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Abstract

We present new and efficient concurrent zero-knowledge protocols in the timing model. In
contrast to earlier works—which through artificially-imposed delays require every protocol ex-
ecution to run at the speed of the slowest link in the network—our protocols essentially only
delay messages based on the actual response time of each verifier (which can be significantly
smaller).
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1 Introduction

Zero-knowledge (ZK) interactive proofs [GMR89] are paradoxical constructs that allow one player
(called the prover) to convince another player (called the verifier) of the validity of a mathematical
statement x ∈ L, while providing zero additional knowledge to the verifier. This is formalized by
requiring that for every PPT adversary verifier V ∗, there is a PPT simulator S that can simulate the
view of V ∗ interacting with the honest prover P . The idea behind this definition is that whatever
V ∗ might have learned from interacting with P could have been learned by simply running the
simulator S. The notion of concurrent ZK (cZK), first introduced and achieved by Dwork, Naor and
Sahai [DNS04] extends the notion of ZK protocols to a concurrent and asynchronous setting. More
precisely, we consider a single adversary mounting a coordinated attack by acting as a verifier in
many concurrent sessions, possibly with many independent provers. cZK protocols are significantly
harder to construct and analyze, and are often less efficient than the “standalone” ZK protocols.

The original constant-round cZK protocol of [DNS04] is constructed in the timing model (also
explored in [Gol02]). Informally speaking, the timing model assumes that every party (in our case
every honest prover) has a local clock, and that all these local clocks are roughly synchronized (1
second is roughly the same on every clock). Also, all parties know a (pessimistic) upper-bound,
∆, on the time it takes to deliver a message on the network. As argued by Goldreich [Gol02], this
assumption seems to be most reasonable for systems today. The problem, however, is that known
constructions of cZK protocols in the timing model [DNS04, Gol02] are not very efficient in terms
of execution time: Despite having a constant number of rounds (4 or 5 messages), the prover in
these protocols delays the response of certain messages by time ∆. In other words, every instance
of the protocol must take time longer than the pessimistic bound on the max latency of the network
(rather than being based on the actual message-delivery time).

Leaving the timing model, Richardson and Kilian [RK99] (and subsequent improvments by Kil-
ian and Petrank [KP01] and Prabhakaran, Rosen and Sahai [PRS02]) show how to construct cZK
protocols in the standard model (without clocks). Here the protocols are “message-delivery” driven,
but there is a significant increase in round-complexity: Whereas constant-round ZK protocols exists
in the standalone setting, Õ(log n)-rounds are both necessary and sufficient for (black-box) cZK
protocols [PRS02, KPR98, Ros00, CKPR01]. Another related work of Pass and Venkitasubrama-
niam [PV08] gives a constant-round cZK protocol without clocks, but at the expense of having
quasi-polynomial time simulators (against quasi-polynomial time adversaries).

In this work we revisit the timing model. Ideally, we want to construct cZK protocols that
are efficient in all three manners mentioned so far: Small (constant) round-complexity, low imposed
delays, and fast simulation. As communicated by Goldreich [Gol02], Barak and Micciancio suggested
the following possible improvement to cZK protocols in the timing model: The prover may only
need to impose a delay δ that is a linear fraction of ∆ (say δ = ∆/d), at the expense of increasing
the running time of the ZK simulator exponentially (around nO(d)). In other words, there could
be a compromise between protocol efficiency and knowledge security [Gol01, MP06] (i.e., simulator
running-time). However, as discussed in [Gol02], this suggestion has not been proven secure. We
show that such a trade-off is not only possible, but can be significantly improved.1

Trading rounds for minimum delays. The original work of Richardson and Kilian [RK99]
shows that increasing the number of communication rounds can decrease the running-time of the
simulator. Our first result shows that by only slightly increasing the number of rounds, but still

1It seems that traditional techniques can be used to demonstrate the Barak-Micciancio trade-off when the adversary
employs a static scheduling of messages. However, complications arise in the case of adaptive schedules. See Section
3.1 for more details.
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keeping it constant (e.g., 10 messages), the prover may reduce the imposed delay to δ = ∆/2d,
while keeping the simulator running time at nO(d). This is accomplished by combining simulation
techniques from both the timing model [DNS04, Gol02] (polynomial time simulation but high timing
constraints) and the standard model [RK99, PV08] (quasi-polynomial time simulation but no timing
constraints). As far as we know, this yeilds the first formal proof that constant-round concurrent
zero-knowledge protocols are possible using a delay δ that is smaller than ∆.

