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Abstract. Loosely speaking, an interactive proof is said to be zero-

knowledge if the view of every “efficient” verifier can be “efficiently”
simulated. An outstanding open question regarding zero-knowledge is
whether constant-round concurrent zero-knowledge proofs exists for non-
trivial languages. We answer this question to the affirmative when mod-
eling “efficient adversaries” as probabilistic quasi-polynomial time ma-
chines (instead of the traditional notion of probabilistic polynomial-time
machines).

1 Introduction

Zero-knowledge interactive proofs [14] are paradoxical constructs that allow one
player (called the Prover) to convince another player (called the Verifier) of the
validity of a mathematical statement x ∈ L, while providing zero additional
knowledge to the Verifier. This is formalized by requiring that the view of ev-
ery “efficient” adversary verifier V ∗ interacting with the honest prover P be
simulated by an “efficient” machine S (a.k.a. the simulator). The idea behind
this definition is that whatever V ∗ might have learned from interacting with
P , he could have actually learned by himself (by running the simulator S). As
“efficient” adversaries normally are modelled as probabilistic polynomial-time
machines (PPT ), the traditional definition of ZK models both the verifier and
the simulator as PPT machines. In this paper, we investigate alternative mod-
els of efficient adversaries—in particular, as in [21], we model adversaries as
probabilistic quasi-polynomial time machines (PQT ).

Concurrency and ZK. The notion of concurrent ZK, first introduced and
achieved, by Dwork, Naor and Sahai [8] considers the execution of zero-knowledge
proofs in an asynchronous setting and concurrent setting. More precisely, we con-
sider a single adversary mounting a coordinated attack by acting as a verifier in
many concurrent executions. Concurrent zero-knowledge proofs are significantly
harder to construct (and analyze).

Since the original protocols by Dwork, Naor and Sahai (which relied on so
called “timing assumptions”), various other protocols have been obtained based
on different set-up assumptions (e.g., [9] [6] [4]). On the other hand, in the
“plain” model without any set-up Canetti, Kilian, Petrank and Rosen [5] (build-
ing on earlier works by [17] [26]) show that concurrent ZK proofs for non-trivial



languages, with so called “black-box” simulators, require at least Ω( log n

log log n
)

number of communication rounds. Richardson and Kilian [25] constructed the
first concurrent zero-knowledge argument in the standard model. Their protocol
which uses a black-box simulator requires O(nǫ) number of rounds. Kilian and
Petrank [16] later obtained a round complexity of Õ(log2 n), and finally Prab-
hakaran, Rosen and Sahai [23] essentially closed the gap by obtaining a round
complexity of Õ(log n).

All of the above results rely on the traditional modeling of adversaries as
PPT machines. Thus, it is feasible that there exists some super-polynomial, but
“well-behaved”, model of adversaries that admits constant-round concurrent ZK
proofs.

Concurrent ZK w.r.t super-polynomial adversaries. The lower bound of
[17] shows that only languages decidable in probabilistic subexponential-time
have 4-round concurrent black-box zero-knowledge arguments w.r.t to prob-
abilistic subexponential-time adversaries. On the other hand, [21] constructs
constant-round concurrent zero-knowledge arguments w.r.t PQT verifiers (and
consequently also simulators); however the soundness condition of those argu-
ment systems only holds w.r.t. PPT adversaries—in fact, the simulator suc-
ceeds in its simulation by breaking the soundness condition of the argument
system. Additionally, it is noted in [21] that there exist 3-round concurrent ZK
proofs w.r.t. exponential-time adversaries (as any witness indistinguishable proof
is also zero-knowledge with respect to exponential-time verifiers). Finally, [25]
claimed that a constant-round version of their protocol remains secure w.r.t
PQT adversaries, when considering a “benign” type of concurrent adversary
(which never sends any invalid messages and has a fixed—i.e., non-adaptively
chosen—scheduling), but as far as we know a proof of this has never appeared.

Thus, the above results leave open the question of whether there exist r(n)-
round concurrent black-box zero-knowledge proofs w.r.t super-polynomial, but
sub-exponential, adversaries, as long as 4 < r(n) < log n. In particular,

Does there exists constant-round concurrent zero-knowledge arguments
w.r.t. PQT (or even sub-exponential time) adversaries?

1.1 Our results

Our main result answers the above question in the affirmative. Let PQT denote
the class of probabilistic quasi-polynomial time machines, i.e., randomized ma-
chines that run in time npoly(log(n)). Let ω(PQT ) denote the class of probabilistic
super quasi-polynomial time machines, i.e. randomized machines that run in time
nω(poly(log(n))).

Theorem 1 (Main Theorem). Assume the existence of claw-free permuta-
tions w.r.t PQT . Then, every language in NP has an O(1)-round perfect con-
current black-box ZK argument w.r.t PQT .

In addition, we show:



Theorem 2. Assume the existence of one-way functions that are secure w.r.t
ω(PQT ) and collision-resistant hash function that are secure w.r.t PQT . Then,
every language in NP has an O(1)-round concurrent computational black-box
ZK proof w.r.t PQT .

Theorem 3. Assume the existence of one-way function that are secure w.r.t
ω(PQT ). Then, every language in NP has an O(1)-round concurrent computa-
tional black-box ZK arguments w.r.t PQT .

Theorem 4. There exists an O(1)-round concurrent perfect ZK proof w.r.t
PQT for Graph Non-Isomorphism and Quadratic Non-Residuosity

We emphasize that in the above theorems, “ZK proofs and arguments w.r.t
PQT ” refer to proofs/ arguments where both the soundness condition and the
ZK condition holds w.r.t to PQT adversaries; in particular, for the ZK property
we also require that the distinguishability gap is smaller than the inverse of any
quasi-polynomial function.

