SEDA
Staged Event-Driven Architecture

* Problem/Motivations:

— Internet applications catering to
* bursty, massively concurrent demands
* Responsive
* Robust
* Fault tolerance

— Concurrent requests translate to even higher 1/O
and N/w requests

- Example:

* 1.2 billion page views @ Yahoo daily.
* 10 billion hits @ AOL Web caches daily.

Challenging trends

* Services are becoming complex.

* 1. Static content -> Dynamic content

* 2. Deploymentissues

* 3. Hosted on general purpose platforms

SEDA - A quick intro.

* Provides a general “framework” for authoring
“highly concurrent” & “well-conditioned
service” instances that “handle load
gracefully’.

* Traditional OS designs versus SEDA design.

SEDA - A quick intro (Contd)

* SEDA combines:
- Aspects of thread management (Ease of pgmg)
- Event based programming model (Concurrency)

* Using the SEDA framework, applications are
developed as “Network of stages”, each with
an associated incoming queue.

* Java applications based on SEDA have
surprisingly outperformed their C
counterparts.

Outline of the rest of the talk:

* Current development frameworks

* SEDA Archictecture

* Haboob Http server

* Gnutella p2p file sharing n/w

* Comparison with other architectures
* Conclusion

Terminology

* Well conditioned service:
— A service is well conditioned if it behaves like a
simple pipeline, where the depth of the pipeline is
determined by the path through the network, and
the processing stages within the service itself.

— The key property of a well conditioned service is

“graceful degradation”:

* As the load exceeds capacity, the service maintains
high throughput with a linear response-time penalty
that impacts all the clients equally, or atleast according
to some service specific policy.

Thread based frameworks

TOUQNPLE ===

- latency i~
Linear (idaal) latency @+ J4 350

Number of threads

A commonly used

framework:
- Create a new thread
for each request.

- Advantage:
* Easy to program

- Disadvantages:
* Overheads for

cache/TLB misses,

scheduling, lock
contentions.

Possible remedies

* Scheduler activations

* Application-specific handlers

* SPIN

* Exokernel

* Etc

* All attempt to give the applications the ability
to specialize the policy decisions made by the
kernel.

* Bounded thread pools - issues.

Event driven concurrency

- e
request FSM T‘*-

—

/@ueat FSM>
— T

E&d uler J req ue-:-.t FSI‘-@

network —n]]]]]]]]]-f*"'”
@ueat FSI‘-H

red u_eiF ? M Fd}
Figure 3: Event-driven server design: This figure sfiows the flow of events
througl an eveni-driven server. The main thread processes incoming everis from
e network, disk. and other sources, and uses these (o drive the execution of
many finite siate machines. Fach FSM represenits a single reguest or flow of
execuifon through the system. The key source of complexity in this design is the
eveni scheduler, which must control the execution of each FSM.

Event driven mechanisms

* These systems tend to be robust to load, with
little degradation in throughput. (Requests vs
Events).

* Excess tasks are absorbed in the server's
event queue.

* Assumption: Event handling threads do not
block. Non-blocking I/O must be employed.

Performance

TI'|rn:-L|'gh|:|ut —T—
. . Latency =R
Linear (ideal) latency B

&
k|
i
_:.‘ﬁ
&
=

o
=

Th
=
=]
=
l—

- N L 2 2 |:|
1024 32768 1048576
Mumber of tasks in pipeline

SEDA Architecture

* Goals:
— Massive concurrency
- Well-conditioned service
— Adapt to changing load conditions
- Tune resource management

* Stage: A fundamental processing unit.

* Has an incoming event queue, a thread pool,
and an event handler. Each stage also has a
controller for scheduling & thread allocation.

SEDA: Stage

Event Queue | | Event Handler
___ 3 3,2-3

LI

Thread Pool

."'f- -M".
l—4 —

A
Controller

Cutgoing S
Events ,.r# eyl
— .-f' FITT

Figure 6: A SEDA Stage: A stage consists of an incoming event queue, a
thread pool, and an application-supplied event handler. The siage s operation
is managed by the controller, wiich adjusts resource allocations and scheduling
dyvnamically.