“Eye-for-an-eye” delays. The traditional approach for constructing cZK protocols is to “penalize”
all parties equally, whether it is in the form of added round complexity or imposed timing delays.
One may instead consider the notion of punishing only adversarial behaviour, similar to the well-
known “tit-for-tat” or “eye-for-an-eye” technique of game theory (see e.g., [Axe84]). The work of
Cohen, Kilian and Petrank [CKP01] first implemented such a strategy (with respect to cZK) using
an iterated protocol where in each iteration, the verifier is given a time constraint under which it
must produce all of its messages; should a verifier exceed this constraint, the protocol is restarted
with doubled the allowed time constraint (the punishment here is the resetting); their protocol had
Õ(log2n) rounds and Õ(log n) “responsive complexity”—namely, the protocol takes time Õ(log n)T
to complete if each verifier message is sent within time T . The work of Persiano and Visconti
[PV05] and Rosen and shelat [Rs09] takes a different approach and punish adversaries that perform
“bad” schedulings of messages by adaptively adding more rounds to the protocol; their approaches,
however, only work under the assumption that there is a single prover, or alternatively that all
messages on the network are exposed on a broadcast channel (so that the provers can check if a
problematic scheduling of messages has occurred).

In our work, we instead suggest the following simple approach: Should a verifier provide its
messages with delay t, the prover will delay its message accordingly so that the protocol completes
in time p(t) + δ, where p is some penalty function and δ is some small minimal delay. We note
that, at a high-level, this approach is somewhat reminiscent of how message delivery is performed
in TCP/IP.

As we show, such penalty-based adaptive delays may significantly improve the compromise
between protocol efficiency and knowledge security. For example, setting p(t) = 2t (i.e., against
a verifier that responds in time t < ∆, the prover responds in time t + δ) has a similar effect as
increasing the number of rounds: The prover may reduce the minimal imposed delay to δ = ∆/2d,
while keeping the simulator running time at nO(d). Moreover, if we are willing to use more aggressive
penalty functions, such as p(t) = t2, the minimal delay may be drastically reduced to δ = ∆1/2d ,
greatly benefiting “honest” parties that respond quickly, while keeping the same simulator running
time. Note that, perhaps surprisingly, we show that such a “tit-for-tat” technique, which is usually
employed in the setting of rational players, provides significant efficiency improvements even with
respect to fully adversarial players.

Combining it all. Finally, we combine our techniques by both slightly increasing the round
complexity and implementing penalty-based delays. We state our main theorem below for p(t) = t
(no penalty), ct (linear penalty), and tc (polynomial penalty) (in the main text we provide an
expression for a generic p(t)):

Theorem 1 Let ∆ be an upper-bound on the time it takes to deliver a message on the network.
Let r and d be integer parameters, and p(t) be a (penalty) function. Then, assuming the existence
of claw-free permutations, there is a (2r + 6)-message black-box perfect cZK argument for all of NP
with the following properties:
• The simulator has running time (rn)O(d).
• For any verifier that cumulatively delays its message by time at most T , the prover will provide
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its last message in time at most p(T ) + δ, where

δ =


2∆/rd if p(t) = t (no penalty)
2∆/(cr)d if p(t) = ct (linear penalty)

(2∆)1/cd

r1+1/c+···+1/cd−1 ≤
(2∆)1/cd

r if p(t) = tc (polynomial penalty)

Remark 1 (On the number of rounds) Even without penalty-based delays, if r = 2, we achieve
an exponential improvement in the imposed delay (δ = ∆/2d), compared to the suggestion by Barak
and Micciancio (which required a delay of δ = ∆/d). Larger r (i.e., more rounds) allows us to
further improve the delay.