A note on expected running-time. In contrast to earlier work on concurrent
zero-knowledge (e.g. [25, 16, 23]), our simulators run in expected PQT . This is
inherent: by the work of Barak-Lindell [1] it follows that only languages decidable
in PQT have constant-round ZK protocols w.r.t PQT if requiring a strict PQT
simulator (let alone the question of concurrency). In particular, this shows that
none of the previous simulation techniques can be extended to get constant-round
protocols w.r.t PQT (at least when requiring that the output of the simulation
is also indistinguishable for PQT ).1

Additional results. Finally, we mention that our techniques apply also to
concurrent ZK proofs w.r.t PPT . As a result we obtain the first concurrent
perfect ZK arguments/proofs w.r.t PPT .

Theorem 5. Assume the existence of claw-free permutations (w.r.t PPT ). Then,
every language in NP has an O(nǫ)-round perfect concurrent black-box ZK ar-
gument w.r.t PPT , for every ǫ > 0.

Theorem 6. For every ǫ > 0, there exists a O(nǫ)-round concurrent perfect ZK
proof for Graph Non-Isomorphism and Quadratic Non-Residuosity.

As an additional contribution, we believe that both our protocols and their
analysis provides the simplest proof of the existence of concurrent ZK proofs
(w.r.t PPT ).2

PQT v.s. PPT: What is right model for adversarial computation? Re-
call that to show that ZK is closed under sequential composition, the origi-
nal definition of ZK was extended to consider non-uniform PPT adversaries

1 On the other hand, it might still be plausible that the technique of [25] can be
extended to give constant-round protocols w.r.t PQT , when allowing the indistin-
guishability gap to be a polynomial (or even some fixed quasi-polynomial) function.

2 In a related work [24], joint with Dustin Tseng we provide a simple proof for existence
of concurrent ZK proofs with logarithmic round complexity.



[13]—in other words, in the context of ZK the notion of non-uniform PPT (for
modeling adversaries) is more robust than simply PPT . Additionally, security is
guaranteed w.r.t a stronger class of adversaries. Of course, the extra price to pay
is that all hardness assumptions now must hold also with respect to non-uniform
PPT .

In this paper we show that by considering an even stronger class of adversaries—
namely PQT—we get a notion that is even more robust; in particular, it is now
possible to get constant-round concurrent ZK protocols. Again, this requires
us to rely on hardness assumptions against PQT , but this seems like a weak
strengthening of traditional hardness assumptions (especially since the known
attacks on traditional conjectured hard functions require subexponential time).

A note on plausible deniability. The notion of ZK is traditionally associ-
ated with plausible deniability—i.e., that the interaction leaves “no trace” which
the verifier can use later to convince that the interaction took place. Intuitively,
this holds since the verifier could have executed the simulator (on its self) to
generate its view of the interaction. We mention, however, that since the tradi-
tional definition of ZK allows the simulator to have an arbitrary (polynomial)
overhead with respect to the verifier (who’s view it is supposed to simulate),
the deniability guarantee offered by traditional ZK proofs is weak: consider for
instance a verifier with a running-time of t = 240 computational steps, and a sim-
ulator with running-time, say, t3; although 240 is very feasible, 2120 seems like a
stretch! The example is not hypothetic—the “tightest” concurrent ZK protocols
[16, 23] indeed have a running-time of t2 not counting the time need to emulate
the verifier. Additionally, as demonstrated in [18], the traditional notion of ZK
does not guarantee that the running-time of the simulator is (even polynomially)
related to the running-time of the verifier in the view it is outputting, but rather
the worst-case running-time of the verifier; this makes deniability even harder
to argue.3

Nevertheless, in this respect, ZK w.r.t PQT provides even worse guarantees
(as the overhead is now allowed to be quasi-polynomial).

1.2 Our techniques

The concurrent ZK protocols of Richardson and Kilian (RK) [25], Kilian and
Petrank (KP) [16] and Prabhakaran, Rosen and Sahai(PRS) [23] rely on the
same principal idea: provide the simulator with multiple possibilities (called
“slots”) to rewind the verifier. If a rewinding is successful, the simulator obtains
a trapdoor that allows it to complete the execution that has been rewound.
The RK simulator is “adaptive” and dynamically decides when and where to
rewind, while making sure there are not too many recursive rewinding (which
would result in a large running-time). On a high-level this is done by recursively

3 In a recent work [19], joint with Pandey, Sahai and Tseng we also show how to obtain
precise concurrent ZK proofs. Precise zero knowledge guarantees that the view of
any verifier V can be simulated in time closely related to the actual (as opposed to
the worst-case) time spent by V in the generated view.



invoking the simulator, but ensuring that the number of levels of the recursion
stays small (in fact, constant). On the other hand the KP (and PRS) simulator
is “oblivious”; the simulator has a fixed rewinding scheduling, thereby ensuring
a fixed (and bounded) running-time. The core of the argument is then to show
that every execution has a slot that is rewound at least once.

Our approach is based on the approach taken by RK. As RK, we consider an
adaptive simulator that makes recursive calls to itself, while ensuring that the
depth of the recursion stays small. Our actual simulation procedure is, however,
quite different. On a high-level, our approach will perform a straight-line simu-
lation until a “good” slot has been found, and then continue rewinding that slot
until a trapdoor has been found. Thus, in contrast to the previous approach,
we can not bound the worst-case running-time of our simulator, instead we are
forced to bound the expected running-time of the simulator.