Dynamic Resource Controllers

* Goal:
- Shield programmers from performance tuning

* Resource controllers:
— Thread pool controller
* Adjust number of threads in the thread pool

— SEDA batching controller

* Adjust number of events processed in each invocation
of the event handler.

Sandstorm

* Sandstorm is a SEDA implementation in Java
using nonblocking socket i/o (Java NIO
library).

* Each application module implements a simple
event handler — handleEvents() which
processes a batch of events from the
iIncoming queue.

* No worries on thread creation, management.

Sandstorm (Contd)

* Provides Asynchronous network socket layer
based on nonblocking I/O provided by the OS

- AsyncSocket, asyncClientSocket,
asyncServerSocket, asyncConnection etc.
- 3 stages: listen, read, write.

* Provides Asynchronous file 1/0O layer that uses
blocking OS calls and uses threads to expose

nonblocking behavior.
— AsyncFile (provides non-blocking read, write,
seek, stat etc)

Applications & Evaluation - Haboob

* A high performance HTTP server
— Clients issue http requests & wait for responses
- SPECweb99 benchmark suite used for
performance testing.

* Benefits of using SEDA:

— Constructing Haboob increased the modular
design.

- Each stage provides a robust, reusable
component, individually conditioned to load.

- Test different page cache implementations and
file i/o much easily.

Haboob architecture

fle data_—
Socket listan CacheMiss 0 file 110 ™~
B R N L)
/7 ancept 7 handle fle
! .. Connection 4} connection HitpParse ELESI PageCache g Il o omiss s LI] o
— = T T -"ﬁaghg m— r———
Ry Foparse A check | miss :
Socket read - ||¥ C FEacHet o il (cache) HtpSend Socket wite
T — "]':Técket e — . | . |packet |
III / read ¥ v II /7 send o III] A wite
\._ packet cache it _ fesponse ./ BBN packet

Figure 5. Staged event-driven (SEDA) HTTP server: This is a structural representation of the SEDA-based Web server, described in detail in Section 5.1 The
application is composed as a set of stages separated by queues. Fdges represent the flow of events between stages. Fach stage can be independently managed, and
stagas can be run in sequence or in parallel, or a combination of the two. The use of event queuss allows each stage fo be individually load-conditioned, for example,

by thresholding ifs event queue. For simplicity, some event paths and stages have been elided from this figure

Haboob (Contd)

* Adaptive load shedding:
- When overloaded, Haboob adaptively sheds load.
— The queue threshold is reduced of that particular
stage.
- Example: HttpRecv stage - Error message is
returned to the client.

Haboob performance

0
&
5
=
=
Ful
=0
S
=
=
|_

240 m -

220
200
180
160
140
120
100
20
B0
40
20

i
ache
| eeoge=s Flash —

—@— Haboobk

Fairmness -

1
32 G5 1286 256 512
Mumber of clients

{a}) Throughput vs. number of clients

Fairness

Gnutella — A Packet router

* A peer to peer file sharing network.

* Search & download files from other peer
Gnutella users.

* A node discovers others using a discovery
protocol; use ad-hoc multihop routing.

* Architecture has 3 stages:
- GnutellaServer stage (Connection handling)
- GnutellaRouter stage (Table, Process, Route)
— GnutellaCatcher stage (Host discovery)

Gnutella

* Load conditioning policies
— Threshold incoming queue.
— Probabilistically drop packets based on queue
length.
— Admit all packets; filter them based on types.

Comparing SEDA with others.

* Recent studies indicate SEDA to perform
poorly compared to threaded/event-based

systems in C.

* Matt Welsh, counters it:
— Sandstorm implementation was on Linux 2.2, JDK

1.3

» Studies have used different environments, JVM's.
- SEDA n/w layer dependent on several
parameters.

* Tuning these parameters can improve the

performance.
— (G0al was to show DA had “acceptable

pefformance , while providing good foad -

Conclusion

Measurement & Control is the key, as
opposed to fixed resource allocation.

Challenges:
— Detecting overload conditions
— Strategy to counter overload

* Maybe use SEDA as a new direction in OS
design.