Remark 2 (On adversarially controlled networks) If an adversary controls the whole net-
work, it may also delay messages from the honest players. In this case, honest players (that answer
as fast as they can) are also penalized. However, the adversary can anyway delay message delivery to
honest players, so this problem is unavoidable. What we guarantee is that, if a pair of honest players
are communication over a channel that is not delayed (or only slightly delayed) by the adversary,
then the protocol will complete fast.

Remark 3 (On networks with failure) Note that even if the network is not under adversarial
control, messages from honest parties might be delayed due to network failures. We leave it as an
open question to (experimentally or otherwise) determine the “right” amount of penalty to employ
in real-life networks: Aggressive delays allow us to minimize the imposed delay δ, but can raise the
expected protocol running time if network failures are common.

Remark 4 (On concurrent multi-part computation) [KLP05] and [LPV09] show that con-
current multi-party computation (MPC) is possible in the timing model using delays of length O(∆).
Additionally, [LPV09] shows that at least ∆/2 delays are necessary to achieve concurrent MPC in
the timing model. In retrospect, this separation between concurrent ZK and MPC should not be
surprising since cZK can be constructed in the plain model [RK99, KP01, PRS02], but concurrent
MPC cannot [CF01, Lin04].

1.1 Organization

In Sect. 2 we give definitions regarding the timing model and primitives used in our constructions.
An overview of our protocol and zero-knowledge simulator, followed by their formal descriptions, is
given in Sect. 3. Actual formal analyses are given in Sect. 4 and the appendix.

2 Preliminaries

We assume familiarity with indistinguishability, interactive proofs and arguments, and stand-alone
(black-box) zero-knowledge. Let N denote the set of natural numbers. Given a function g : N→ N,
let gk(n) be the function computed by composing g together k times, i.e., gk(n) = g(gk−1(n)) and
g0(n) = n.
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2.1 Timing model

In the timing model, originally introduced by Dwork, Naor and Sahai [DNS04], we consider a model
that incorporates a “timed” network. Informally, in such a network, a (known) maximum network
latency ∆—the time it takes for a message to be computed and delivered over the network—is
assumed. Moreover, each party (in our case the honest provers) possesses a local clock that is
somewhat synchronized with the others (in the sense that a second takes about the same time on
each clock).

As in [DNS04, Gol02, KLP05], we model all the parties in the timing model as interactive
Turing machines that have an extra input tape, called the clock tape. In an adversarial model, the
adversary has full control of the content of everyone’s clock tape (it can initialize and update the
tape value at will), while each machine only has read access to its own clock tape. More precisely,
when a party Pi is invoked, the adversary initializes the local clock of Pi to some time t of its
choice. Thereafter the adversary may, at any time, overwrite the all existing clock tapes with new
time values. To model that in reality most clocks are reasonably but not perfectly synchronized, we
consider adversaries that are ε-drift preserving, as defined below:

Let σ1, σ2, . . . be a series of global states of all machines in play; these states are recorded
whenever the adversary initiates a new clock or updates the existing clocks. Denote by clkP (σ)
the value of the local clock tape of machine P at state σ. We say that an adversary is ε-drift
preserving if for every pair of parties P and P ′ and every pair of states σ and σ′, it holds that

1
ε

(clkP (σ)− clkP (σ′)) ≤ clkP ′(σ)− clkP ′(σ′) ≤ ε(clkP (σ)− clkP (σ′))

As in [DNS04, Gol02, KLP05], we use the following constructs that utilize the clock tapes.
Below, by local time we mean the value of the local clock tape.

Delays: When a party is instructed to delay sending a message m by δ time, it records the present
local time t, checks its local clock every time it is updated, and sends the message when the
local time reaches t+ δ.

Time-out: When a party is instructed to time-out if a response from some other party Pi does
not arrive in δ time, it records the present time t. When the message from Pi does arrive, it
aborts if the local time is greater than t+ δ.

Measure: When a party is instructed to measure the time elapsed between two messages, it simply
reads the local time t when the first message is sent/received, and reads the local time t′ again
when the second message is sent/received. The party then outputs the elapsed time t′ − t.