The benefit of our approach is that 1) it enables us to achieve perfect sim-
ulation, and 2) our analysis works no matter how many slots we have and
what the depth of recursion is. In fact, we can achieve both of these proper-
ties while still guaranteeing the same expected running-time as RK—namely
O(mO(logr m)), where r is the number of slots. As a consequence, when applied
to constant-round protocols (and considering a logarithmic recursive depth) we
get a quasi-polynomial running time. As already mentioned, for this application,
it is inherent to have an expected quasi-polynomial running-time.

1.3 Open questions

We have demonstrated that constant-round concurrent ZK is possible w.r.t
PQT adversaries. Our protocol currently uses 10 communication rounds4. A
natural open question is to either improve the round-complexity or to strengthen
the 4-round lower bound of [17]. Another question is to investigate the possibil-
ity of using an even weaker (but still super-polynomial) model of computation.
Rosen [26] shows that only languages in probabilistic sub quasi-polynomial time
have 7-round concurrent black-box zero-knowledge arguments when adversaries
are modelled as probabilistic sub quasi-polynomial time machines; thus, such
protocols would require more than 7-rounds.

1.4 Organization

Definitions are found in Section 2. The proof of main theorem is contained in
Sections 3 and 4. We give proof sketches for the remaining theorems in Section 5.

2 Definitions and Notations

We assume familiarity with the basic notions of an Interactive Turing Machine
(ITM for brevity) and a protocol (in essence a pair of ITMs. Briefly, a protocol

4 To obtain a 10 round protocol, we require non-interactive commitment schemes,
which can be constructed from one-way-permutations. If we assume only existence
of one-way functions, we get a 11-round protocol.



is pair of ITMs computing in turns. A round ends with the active machine either
halting - in which case the protocol halts - or by sending a message m to the
other machine, which becomes active with m as a special input.

We let C denote any class of functions.

2.1 Interactive Proofs and Arguments

Given a pair of interactive Turing machines, P and V , we denote by 〈P, V 〉(x)
the random variable representing the (local) output of V when interacting with
machine P on common input x, when the random input to each machine is
uniformly and independently chosen.

Definition 1 (T (·)-sound Interactive Proof System) A pair of interactive
machines 〈P, V 〉 is called T (·)-sound interactive proof system for a language L if
machine V is polynomial-time and the following two conditions hold :

– Completeness: For every x ∈ L, Pr [〈P, V 〉(x) = 1] = 1

– Soundness: For every x 6∈ L, and every interactive machine B,
Pr [〈B, V 〉(x) = 1] ≤ 1

T (|x|)

In case that the soundness condition holds only with respect to a T (n)-bounded
prover, the pair 〈P, V 〉 is called an T (·)-sound interactive argument.

〈P, V 〉 is an interactive proofs (interactive argument) w.r.t. C if for all T (·) ∈ C
the protocol is a T (·)-sound interactive proof (T (·)-sound interactive argument).

2.2 Indistinguishability

We rely on a generalization of the notion of indistinguishability [27], which con-
siders T (n)-bounded distinguishers and require the indistinguishability gap to be
smaller than 1

poly(T (n)) .

Definition 2 (Strong T (·)-indistinguishability[21]) Let X and Y be count-
able sets. Two ensembles {Ax,y}x∈X,y∈Y and {Bx,y}x∈X,y∈Y are said to be in-

distinguishable in time T (·) over x ∈ X, if for every probabilistic “distinguishing”
algorithm D with running time T (·) in its first input, and every x ∈ X, y ∈ Y it
holds that:

|Pr [a← Ax,y : D(x, y, a) = 1]− Pr [b← Bx,y : D(x, y, b) = 1]| <
1

poly(T (|x|))

Definition 3 (Computational indistinguishability w.r.t C) Let X and Y

be countable sets. Two ensembles {Ax,y}x∈X,y∈Y and {Bx,y}x∈X,y∈Y are said
to be indistinguishable w.r.t C over x ∈ X, if A, B are q(·)-indistinguishable for
every function q(·) ∈ C.



2.3 Witness Indistinguishability

An interactive proof is said to be witness indistinguishable (WI) if the verifier’s
view is “computationally independent” of the witness used by the prover for
proving the statement—i.e. the view of the Verifier in the interaction with a
prover using witness w1 or w2 for two different witnesses are indistinguishable.

Definition 4 (Witness-indistinguishability w.r.t C) Let 〈P, V 〉 be an in-
teractive proof system for a language L ∈ NP. We say that 〈P, V 〉 is C-witness-

indistinguishable for RL, if for every probabilistic polynomial-time interactive
machine V ∗ and for every two sequences {w1

x}x∈L and {w2
x}x∈L, such that

w1
x, w2

x ∈ RL(x) for every x ∈ L, the probability ensembles {VIEW2[P (x, w1
x)↔

V ∗(x, z)]}x∈L,z∈{0,1}∗ and {VIEW2[P (x, w2
x)↔ V ∗(x, z)]}x∈L,z∈{0,1}∗ are com-

putationally indistinguishable w.r.t C over x ∈ L.

We say that the proof system is perfectly witness indistinguishable (Perfect-
WI) if the corresponding views are identically distributed.

2.4 Black-box concurrent zero-knowledge

Let 〈P, V 〉 be an interactive proof for a language L. Consider a concurrent ad-
versary verifier V ∗ that, given an input instance x ∈ L interacts with m inde-
pendent copies of P concurrently, without any restrictions over the scheduling

of the messages in the different interactions with P . Let
{

view2[P (x, y) ↔

V ∗(x, z)]
}

x∈L,w∈RL(x),z∈{0,1}∗

denote the random variable describing the view

of the adversary V ∗ on common input x and auxiliary input z, in an interaction
with P .

