
Operating Systems 11/9/2009

CSC 256/456 1

11/9/2009 CSC 256/456 1

Multiprocessor Operating Multiprocessor Operating 
SystemsSystems

CS 256/456
Dept. of Computer Science, University 

of Rochester

11/9/2009 CSC 256/456 2

Multiprocessor HardwareMultiprocessor Hardware
• A computer system in which two or more CPUs share full 

access to the main memory
• Each CPU might have its own cache and the coherence among 

multiple caches is maintained
– write operation by a CPU is visible to all other CPUs
– writes to the same location is seen in the same order by 

all CPUs (also called write serialization)

– bus snooping and cache invalidation

… … …
Cache

CPU

Cache

CPU

Cache

CPU

Memory

Memory bus

11/9/2009 CSC 256/456 3

Multiprocessor ApplicationsMultiprocessor Applications
• Multiprogramming

– Multiple regular applications running concurrently

• Concurrent servers
– Web servers, … …

• Parallel programs
– Utilizing multiple processors to complete one task 

(parallel matrix multiplication, Gaussian elimination)

– Strong synchronization

x =A B C

11/9/2009 CSC 256/456 4

SingleSingle--processor OS vs. Multiprocessor processor OS vs. Multiprocessor 
OSOS

• Single-processor OS
– easier to support kernel synchronization

• coarse-grained locking vs. fine-grain locking
• disabling interrupts to prevent concurrent executions

– easier to perform scheduling
• which to run, not where to run

• Multiprocessor OS
– evolution of OS structure
– synchronization
– scheduling



Operating Systems 11/9/2009

CSC 256/456 2

11/9/2009 CSC 256/456 5

Multiprocessor OSMultiprocessor OS

• Each CPU has its own operating system
– quick to port from a single-processor OS

• Disadvantages
– difficult to share things (processing cycles, memory, 

buffer cache)

Bus

11/9/2009 CSC 256/456 6

Multiprocessor OS Multiprocessor OS –– Master/SlaveMaster/Slave

Bus

• All operating system functionality goes to one CPU
– no multiprocessor concurrency in the kernel

• Disadvantage
– OS CPU consumption may be large so the OS CPU 

becomes the bottleneck (especially in a machine with 
many CPUs)

11/9/2009 CSC 256/456 7

Multiprocessor OS Multiprocessor OS –– Shared OSShared OS

• A single OS instance may run on all CPUs
• The OS itself must handle multiprocessor synchronization

– multiple OS instances from multiple CPUs may access 
shared data structure

Bus

11/9/2009 CSC 256/456 8

Preemptive SchedulingPreemptive Scheduling

• Use timer interrupts or signals to trigger involuntary 
yields

• Protect scheduler data structures by locking ready list, 
disabling/reenabling prior to/after rescheduling

yield: 
disable_signals
enqueue(ready_list, current) 
reschedule 
re-enable_signals



Operating Systems 11/9/2009

CSC 256/456 3

11/9/2009 CSC 256/456 9

Synchronization (Fine/CoarseSynchronization (Fine/Coarse--Grain Grain 
Locking)Locking)

• Fine-grain locking – lock only what is necessary for critical 
section

• Coarse-grain locking – locking large piece of code, much of 
which is unnecessary
– simplicity, robustness
– prevent simultaneous execution

Simultaneous execution is not possible on uniprocessor 
anyway

11/9/2009 CSC 256/456 10

Anderson et al. 1989 (IEEE TOCS)Anderson et al. 1989 (IEEE TOCS)

• Raises issues of 
– Locality (per-processor data structures)
– Granularity of scheduling tasks
– Lock overhead
– Tradeoff between throughput and latency

• Large critical sections are good for best-case 
latency (low locking overhead) but bad for 
throughput (low parallelism)

11/9/2009 CSC 256/456 11

Performance MeasuresPerformance Measures

• Latency
– Cost of thread management under the best 

case assumption of no contention for locks
• Throughput 

– Rate at which threads can be created, started, 
and finished when there is contention

11/9/2009 CSC 256/456 12

OptimizationsOptimizations

• Allocate stacks lazily
• Store deallocated control blocks and stacks in 

free lists
• Create per-processor ready lists
• Create local free lists for locality
• Queue of idle processors (in addition to queue of 

waiting threads)



Operating Systems 11/9/2009

CSC 256/456 4

11/9/2009 CSC 256/456 13

Ready List ManagementReady List Management

• Single lock for all data structures
• Multiple locks, one per data structure
• Local freelists for control blocks and stacks, 

single shared locked ready list
• Queue of idle processors with preallocated

control block and stack waiting for work
• Local ready list per processor, each with its own 

lock

11/9/2009 CSC 256/456 14

Multiprocessor SchedulingMultiprocessor Scheduling
• Timesharing 

– similar to uni-processor scheduling – one queue of 
ready tasks (protected by synchronization), a task 
is dequeued and executed when a processor is 
available

• Space sharing
• cache affinity 

– affinity-based scheduling – try to run each process 
on the processor that it last ran on

• cache sharing and synchronization of parallel/concurrent 
applications
– gang/cohort scheduling – utilize all CPUs for one 

parallel/concurrent application at a time
CPU 0

CPU 1
web server parallel Gaussian

elimination
client/server

game (civ)

11/9/2009 CSC 256/456 15

SMPSMP--CMPCMP--SMT MultiprocessorSMT Multiprocessor

Image from http://www.eecg.toronto.edu/~tamda/papers/threadclustering.pdf 11/9/2009 CSC 256/456 16

Resource ContentionResource Contention--Aware Aware 
Scheduling IScheduling I

• Hardware resource sharing/contention in multi-processors
– SMP processors share memory bus bandwidths
– Multi-core processors share L2 cache
– SMT processors share a lot more stuff

• An example: on an SMP machine
– a web server benchmark delivers around 6300 

reqs/sec on one processor, but only around 9500 
reqs/sec on an SMP with 4 processors

• Contention-reduction scheduling 
– co-scheduling tasks with complementary resource 

needs (a computation-heavy task and a memory 
access-heavy task)

– In [Fedorova et al. USENIX2005], IPC is used to 
distinguish computation-heavy tasks from memory 
access-heavy tasks



Operating Systems 11/9/2009

CSC 256/456 5

11/9/2009 CSC 256/456 17

Resource ContentionResource Contention--Aware Aware 
Scheduling IIScheduling II

• What if contention on a resource is unavoidable?
• Two evils of contention

– high contention ⇒ performance slowdown
– fluctuating contention ⇒ uneven application progress 

over the same amount of time ⇒ poor fairness
• [Zhang et al. HotOS2007] Scheduling so that:

– very high contention is avoided
– the resource contention is kept stable

CPU 0

CPU 1

high resource
usage

low resource
usage

high resource
usage

low resource
usage

medium resource
usage

medium resource
usage

11/9/2009 CSC 256/456 47

DisclaimerDisclaimer

• Parts of the lecture slides contain original work by Andrew 
S. Tanenbaum. The slides are intended for the sole purpose 
of instruction of operating systems at the University of 
Rochester. All copyrighted materials belong to their 
original owner(s). 