Although the measure operator is not present in previous works, it is essentially the quantitative
version of the time-out operation, and can be implemented without additional extensions of the
timing model. For simplicity, we focus on the model where the adversary is 1-drift preserving, i.e.
all clocks are synchronized, but our results easily extend to ε-drift preserving adversaries.

2.2 Black-Box Concurrent Zero-Knowledge in the Timing Model

The standard notion of concurrent zero-knowledge extends straightforwardly to the timing model;
all machines involved are simply augmented with the aforementioned clock tape. The view of a
party still consists of all incoming messages as well as the parties random tape. In particular, the
view of the adversary determines the value of all the clocks. We repeat the standard definition of
black-box concurrent zero-knowledge below.
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Let 〈P, V 〉 be an interactive proof for a language L, and let V ∗ be a concurrent adversarial verifier
that may interact with multiple independent copies of P concurrently, without any restrictions over
the scheduling of the messages in the different interactions with P . Let {VIEW2[P (x)↔ V ∗(x, z)]}
denote the random variable describing the view of the adversary V ∗ in an interaction with P on
common input x and auxiliary input z.

Definition 1 Let 〈P, V 〉 be an interactive proof system for a language L. We say that 〈P, V 〉 is
black-box concurrent zero-knowledge if for every polynomials q and m, there exists a probabilistic
polynomial time algorithm Sq,m, such that for every concurrent adversary V ∗ that on common
input x and auxiliary input z opens up m(|x|) sessions and has a running-time bounded by q(|x|),
Sq,m(x, z) runs in time polynomial in |x|. Furthermore, it holds that the ensembles {VIEW2[P (x)↔
V ∗(x, z)]}x∈L,z∈{0,1}∗ and {Sq,m(x, z)}x∈L,z∈{0,1}∗ are computationally indistinguishable over x ∈ L.
We say 〈P, V 〉 is black-box perfect concurrent zero-knowledge if the above ensembles are identical.

Remark: [Gol02] defines concurrent ZK in the timing model with the assumption (WLOG) that
the adversary never trigger a time-out from any prover. [Gol02] also made the assumption that the
adversary always delays the verifier messages as much as permitted, but is assumption is no longer
WLOG for protocols with penalty-based delays. Therefore in our model, the adversary is given
total control over all the clocks (subject to ε-drift preserving), similar to the definition of [KLP05]
for the setting of concurrent multi-party computation.

2.3 Other primitives

We informally define other primitives used in the construction of our protocols.

Special-sound proofs: A 3-round public-coin interactive proof for the language L ∈ NP with
witness relation RL is special-sound with respect to RL, if for any two transcripts (α, β, γ)
and (α′, β′, γ′) such that the initial messages α, α′ are the same but the challenges β, β′ are
different, there is a deterministic procedure to extract the witness from the two transcripts
that runs in polynomial time. Special-sound WI proofs for languages in NP can be based on
the existence of non-interactive commitment schemes, which in turn can be based on one-way
permutations. Assuming only one-way functions, 4-round special-sound WI proofs for NP
exists2. For simplicity, we use 3-round special-sound proofs in our protocol though our proof
works also with 4-round proofs.

Proofs of knowledge: Informally an interactive proof is a proof of knowledge if the prover con-
vinces the verifier not only of the validity of a statement, but also that it possesses a witness
for the statement. If we consider computationally bounded provers, we only get a “computa-
tionally convincing” notion of a proof of knowledge (aka arguments of knowledge).

3 Our Protocol and Simulator

3.1 Protocol Overview

Following the works of [FS90, GK96], later extended to the concurrent setting by [RK99, KP01,
PRS02, PV08], we consider ZK protocols with two stages:

2A 4-round protocol is special sound if a witness can be extracted from any two transcripts (τ, α, β, γ) and
(τ ′, α′, β′, γ′) such that τ = τ ′, α = α′ and β 6= β′.
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Stage 1: First the verifier V “commits to a trapdoor” (the start message). This is followed by one
or multiple slots; each slot consists of a prover challenge (the opening of the slot) followed by
a verifier response (the closing of the slot). A rewinding black-box ZK simulator can rewind
any one of these slots to extract the verifier trapdoor.