Definition 5 (Black-box concurrent zero-knowledge w.r.t C:) Let 〈P, V 〉
be an interactive proof system for a language L. We say that 〈P, V 〉 is black-box

concurrent zero-knowledge w.r.t C if for every functions q, m ∈ C, there exists
a probabilistic algorithm Sq,m, such that for every concurrent non-uniform ad-
versary V ∗ that on common input x and auxiliary input z has a running-time
bounded by q(|x|) and opens up m(|x|) executions, Sq,m(x, z) runs in time poly-

nomial in |x|. Furthermore, the ensembles
{

Sq,m(x, z)
}

x∈L,w∈RL(x),z∈{0,1}∗

and
{

view2[P (x, y) ↔ V ∗(x, z)]
}

x∈L,w∈RL(x),z∈{0,1}∗

are computationally indistin-

guishable w.r.t C over x ∈ L.

2.5 Other primitives

We informally define the other primitives we use in the construction of our
protocols.



Special-sound proofs: A 3-round public-coin interactive proof for the lan-
guage L ∈ NP with witness relation RL is special-sound with respect to
RL, if for any two transcripts (α, β, γ) and (α′, β′, γ′) such that the initial
messages α, α′ are the same but the challenges β, β′ are different, there is a
deterministic procedure to extract the witness from the two transcripts that
runs in polynomial time. Special-sound WI proofs for languages in NP can
be based on the existence of non-interactive commitment schemes, which in
turn can be based on one-way permutations. Assuming only one-way func-
tions, 4-round special-sound WI proofs for NP exists5. For simplicity, we
use 3-round special-sound proofs in our protocol though our proof works
also with 4-round proofs.

Proofs of knowledge: Informally an interactive proof is a proof of knowledge
if the prover convinces the verifier not only of the validity of a statement,
but also that it possesses a witness for the statement. If we consider com-
putationally bounded provers, we only get a “computationally convincing”
notion of a proof of knowledge (a.k.a arguments of knowledge)

3 Our Protocol and Simulator

3.1 Description of the protocol

Our concurrent ZK protocol (also used in [24]) is a slight variant of the precise
ZK protocol of [20], which in turn is a modification of the Feige-Shamir protocol
[10]. The protocol proceeds in the following two stages, on a common input
statement x ∈ {0, 1}∗ and security parameter n,

1. In Stage 1, the Verifier picks two random strings s1, s2 ∈ {0, 1}n, and sends
their image c1 = f(r1), c2 = f(r2) through a one-way function f to the
Prover. The Verifier sends α1, . . . , αr, the first messages of r invocations of
a WI special-sound proof of the fact that c1 and c2 have been constructed
properly (i.e., that they are in the image set of f). This is followed by r

iterations so that in the jth iteration, the Prover sends βj ← {0, 1}n
2

, a
random second message for the jth proof and the Verifier sends the third
message γj for the jth proof.

2. In Stage 2, the Prover provides a WI proof of knowledge of the fact that
either x is in the language, or (at least) one of c1 and c2 are in the image set
of f .

More precisely, let f : {0, 1}n → {0, 1}n be a one-way function and let the
witness relation RL′ , where ((x1, x2), (y1, y2)) ∈ RL′ if f(x1) = y1 or f(x2) = y2,
characterize the language L′. Let the language L ∈ NP . Protocol ConcZKArg

for proving that x ∈ L is depicted in Figure 1.
The soundness and the completeness of the protocol follows directly from the

proof of Feige and Shamir [10]; in fact, the protocol is an instantiation of theirs.

5 A 4-round protocol is special sound if a witness can be extracted from any two
transcripts (τ, α, β, γ) and (τ ′, α′, β′, γ′) such that τ = τ ,α = α′ and β 6= β′.



(Intuitively, to cheat in the protocol a prover must “know” an inverse to either
c1 or c2, which requires inverting the one-way function f .).

Protocol ConcZKArg

Common Input: an instance x of a language L with witness relation RL.
Auxiliary Input for Prover: a witness w, such that (x,w) ∈ RL(x).
Stage 1:

V uniformly chooses r1, r2 ∈ {0, 1}n.
V→ P: c1 = f(r1), c2 = f(r2). r first messages α1, . . . , αr for WI special-sound

proof of the statement. (called the start message)
either there exists a value r1 s.t c1 = f(r1)
or there exists a value r2 s.t c2 = f(r2)

The proof of knowledge is with respect to the witness relation R′

L

For j = 1 to r do

P → V: Second message βj ← {0, 1}n
2

for jth WI special-sound proof.
(called the opening of slot j)

V→ P: Third message γj for jth WI special-sound proof. (called the closing

of slot j)
Stage 2:

P ↔ V: a perfect-WI argument of knowledge of the statement
either there exists values r′1, r

′

2 s.t either c1 = f(r′1) or c2 = f(r′2).
or x ∈ L

The argument of knowledge is with respect to the witness relation
RL∨L′(c1, c2, x) = {(r′1, r

′

2, w)|(r′1, r
′

2) ∈ RL′(c1, c2) ∨ w ∈ RL(x)}.

Fig. 1. Concurrent Perfect ZK argument for NP

3.2 Description of the simulator

On a very high-level the simulation follows that of Feige and Shamir [10]: the
simulator will attempt to rewind one of the special-sound proofs—each such
proof, i.e. the challenge(β) and the response(γ) is called a slot. If the simulator
gets two accepting proof transcripts, the special-soundness property allows the
simulator to extract a “fake” witness ri such that ci = f(ri). This witness can
later be used in the second phase of the protocol. We call an execution “solved”
if a witness is extracted. More precisely, our simulation is defined recursively in
the following manner.

