Brief Announcement: On the Round Complexity of Distributed Consensus over Synchronous Networks

D.V.S. Ravikant V. Muthuramakrishnan V. Srikanth K. Srinathan^{*} C. Pandu Rangan[†]

Categories and Subject Descriptors: C.3.2 [Distributed Systems]: Distributed applications **General Terms:** Algorithms, Reliability, Theory

Keywords: Consensus, Round Complexity.

In a synchronous network, it is well-known that t + 1 rounds are necessary and sufficient to achieve distributed consensus tolerating t stopping faults[2]. In this work, we show that in a network consisting of all k-cast channels, the corresponding number of rounds is $\lfloor (t-1)/k \rfloor + 2$.

THEOREM 1. Consider a synchronous round-based system with n players connected by a network having all k-casts. Suppose that at most t crash-failures can occur with at most k-players crashing in each round.¹ If n > t + k, there is no algorithm that solves consensus in $\lambda = \left|\frac{t-1}{k}\right| + 1$ rounds.

Proof: We assume that there exists a protocol A that achieves consensus in λ rounds and arrive at a contradiction. The proof is based on the standard bivalency argument using forward induction. A particular configuration C of a synchronous system is univalent if there is only one value that the correct players can agree upon. C is said to be bivalent if it is not univalent (either 1-valent or 0-valent). In the following, a *l*-round partial run r_l denotes the execution of Aup to the end of round l. We prove two lemmas similar to [1]. The second one contradicts the first and completes the necessity proof of the theorem.

Lemma: Any $(\lambda - 1)$ -round run $r_{\lambda-1}$ is univalent.

Proof: Suppose $r_{\lambda-1}$ is bivalent. w.l.g. assume that the λ -round run r^0 obtained by extending $r_{\lambda-1}$ by one round such that no player crashes in round λ is 0-valent. Let r^1 be a 1-valent extension of $r_{\lambda-1}$ where some players crash in round λ . The only difference between r^0 and r^1 is that some messages $\{m_1, m_2, \ldots, m_s\}$ were sent in r^0 but not in r^1 . We define runs r^i for all $2 \leq i \leq s+1$, as follows: For every i, $1 \leq i \leq s, r^{i+1}$ is identical to r^i , except that the message m_i was sent in round λ . If m_i was sent along the k-cast Δ_i then for every player other than the recipients of Δ_i, r^{i+1} is indistinguishable from r^i . Note that, since n > t + k, this includes at least one correct player. This implies that each of these runs is 1-valent. However the view of any correct player c in r^{s+1} is the same as that in r^0 , which means that c should decide 0 in r^{s+1} , giving the contradiction.

Lemma: There is a bivalent $(\lambda - 1)$ -round run $r_{\lambda-1}$.

Proof: We show by induction on l that for each l, $0 \le l \le \lambda - 1$, there is a bivalent l-round partial run r_l .

From [1], there exists an initial bivalent configuration C_0 . Let r_0 be the 0-round partial run ending in C_0 . Assume, for contradiction, that every one-round extension of r_l is univalent. Let r_{l+1}^* be the (univalent) partial run obtained by extending r_l by one round such that no new crashes occur. w.l.g. assume that it is 0-valent. Since r_l is bivalent and every one-round extension of r_l is univalent, there is at least one one-round extension r_{l+1}^1 of r_l that is 1-valent. Suppose the messages m_1, \ldots, m_s were not sent in round l+1 in r_{l+1}^1 . The only difference between r_{l+1}^* and r_{l+1}^1 is that the messages m_1, \ldots, m_s were sent in r_{l+1}^* but not in r_{l+1}^1 . Starting from r_{l+1}^1 , we now define l+1-round partial runs as follows. For every j, $1 \le j \le s$, r_{l+1}^{j+1} is identical to r_{j+1}^j , except that the message m_j was sent in round l+1. Note that for every j, $1 \le j \le s+1$, r_{l+1}^j is univalent. There are two cases:

- 1. There is a $j, 1 \leq j \leq s$, such that r_{l+1}^j is 1-valent while r_{l+1}^{j+1} is 0-valent. Extend partial runs r_{l+1}^j and r_{l+1}^{j+1} into runs r and r', respectively, by crashing the k recipients of Δ_j at the beginning of round l+2, and continuing with no additional crashes. Note that (a) no player except the recipients of Δ_j can distinguish between r and r', and (b) all correct players must decide 1 in r and 0 in r' a contradiction.
- 2. $\forall j, 1 \leq j \leq s+1, r_{l+1}^j$ is 1-valent. (like in case 1.)

To prove the sufficiency condition, we give an optimal protocol. Let P be the set of players. For $1 \leq i \leq n$, let x_i be the initial value of player p_i . A message sent by a player is of the form (p_h, x_h, S) where $x_h \in \{0, 1\}$ is the initial value of the player p_h and $S \subset 2^P$. The following protocol is executed by the player p_i .

(b) for every message (p_h, x_h, S) received, update $W_i = W_i \cup \{x_h\}$. (3) After $\lambda + 1$ rounds, if $W = \{v\}$ finalvalue=v else finalvalue=0.

The proof of correctness of the protocol is sketched below. Let $1 \leq r < \frac{n}{k}$. Any message (p_h, x_h, S) sent during round r has |S| > rk. This ensures the following. If p_i and p_j are active players at the end of round r, $1 \leq r \leq \lambda$, and p_i knows the initial value of p_h , and p_j does not, then at least (r-1)k+1 players crashed by the end of round r. Thus, if at most (r-1)k players crashed by the end of round r then $W_i = W_j$ for any two active players p_i and p_j , and hence all correct players decide on the same value.

REFERENCES

- M.K. Aguilera and S. Toueg. A simple bivalency-based proof that t-resilient consensus requires t+1 rounds. IPL 71(3-4):155-158, 1999.
- [2] M. J. Fischer and N. A. Lynch. A lower bound for the time to assure interactive consistency. IPL 4(14):183–186, 1982.

^{*}Financial support from Infosys Tech. Ltd., India, is acknowledged. [†]Contact author. All the authors are affiliated to the Department of Computer Science and Engineering, Indian Institute of Technology, Madras, 600036, INDIA. email: rangan@iitm.ernet.in

¹The lower bound holds even for a restricted failure pattern.

Copyright is held by the author/owner.

PODC^{'04}, July 25–28, 2004, St. John's, Newfoundland, Canada. ACM 1-58113-802-4/04/0007.

⁽¹⁾ Set $W_i = x_i$. Send $(p_i, x_i, \{p_i\})$ along all k-casts that p_i can use. (2) For any round r > 1,

⁽a) If (p_h, x_h, S) was received in round (r-1) through k-cast Δ' , send $(p_h, x_h, S \cup \Delta')$ using Δ , for every Δ such that $\Delta \cap S = \emptyset$. If such a k-cast does not exist then use a k-cast that covers (P-S).