Stage 2: The protocol ends with a modified proof of the original statement that can be simulated
given the verifier trapdoor.

To generate the view of an adversarial verifier V ∗ in the standalone setting, a black-box simulator
simply rewinds a slot to learn the trapdoor, and use it to simulate the final modified proof.

In the concurrent setting, however, V ∗ may fully nest another session inside a slot (i.e., after the
prover sends the opening message, V ∗ schedules a full session before replying with closing message).
In order for the simulator to rewind this slot, it would need to simulate the view of the nested
session twice. Therefore, repeated nesting may cause a naive simulator to have super-polynomial
running time [DNS04]. Different techniques were employed in different models to circumvent this
difficulty caused by nesting. In the timing model, [DNS04, Gol02] shows that by delaying the Stage
2 proof and limiting the time allowed between the opening and closing of any slot, we can avoid the
nesting situation all together. On the other hand, [RK99] showed that if the protocol has enough
slots, the simulator can always find a slot that isn’t “too nested” to rewind.

The work of Pass and Venkitasubramaniam describes a simulator (based on the work of [RK99])
that works also for constant-round protocols. Its running time (implicitly) depends on the maximum
nesting level/depth of the least nested slot. Specifically, the running time of the simulator is nO(d)

when this maximum depth of nesting is d. Building upon this, we now focus on reducing the
maximum depth of nesting in the timing model.

In the following overview of our techniques, we assume that V ∗ interleaves different sessions in
a static schedule; the full generality of dynamic scheduling is left for our formal analysis. Addition-
ally, we keep track of the running time of our protocols as a function of T—the total amount of
accumulated delay caused by the verifier in all the messages.

Imposing traditional timing delays with one slot. We first review the works of [DNS04,
Gol02]. Recall that ∆ is the maximum network latency—the time it takes for a message to be
computed and delivered over the network. We require that the time between the opening and
closing of each slot be bounded by 2∆ (otherwise the prover aborts); this is the smallest time-out
value that we may ask of the honest verifier. At the same time, the prover delays the Stage 2 proof
by δ time (after receiving the closing message of the last slot), where δ is a parameter (Fig. 1(a)).
It is easy to see that if δ = 2∆, then no nesting can occur (Fig. 1(b)). In this case the running time
of the protocol is T + ∆.

start

opening

closing

Stage 2

P V

a slot
times-out
in 2∆

delay δ

(a) 1 slot protocol with traditional timing constraints

session 1

times-out
in 2∆

session 2

2∆

(b) δ = 2∆ prevents nesting.

Figure 1: Traditional timing delays with 1 slot.
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If we consider the suggestion of Barak and Micciancio and set δ = 2∆/d, then up to d levels of
nesting can occur (Fig. 2). In this case, the running time of the protocol is T + 2∆ and T + 2∆/d,
respectively.

times-out
in 2∆

up to d levels

<

2(1− 1
d )∆

2∆/d

2∆/d

•••

Figure 2: δ = 2∆/d gives at most d levels of nesting.

Increasing the number of slots. This idea was first explored by [RK99] in the standard model
where intuitively, more slots translates to more rewinding opportunities for the simulator. In the
timing model, the effect of multiple slots is much more direct. Let us look at the case of 2 slots.
Suppose in some session, V ∗ delays the closing of a slot by the maximum allowed time, 2∆. Further
suppose that V ∗ nests an entire session inside this slot. Then in this nested session, one of the slots
must have taken time less than ∆ (Fig. 3(a)). Continuing this argument, some fully nested session
at level d must take time less than 2∆/2d. Therefore if we set δ = 2∆/2d, V ∗ cannot fully nest
every slot beyond depth d, and the running time of the protocol becomes T + 2∆/2d.