On the recursive level ℓ, the simulator feeds random Stage 1 messages to
V ∗ (Step 3). Whenever a slot s closes, S decides whether or not to rewind s

depending on the number of new executions that started between the opening

and the closing of s. If the number of executions is “small” (where small is defined
based on the level ℓ), S begins rewinding the slot, i.e. S sends a new challenge
β for slot s and recursively invokes itself on recursive level ℓ + 1, and continues
executing until one of the following happens:



1. S is “stuck” at Stage 2 of an unsolved execution that started at level ℓ + 1:
S halts and outputs fail.

2. The closing message γ for slot s occurs: S extracts a “fake” witness using
the special-sound property and continues its simulation (on level ℓ).

3. V ∗ aborts or starts “too many” executions: S restarts its rewinding using a
new challenge β for s. We show that S in expectation restarts O(1) times
because of this. (Intuitively this follows since during the execution at level
ℓ, S only starts rewinding if V ∗ did not abort and only opened a “small”
number of executions).

4. S gets “stuck” at Stage 2 of an unsolved execution that started at level ℓ:
Again, S restarts its rewinding. We show that this case can happen at most
m− 1 times, where m is the total number of executions.

5. S gets “stuck” at Stage 2 of an unsolved execution that started at level ℓ′ < ℓ:
S returns the view to level ℓ′.

In the unlikely event that S asks the same challenge β twice, S performs
a brute-force search for the witness. Furthermore, to simplify the analysis of
the running-time, the simulation is cut-off if it runs “too long” and S extracts
witnesses for each execution using brute-force search.

The basic idea behind the simulation is similar to [25]: if we define “small”
appropriately we can ensure that some slot of every execution is rewound and
the expected running time is bounded. A first approach would be to ensure that
at recursive level l at most m

rℓ executions start, and define “small” to be m
rℓ+1 ,

where m is the number of executions and r is the number of slots. Then, for every
execution that started at level ℓ and completed r slots, S is guaranteed to rewind
at least one slot. Furthermore, if we show that the expected number of rewindings
of each slot is O(m), then the expected running time of the simulator is at most
poly(mlog

r
m); letting r = 2, the running time becomes poly(mlog2 m). However,

to make sure that the simulator does not output fail, our analysis requires the
simulator to be able to rewind at least two slots—in fact, we require that once
the simulator reaches the last slot, it has already performed one rewinding. To
ensure this, we make sure that at level ℓ, there are at most m

(r−1)ℓ executions

and define “small” to be m
(r−1)ℓ+1 ; now letting r = 3 we get a running-time of

poly(mlogr m).
A formal description of our simulator can be found in Figure 4.2. We rely on

the following notation.

– d = ⌈logr−1 m⌉ will denote the maximum depth of recursion.
– slot (i, j) will denote slot j of execution i.
– A partial view h is defined to be good w.r.t (s, l), if in h, V ∗ does not abort

on s and does not open more that (r−1)d−l new executions after the opening

of the s.
– W is a repository that stores the witness for each execution. The update W

command extracts a witness from two transcripts of a slot (using the special-
sound property). If the two transcripts are identical (i.e. the openings of the
slot are the same), the simulator performs a brute-force search to extract a
“fake” witness ri s.t. ci = f(ri) for i ∈ {1, 2}.



– R is a repository that stores the transcripts of slots of unsolved executions.
Transcripts are stored in R when the simulator gets stuck in a rewinding
(cases 4 and 5 mentioned in the high-level description).

4 Analysis of the Simulator

To prove correctness of the simulator, we show that the output of the simulator
is correctly distributed and its expected running-time is bounded. We first prove
in Claim 1 that the simulator never outputs fail. Using Claim 1, we show in
Proposition 1 that the output distribution of the simulator is correct. In Propo-
sition 2, we show that the expected running time of the simulation is at most
poly(mdrd). Throughout this proof we assume without loss of generality the ad-
versary verifier V ∗ is deterministic (as it can always get its random coins as part
of the auxiliary input).

4.1 Simulation never fails

Claim 1 For every x ∈ L, SV ∗

(x, z) never outputs fail.

Proof: Recall that SV ∗

(x, z) outputs fail only if SOLVEV ∗

d (x, 0, , , ) outputs fail.
Furthermore, SOLVE outputs fail at recursive level ℓ only if it reaches Stage 2 of
an unsolved execution that started at level ℓ (i.e. only in Step 3 of SOLVE). Note
that at recursive level ℓ, at most (r−1)d−ℓ executions are opened up. Hence, for
all executions that start and complete r − 1 slots at level ℓ, there is some slot,
inside which have fewer than (r − 1)d−(ℓ+1) executions opened; SOLVE must
have rewound that slot “completely”—i.e. executed Step 5.d to obtain m good

views without returning to a lower recursive level. Below, we show that whenever
SOLVE rewinds a slot completely a witness is extracted and thus the proof of
the claim follows.

Assume for contradiction that SOLVE fails to extract a witness after rewind-
ing a particular slot. Let level ℓ and slot j of execution i be the first time this
happens. This means at the end of Step 5.d, m good views are obtained and
none of them contained a second transcript for slot j. Furthermore, in each such
view, SOLVE got stuck only on unsolved executions that started at level ℓ (since
otherwise SOLVE would have returned the view to the lower level). We now
show that SOLVE can get stuck on the (at most m − 1) other executions that
started on level ℓ at most once; this contradicts the fact that m good views were
obtained.

