied)
ThickBodied is a predicate about the appearance of some-
thing.
(’ThickBodied AppearancePred)
Every formula with structure (x p) in which p is an ap-
pearance predicate is a fact about the appearance of x.
(∀pred p (’p AppearancePred)

(∀ x (x p) ((that (x p)) AppearanceFactAbout x)))
The question in EL becomes (∃ x (x Appearance-

FactAbout (K (Plur Pig)))). The answer found is “(that ((K
(Plur Pig)) ThickBodied))”.

However, to retrieve more complex knowledge about pigs,
for example that pigs have curly tails, more complex knowl-
edge would have to be used.

Discussion and Further Work
The examples given show the ability of the current system to
handle basic forms of metareasoning. However there is still
much work to be done; some of the more pressing items are
the following:

• Currently we have implemented only an exhaustive re-
trieval mechanism to be able to test the system. Given that
our goal is to build an inference agent able to deal with the
large knowledge base required by commonsense applica-
tions, having an efficient knowledge retrieval mechanism
is crucial. Without an efficient retrieval mechanism the in-
ference engine will only be able to answer questions using
a small knowledge base.
EPILOG already had an indexing scheme designed to be
scalable but some extensions are required, in particular in
these directions: 1) retrieval of knowledge that uses any
of the metasyntactic devices described in this paper, 2)
closing some retrieval gaps, in particular in goal chaining,
and 3) automatically building the type information needed
to efficiently index a formula based on the most restrictive
type that can be inferred for the variables in it.
After this efficient indexing schema is finalised and im-
plemented, we plan to test its scalability using some large

knowledge base (for example, the FOL conversion of
OpenCyc (Ramachandran, Reagan, & Goolsbey 2005)).
In another test we plan to assess the completeness and
efficiency of retrieval and goal chaining, by running for-
ward inference and checking how many of the inferences
produced (and in how much time) can be proved by goal
chaining.

• For solving many commonsense problems it seems nec-
essary to provide the general inference engine with a set
of specialized inference methods. In EPILOG these spe-
cialised reasoning routines are called specialists. In the
previous version of EPILOG these specialists were “un-
consciously” invoked by the general inference engine. We
would like to add knowledge, based on the APPLY func-
tion, to make the inference engine aware of its specialists
and their capabilities.

• Another front that needs work is the refinement of the
ASK mechanism. Currently the ASK mechanism is made
time-bounded simply by means of a hard limit on the
depth of reasoning. (However, the limit can be computed
so that several desirable properties of knowing are main-
tained – e.g., given that EPILOG knows A it also knows A
or B).

Relationship to traditional conceptions of
metareasoning
The traditional conception of the role of metareasoning in an
intelligent agent is diagrammed in the following figure.

The emphasis in this conception is on control and mon-
itoring of object-level reasoning by higher-level reasoning
processes (e.g., (Cox 2005)). This is certainly one of the
most important roles that metareasoning can play, but not
the one we have been focusing on. Instead, we have focused
on metareasoning as an integral part of commonsense and
autocognitive reasoning.

This leaves the question of how we might add metalevel
control to an explicitly self-aware agent of the sort we have
been striving to define and implement. We have no fully
worked-out answer to this question, but can make the fol-
lowing remarks.

We ultimately conceive of a purposive agent as continu-
ally modifying, evaluating, and partially executing a “life-
long” plan. This plan contains hierarchically structured
goals and actions (and various annotations concerning the
purpose of steps, their prerequisites, effects, timing, etc.) It
is perfectly possible for goals or steps to be reasoning goals
or steps (e.g., to confirm or disconfirm certain propositions,
to identify tuples of entities standing in certain specified re-
lationships, to find a hypothesis accounting for given facts,
etc.) As soon as we admit this possibility, planning becomes

metareasoning, in the sense that the agent is controlling its
own reasoning actions via its planning/execution activity.

However, such a view of metalevel control of reasoning
may not fit well with the above figure because it blurs both
the distinction between Doing and Reasoning (the two mod-
ules on the left) and that between Reasoning and Meta-Level
control (the two modules on the right). Concerning the first
distinction, planning and execution of reasoning steps in our
conception are handled by the same processes as planning
and execution of physical (or perceptual, or communica-
tive) actions; i.e., the continual planning/execution module
allows for mingling of these types of steps. Concerning the
second distinction, while the planning/execution process in-
volves processes unique to it (we envisage a fixed “greedy”
process that continually tries to improve upon the net ex-
pected cumulative utility of the agent’s “life”), it also in-
volves some of the same reasoning processes required for
commonsense question-answering. For example, one im-
portant aspect of planning is the reasoned elaboration of a
step of type “achieve subgoal G” into more explicit actions
to achieve G. This may well be done with the help of ax-
ioms such as one stating that “doing action(s) A brings about
G”. Now, is this elaboration step an instance of object-level
or meta-level reasoning? The answer depends on the syn-
tax of A and G. If A is an action described in the object-
level language of the agent, and G is a goal also described in
that language, then the elaboration step could be regarded as
object-level reasoning; but if A describes a reasoning action
(using attitudinal predicates such as “I try to prove that ...”,
or perhaps using explicit quotation to refer to an executable
inference procedure with known effects), then the elabora-
tion step could be regarded as an instance of meta-level rea-
soning. So in our conception, the distinction between meta-
level and object-level reasoning is not an explicit architec-
tural one, but rather is “hidden” in the syntax of the knowl-
edge involved.

References
Cox, M. 2005. Metacognition in computation: A selected
research review. Artificial Intelligence 169(2):104–141.
Kaplan, A. N., and Schubert, L. K. 2000. A computational
model of belief. Artif. Intell. 120(1):119–160.
Kaplan, A. 2000. A Computational Model of Belief. Ph.D.
Dissertation, University of Rochester.
Morbini, F., and Schubert, L. K. 2007. Towards realis-
tic autocognitive inference. In Logical Formalizations of
Commonsense Reasoning, 114–118.
Ramachandran, D.; Reagan, P.; and Goolsbey, K. 2005.
First-orderized researchcyc: Expressivity and efficiency in
a common-sense ontology.
Schubert, L., and Hwang, C. 2000. Episodic logic meets
little red riding hood: A comprehensive, natural repre-
sentation for language understanding. In Iwanska, L.,
and Shapiro, S., eds., Natural Language Processing and
Knowledge Representation: Language for Knowledge and
Knowledge for Language. Menlo Park, CA: MIT/AAAI
Press. 111–174.

Schubert, L. K. 2005. Some knowledge representation and
reasoning requirements for self-awareness. In Metacogni-
tion in Computation, 106–113.