Penalizing the adversarial verifier with adaptive delays. Here we implement our “eye-for-
an-eye” approach of penalizing adversarial verifiers that delay messages. Let p(t) be a penalty
function that satisfies p(t) > t and is monotonically increasing. During Stage 1 of the protocol,
the prover measures t, the total time elapsed from the opening of the first slot to the closing of the
last slot. Based on this measurement, the prover delays Stage 2 by time p(t)− t or by the minimal
imposed delay δ, whichever is greater. As a result, Stage 2 only starts after p(t) time has elapsed
starting from the opening of the first slot. For example, suppose p(t) = 2t and that the protocol
has 1 slot. Then for V ∗ to fully nest a session inside a slot that took time 2∆, the slot of the
nested session must have taken time at most ∆, giving the same effect as having 2 slots (Fig. 3(b)).
Furthermore, if we implement more aggressive penalties, such as p(t) = t2,3 then the slot of the
nested session is reduced to time

√
2∆. Therefore if we set δ = (2∆)1/2d , V ∗ cannot fully nest every

slot beyond depth d, and the running time of the protocol becomes T 2 + (2∆)1/2d .

Combining the techniques. In general, we can consider concurrent ZK protocols that both
contain multiple slots and impose penalty-based delays (e.g., Fig. 4). If we have r slots and impose

3Formally we may use p(t) = t2 + 1 to ensure that p(t) > t.
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times-out
in 2∆

< ∆

?

•••

(a) 2 slots, no penalty. One of the nested
slot must have half the delay.

times-out
in 2∆

< ∆

adaptive
delay

•••

(b) 1 slot, 2t penalty. The nested slot
must have half the delay as well.

Figure 3: Our main techniques of restricting the nesting depth of V ∗.

p(t) penalty on delays, and define g(t) = p(rt), then δ can be decreased to

d times

{ p−1

(
· · ·

p−1

(
p−1(2∆)

r

)
r

)
r

= (g−1)d(2∆)

=


2∆/rd if p(t) = t (no penalty)
2∆/(cr)d if p(t) = ct (linear penalty)

(2∆)1/cd

r1+1/c+···+1/cd−1 ≤
(2∆)1/cd

r if p(t) = tc (polynomial penalty)

while keeping the simulator running time at (rn)O(d). The running time of the protocol is then
p(T ) + δ.

times-out
in 2∆

<
√

2∆/2

<
√

2∆

adaptive
delay

•••

Figure 4: 2 slots and t2 penalty. Slots of nesting sessions decrease in size very quickly.

Handling dynamic scheduling. So far we have discussed our analysis (and have drawn our di-
agrams) assuming that V ∗ follows a static schedule when interleaving multiple sessions. In general
though, V ∗ may change the scheduling dynamically based on the content of the prover messages.
As a result, the schedule (and nesting) of messages may change drastically when a black-box sim-
ulator rewinds V ∗. This phenomenon introduces many technical difficulties into the analysis, but
fortunately the same difficulties were also present and resolved [PV08]. By adapting the analysis
in [PV08], we give essentially the same results in the case of dynamic scheduling, with one mod-
ification: An additional slot is needed whenever δ < 2∆ (this includes even the case illustrated
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in Fig. 2). For example, a minimal of 2 slots is needed to implement penalty-based delays, and a
minimum of 3 slots is needed to reap the improvements that result from multiple slots.

Handling ε-drifts in clock tapes. As in the work of [DNS04, Gol02] we merely need to scale the
time-out values in our protocols when the local clocks are not perfectly synchronized. Specifically,
if the adversary is ε-drift preserving for some ε ≥ 1, then our protocol will impose a minimal delay
of εδ and an adaptive delay of εp(t) (when applicable) between the closing of the last slot and Stage
2.

3.2 Description of the protocol

Our concurrent ZK protocol is a slight variant of the precise ZK protocol of [MP06], which in turn
is a modification of the Feige-Shamir protocol [FS90]. Given a one-way function f , a parameter r,
a penalty function p(t), and a minimal delay δ, our protocol for language L ∈ NP proceeds in the
following two stages on common input x ∈ {0, 1}∗ and security parameter n:

Stage 1: The verifier picks two random strings s1, s2 ∈ {0, 1}n and sends c1 = f(s1), c2 = f(s2) to
the prover. The verifier also sends α1, . . . , αr+1, the first messages of r + 1 invocations of a
WI special-sound proof of the statement “c1 and c2 are in the image set of f ”. These proofs
are then completed sequentially in r + 1 iterations.