For every execution i′ that SOLVE gets stuck on, both the opening and the
closing of the last slot occurs inside the rewinding of slot (i, j); otherwise, SOLVE
would have rewound one of the r − 1 slots that occurred before the opening of
slot (i, j) and by our assumption that l, i, j was the first “failed” slot, extracted
a witness. Furthermore, the transcript of this slot enables SOLVE to never get
stuck on execution i′ again, since next time the last slot of execution i′ closes a
witness for that execution will be extracted.



4.2 Indistinguishability of the simulation

Proposition 1 The ensembles {VIEW2[P (x, w)↔ V ∗(x, z)]}x∈L,w∈RL(x),z∈{0,1}∗

and {SV ∗

(x, z)}x∈L,w∈RL(x),z∈{0,1}∗ are identical.

SOLVEV ∗

d (x, ℓ, hinitial, s, W, R):
Let h← hinitial.
Repeat forever:

1. If v is a Stage 2 verifier message of some execution, continue.
2. If V ∗ aborts or the number of executions that started after hinitial in h exceeds

(r − 1)d−ℓ, return h.
3. If the next scheduled message is a Stage 2 prover message for execution i and

W(i) 6= ⊥, then use W(i) to complete theWI proof of knowledge; if W(i) = ⊥ and
start message of execution i is in hinitial return h, otherwise halt with output fail.

4. If the next scheduled message is a Stage 1 prover message for slot s′, pick a random

message β ← {0, 1}n
2

. Append β to h. Let v ← V ∗(h).
5. Otherwise, if v is the closing message for s′ = slot (i′, j′), then update W with v

(using R) and proceed as follows.
(a) If s = s′, then return h.
(b) Otherwise, if execution i′ starts in hinitial, then return h.
(c) Otherwise, if W(i′) 6= ⊥ or the number of executions started inside s′ exceeds

(r − 1)d−(ℓ+1), then continue.
(d) Otherwise, let h′ be the prefix of the history h where the prover message for

s′ is generated. Set R′ ← φ.
Repeat m times:

i. Repeat h∗ ← SOLVEV ∗

d (x, ℓ + 1, h′, s′, W, R′) until h∗ is “good” w.r.t
(s′, ℓ + 1).

ii. If h∗ contains an accepting proof transcript for slot s′, extract witness for
execution i′ from h and h∗ and update W.

iii. Otherwise, if the last message in h∗ is the closing message for the last slot
of an execution that started in hinitial return h∗.

iv. Otherwise, add h∗ to R′.

SV ∗

(x, z):

1. Let d ← ⌈logr−1 m⌉. Run SOLVEV ∗

d (x, 0, , , , ) and output whatever SOLVE out-

puts, with the following exception. If in the execution of SOLVEV ∗

d (x, 0, , , , ), it
queries V ∗ more that 2n times, proceed as follows: Let h denote the view reached
in the “main-line” simulation (i.e., in the top-level of the recursion). Continue the
simulation in a “straight-line” fashion from h by using a brute-force search to find
a “fake” witness each time Stage 2 of an execution i is reached.

Fig. 2. Description of Simulator

Proof: Consider the following hybrid simulator S̃V ∗

that receives the real
witness w to the statement x. S̃V ∗

on input x,w, and z proceeds just like SV ∗



in order to generate the prover messages in Stage 1, but proceeds as the honest
prover using the witness w in order to generate messages in Stage 2 (instead of
using the “fake” witness as SV ∗

would have). Using the same proof as in Claim 1,
we can show that S̃V ∗

(x, (w, z)) never outputs fail. Furthermore, as the prover
messages in Stage 1 are chosen uniformly and S̃V ∗

behaves like an honest prover
in Stage 2. Therefore, we get:

Claim 2 The ensembles {VIEW2[P (x, w)↔ V ∗(x, z)]}x∈L,w∈RL(x),z∈{0,1}∗ and

{S̃V ∗

(x, (w, z))}x∈L,w∈RL(x),z∈{0,1}∗ are identical.

To show the proposition, it suffices to show that output distributions of S̃V ∗

and
SV ∗

are identical. This follows from the perfect-WI property of Stage 2 of the
protocols, since the only difference between the simulators S̃V ∗

and SV ∗

is the
choice of witness used. For completeness, we provide a proof below.

Claim 3 The ensemble {S̃V ∗

(x, (w, z))}x∈L,w∈RL(x),z∈{0,1}∗ is identical to

{SV ∗

(x, z)}x∈L,w∈RL(x),z∈{0,1}∗

Proof: To prove the claim we will rely on the fact that the running time of
the simulator is bounded. This holds since S stops executing SOLVE whenever
it performs more than 2n queries and continues the simulation in a straight-
line fashion, extracting “fake” witnesses using brute-force search. Assume, for
contradiction, that the claim is false, i.e. there exists a deterministic verifier V ∗

(we assume w.l.o.g that V ∗ is deterministic, as its random-tape can be fixed)
such that the ensembles are not identical.

We consider several hybrid simulators, Si for i = 0 to N , where N is an
upper-bound on the running time of the simulator. Si receives the real witness
w to the statement x and behaves exactly like S, with the exception that Stage 2
messages in the first i proofs are generated using the honest prover strategy (and
the witness w). By construction, S0 = S̃ and SN = S. Since, by assumption, the
outputs of S1 and SN are not identically distributed, there must exist some j

such that the output of Sj and Sj+1 are different. Furthermore, since Sj proceeds
exactly as Sj+1 in the first j executions, and also the same in Stage 1 of the
j + 1’th execution, there exists a partial view v—which defines an instance x′ ∈
L∨L′ for Stage 2 of the j+1’th execution—such that outputs of Sj and Sj+1 are
not identical also conditioned on the event that Sj and Sj+1 feed V ∗ the view
v. Since the only only difference between the view of V ∗ in Sj and Sj+1 is the
choice of the witness used for the statement x′ used in Stage 2 of the j + 1’the
execution, we contradict the perfect-WI property of Stage 2.