In the jth iteration, the prover first sends βj ← {0, 1}n
2 , a random second message for the

jth proof (opening of the jth slot), then the verifier replies with the third message γj of the
jth proof (closing of the jth slot). The prover times-out the closing of each slot with time 2∆,
and measures the time that elapsed between the opening of the first slot and the closing of the
r + 1st slot as t.

Stage 2: The prover delays by time max{p(t)− t, δ} , and then provides a WI proof of knowledge
of the statement “either x ∈ L, or that (at least) one of c1 and c2 are in the image set of f ”.

More precisely, let L′ be the language characterized by the witness relation RL′(c1, c2) =
{(s1, s2) | f(s1) = c1 or f(s2) = c2}. Let f be a one-way function, r and δ be integers, p(t) : N→ N
be a monotonically increasing function satisfying p(t) > t, and L be a language in NP. Our ZK
argument for L, ConcZKArg, is depicted in Figure 5.

The soundness and the completeness of the protocol follows directly from the proof of Feige and
Shamir [FS90]; in fact, the protocol is an instantiation of theirs. Intuitively, to cheat in the protocol
a prover must “know” an inverse to either c1 or c2, which requires inverting the one-way function f .

3.3 Simulator Overview

At a very high-level our simulator follows that of Feige and Shamir [FS90]. The simulator will
attempt to rewind one of the special-sound proofs (i.e., the slots), because whenever the simulator
obtains two accepting proof transcripts, the special-soundness property allows the simulator to
extract a “fake witness” ri such that ci = f(ri). This witness can later be used in the second phase
of the protocol. At any point in the simulation, we call a session of the protocol solved if such
a witness has been extracted. On the other hand, if the simulation reaches Stage 2 of a session
without extracting any “fake witnesses”, we say the simulation is stuck.

In more detail, our simulator is essentially identical to that of [PV08], which in turn is based on
the simulator of [RK99]. The general strategy of the simulator is to find and rewind the “easiest” slot
for each session; during a rewind, the simulator recursively invokes itself on any nested sessions when
necessary. The main difference between our work and that of [RK99, PV08] lies in determining which
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Protocol ConcZKArg
Common Input: an instance x of a language L with witness relation RL.

Auxiliary Input for Prover: a witness w, such that (x,w) ∈ RL(x).

Parameters: r (round complexity), p (penalty function), ∆ (max delay), δ (min delay)

Stage 1:
V uniformly chooses s1, s2 ∈ {0, 1}n.
V → P: c1 = f(s1), c2 = f(s2), and r + 1 first messages α1, . . . , αr+1 of WI special-sound

proofs of knowledge of the statement (c1, c2) ∈ L′ (called the start message). The
proof of knowledge is with respect to the witness relation RL′ .

For j = 1 to r + 1 do

P → V [opening of slot j]: Select a second message βj ← {0, 1}n
2
for the jth WI

special-sound proof. P times-out if the next verifier message is not received in
time 2∆.

V → P [closing of slot j]: Third message γj for the jth WI special-sound proof.

P measures the time elapsed between the opening of the first slot and the closing of the
r + 1st slot as t.

Stage 2:
P delays the next message by time max{p(t)− t, δ}.
P ↔ V: A perfect-WI argument of knowledge of the statement (x, c1, c2) ∈ L ∨ L′, where

L ∨ L′ is characterized by the witness relation

RL∨L′(x, c1, c2) = {(w, s′1, s′2) | w ∈ RL(x) ∨ (r′1, r
′
2) ∈ RL′(c1, c2)

The argument of knowledge is with respect RL∨L′ .

Figure 5: Concurrent Perfect ZK argument for NP

slot to rewind. In [RK99, PV08], a slot that contains a “small” amount of start messages (freshly
started sessions) is chosen, whereas in our simulation, a slot with “little” elapsed time (between the
opening and the closing) is rewound. As we will see, part of the analysis from [PV08] applies directly
to our simulator modulo some changes in parameters; we only need to ensure that our definition of
“little” elapsed time allows the simulator to always find a slot to rewind (formally argued in Claim
2).