4.3 Running-time of S

We consider the hybrid simulator S̃V ∗

constructed in proof of Proposition 1. It
follows by the same proof as in Claim 3 that the running time distributions of S̃

and S are identical. Therefore, it suffices to analyze the expected running time
of S̃.



Proposition 2 For all x ∈ L, z ∈ {0, 1}∗, and all V ∗ such that V ∗(x, z) opens
up at most m executions, E[timeS̃V ∗ (x,z)] ≤ poly(mdrd)

Proof: Recall that S̃V ∗

(x, z) starts running SOLVE, but in the event that
SOLVE uses more than 2n queries to V ∗, it instead continues in a straight-line
simulation using a brute-force search. By linearity of expectation, the expected
running time of S is

poly(E[# queries made to V ∗ by SOLVE ])

+ E[time spent in straight-line simulation]

In Claim 4 below, we show that expected time spent in straight-line simulation
is negligible. In Claim 5 we show that the expected number of queries made
by SOLV E to V ∗ is at most m2(d+1−ℓ)(2r)d+1−ℓ. The proof of the proposition
follows.

Claim 4 The expected time spent by S̃V ∗

in straight-line simulation is negligible.

Proof: The straight-line simulation takes at most poly(2n) steps since it takes
O(2n) steps to extract a “fake” witness. Recall that, SOLVE runs the brute-force
search only if it picks the same challenge (β) twice. Since, SOLVE is cut-off after
2n steps, it can pick at most 2n challenges. Therefore, by the union bound, the
probability that it obtains the same challenge twice is at most 2n

2n2 . Thus, the

expected time spent by SV ∗

in straight-line simulation is at most 2n

2n2 poly(2n),
which is negligible.

Claim 5 For all x ∈ L, h, s, W, R, ℓ ≤ d such that SOLVEV ∗

d (x, ℓ, h, s,W, R)

never outputs fails, E[# queries by SOLVEV ∗

d (x, ℓ, h, s,W, R)] ≤ m2(d+1−ℓ)(2r)d+1−ℓ

Proof: We prove the claim by induction on ℓ. To simplify notation let α(ℓ) =
m2(d+1−ℓ)(2r)d+1−ℓ. When ℓ = d the claim follows since SOLVE does not perform
any recursive calls and the number of queries made by SOLVE can be at most
the total number of messages, which is mr.

Assume the claim is true for ℓ = ℓ′ +1. We show that it holds also for ℓ = ℓ′.
Consider some fixed x ∈ L, h, s, W, R such that SOLVEV ∗

d (x, ℓ′, h, s, W, R) never
outputs fails. We show that

E[# queries by SOLVEV ∗

d (x, ℓ′, h, s, W, R)] ≤ m2(d+1−ℓ′)rd+1−ℓ′

= α(ℓ′) = m2(2r)α(ℓ′ + 1)

Towards this goal we introduce some additional notation. Given a view ĥ ex-
tending the view h,

– Let qℓ′

ŝ (ĥ) denote the probability that the view ĥ occurs in the “main-line”
execution of
SOLVEV ∗

d (x, ℓ′, h, s, W, R) (i.e., starting on level ℓ) and that slot ŝ opens

immediately after ĥ.



– Let Γŝ denote the set of views such that qℓ′

ŝ (ĥ) > 0.

We bound the number of queries made by SOLVEV ∗

d (x, ℓ′, h, s, W, R) as the
sum of the queries SOLVE makes on level ℓ′, and the queries made by recursive
calls. The number of queries made by SOLVE on level ℓ′ is at most the total
number of messages in an execution, i.e. mr. The number of queries made on
recursive calls is computed by summing the queries made by recursive calls on
over every slot ŝ and taking expectation over every view ĥ (such that qℓ′

ŝ (ĥ) > 0).

More precisely,

E[# queries by SOLVEV ∗

d (x, ℓ′, h, s, W, R)] ≤ mr +
∑

ŝ

∑

ĥ∈Γŝ
qℓ′

ŝ (ĥ)Eŝ(ĥ)

where Eŝ(ĥ) denotes the expected number of queries made by SOLVE from the

view ĥ on ŝ. There are two steps involved in computing Eŝ(ĥ). The first step
involves finding the expected number of times SOLVE is run on a slot and the
second step using the induction hypothesis computing a bound for Eŝ(ĥ).

Step 1: Given a view ĥ from where slot ŝ opens, let pℓ denote the probability
that SOLVE rewinds slot ŝ from ĥ, i.e. pℓ is the probability that in the simulation
from ĥ at level ℓ, V ∗ completes ŝ with an accepting proof while opening fewer
than (r − 1)d−ℓ′ new executions within the slot ŝ. Let yℓ denote the probability

that when executing SOLVE at level ℓ from ĥ, V ∗ either aborts or opens more
than (r− 1)d−ℓ′ new executions in slot ŝ. We clearly have that pℓ ≤ 1− yℓ (note
that equality does not necessarily hold since SOLVE might also return to a lower
recursive level). Furthermore, it holds that yℓ = yℓ+1. This follows since SOLVE
generates random Stage 1 messages, and uses the same (real) witness to generate
Stage 2 messages, independent of the level of the recursion; additionally, since
by Claim 4.1, SOLVE never halts outputting fail, we conclude that the view of
V ∗ in the “main-line” simulation by SOLVE on level l is identically distributed
to its view on level l + 1.

Therefore, the expected number of times SOLVE recursively executes ŝ at
level ℓ + 1, before obtaining a good view, is at most 1

1−yℓ+1 = 1
1−yℓ ≤

1
pℓ . Using

linearity of expectation, the expected number of times SOLVE executes ŝ before
obtaining m good views is at most m

pℓ . Since, SOLVE rewinds ŝ from ĥ only with

probability pℓ, the expected number of recursive calls to level ℓ + 1 from ĥ is at
most pℓ m

pℓ = m.

Step 2: From the induction hypothesis, we know that the expected number of
queries made by SOLVE at level ℓ′ +1 is at most α(ℓ′ +1). Therefore, if SOLVE
is run u times on a slot, the expected total number of queries made by SOLVE
is bounded by uα(ℓ′ + 1). We conclude that

Eŝ(ĥ) ≤
∑

u∈N

Pr[u recursive calls are made by SOLVE from ĥ]uα(ℓ′ + 1)

= α(ℓ′ + 1)
∑

u∈N

u · Pr[u recursive calls are made by SOLVE from ĥ]

≤ mα(ℓ′ + 1)



Therefore, E[# queries by SOLVEV ∗

d (x, ℓ′, h, s, W, R)] ≤

mr +
∑

ŝ

∑

ĥ∈Γŝ

qℓ′

ŝ (ĥ)Eŝ(ĥ) ≤ mr +
∑

ŝ

mα(ℓ′ + 1)
∑

ĥ∈Γŝ

qℓ′

ŝ (ĥ)

≤ mr +
∑

ŝ

mα(ℓ′ + 1) ≤ mr + (mr)mα(ℓ′ + 1) ≤ α(ℓ′)

This completes the induction step and concludes the proof of Claim 2.

4.4 Concluding the proof of Theorem 1 (and Theorem 4)

Using r = 3, we get by Proposition 2 that the expected running-time of S is
poly(mlog2m), and by Proposition 1 that its output is correctly distributed. This
concludes the proof of Theorem 1. We also remark that the proof of Theorem 4
is directly obtained by instead relying on an nǫ-rounds version of the protocol.

5 Proving the other theorems

Due to lack of space, we provide only proof ideas for the remaining theorems.
The complete proofs will be contained in the full version.
Proof idea of Theorem 2: To prove the theorem, we rely on a slight variant of
the ZK proof of [18, 20] (which is an instantiation of the protocol of [23]); the
protocol is described in Figure 3. We assume the existence of honest-verifier ZK
proofs that are secure w.r.t ω(PQT ). Such proofs exists if one-way functions
that are secure w.r.t ω(PQT ) exists. Furthermore, we require constant round
statistically hiding commitments that are computationally binding w.r.t PQT
adversaries. Such commitment schemes can be constructed from collision resis-
tant hash functions that are secure w.r.t PQT [7, 15]. The simulator and the
proof of indistinguishability is essentially similar to Section 3.2. However, to
bound the running-time of the simulator we require the Stage 2 of the protocol
to satisfy the honest-verifier ZK property w.r.t. ω(PQT ).
Proof idea of Theorem 3: The protocol is obtained by using a computationalWI
protocol w.r.t PQT instead of the perfect WI protocol in Stage 2 described in
Section 3.1, which can be constructed based on the existence of OWF secure for
PQT . The simulator and the analysis from Section 3.2 essentially works for this
protocol too, except that to show indistinguishability we use the computational
WI property of the protocol in Stage 2.
Proof idea of Theorems 5 and 6: Our constructions are essentially identical to
the protocols in [18, 20]. On a high level, the protocols show how to recast the
ZK protocols for Graph Non-Isomorphism and Quadratic Non-Residuosity into
the Feige-Shamir paradigm, after which we can rely on the same proof as in
the previous section. Finally, Theorem 6 is directly obtained by relying on an
r = nǫ-rounds version of the protocol.



Protocol CompZKProof

Common Input: an instance x of a language L with witness relation RL.
Auxiliary Input for Prover: a witness w, such that (x,w) ∈ RL(x).
Stage 1:

V uniformly chooses r = r1, r2, ..., rn ∈ {0, 1}n, s ∈ {0, 1}poly(n).
V → P: c = Com(r; s), where Com is a statistically hiding commitment,

which has the property that the commiter must communicate at least m bits
in order to commit to m strings.

V→ P: r first messages α1, . . . , αr forWI special-sound proofs of the statement.
(called the start message)
there exists values r′, s′ s.t c = Com(r′; s′)

The proof of knowledge is with respect to the witness relation R′

L(c) =
{(v, s)|c = Com(v; s)}.

For j = 1 to r do

P → V: Second message βj ← {0, 1}n
2

for jth WI special-sound proof.
(called the opening of slot j)

V→ P: Third message γj for jth WI special-sound proof. (called the closing

of slot j)
Stage 2:

P↔ V: P and V engage in n parallel executions of the GMW’s (3-round) Graph
3-Coloring protocol, where V uses the strings r1, .., rn as its challenges:
1. P → V: n (random) first messages of the GMW proof system for the

statement x.
2. V ← P: V decommits to r = r1, .., rn.
3. P→ V: For i = 1..n, P computes the answer (i.e., the 3rd message of the

GMW proof system) to the challenge ri and sends all the answers to V.

Fig. 3. Computational ZK Proof for NP
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