3.4 Description of the simulator

Our simulator is defined recursively. Intuitively on recursive level 0, the simulator’s goal is to
generate a view of V ∗, while on all other recursive levels, the simulator’s goal is to rewind a particular
slot (from a previous recursion level). On recursive level `, the simulator starts by feeding random
Stage 1 messages to V ∗. Whenever a slot s closes, S decides whether or not to rewind s depending
on the time elapsed between the opening and the closing of s. If the elapsed time is “small” (where
the definition of small depends on the level `), S begins to rewind the slot. That is, S recursively
invokes itself on level `+ 1 starting from the opening of slot s with a new (random) message β, with
the goal of reaching the closing message of slot s. While in level ` + 1, S continues the simulation
until one of the following happens:

1. The closing message γ for slot s occurs: S extracts a “fake” witness using the special-sound
property and continues its simulation (on level `).
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2. V ∗ aborts or delays “too much” in the rewinding: S restarts its rewinding using a new challenge
β for s. We show in expectation, S only restarts O(1) times (intuitively, this follows since
during the execution at level `, S only starts rewinding a slot if V ∗ did not abort and only
took “little time”).

3. S is “stuck” at Stage 2 of an unsolved session that started at level `+ 1: S halts and outputs
fail (we later show that this never happens).

4. S is “stuck” at Stage 2 of an unsolved session that started at level `: Again, S restarts its
rewinding. We show that this case can happen at most m − 1 times, where m is the total
number of sessions.

5. S is “stuck” at Stage 2 of an unsolved session that started at level `′ < `: S returns the view
to level `′ (intuitively, this is just case 4 for the recursion at level `′).

In the unlikely event that S asks the same challenge β twice, S performs a brute-force search
for the witness. Furthermore, to simplify the analysis of the running-time, the simulation is cut-off
if it runs “too long” and S extracts witnesses for each session using brute-force search.

The basic idea behind the simulation is similar to [PV08]: We wish to define “little time”
appropriately, so that some slot of every session is rewound and that expected running time is
bounded. For a technical reason (used later in Claim 2), we actually want the simulator to rewind
one of the first r (out of r + 1) slots of each session.

Take for example p(t) = 2t and r = 2 (3 slots). Based on our intuition from Sect. 3.1, a good
approach would be to ensure that the simulation at recursive level ` finishes within time 2∆/4`, and
define “little time” on level ` to be 2∆/4`+1. Then, we know that any session that is fully executed at
recursive level ` must have taken time less than 2∆/(4` ·2) in Stage 1 (due to penalty-based delays),
and therefore one of the first two slot must have taken time less than 2∆/4`+1, making it eligible
for rewind. To show that the expected running time is bounded, we simply set δ appropriately (as
a function of d, ∆ and r) as in Sect. 3.1, and this would guarantee that the recursion depth of the
simulator is bounded.

A formal description of our simulator can be found in Figure 6. We rely on the following notation.

• Define the function g : N → N by g(n) = p(rn). Recall that gk(n) be the function computed
by composing g together k times, i.e., gk(n) = g(gk−1(n)) and g0(n) = n. Let d (the maximum
depth of recursion) be mind{gd(δ) > 2∆}. Note that if δ = (g−1)k(2∆), then d = k.

• slot (i, j) will denote slot j of session i.

• W is a repository that stores the witness for each session. The update W command extracts a
witness from two transcripts of a slot (using the special-sound property). If the two transcripts
are identical (i.e. the openings of the slot are the same), the simulator performs a brute-force
search to extract a “fake” witness si s.t. ci = f(si) for i ∈ {1, 2}.

• R is a repository that stores the transcripts of slots of unsolved sessions. Transcripts are stored
in R when the simulator gets stuck in a rewinding (cases 4 and 5 mentioned in the high-level
description).
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SOLVEV ∗
d (x, `, hinitial, s,W,R):

Let h← hinitial. Note that hinitial contains all sessions that are started on previous recursion levels.
Repeat forever:

1. If v is a Stage 2 verifier message of some session, continue.

2. If V ∗ aborts in the sessions of slot s, or the time elapsed since hinitial exceeds gd+1−`(δ), restart
SOLVE from hinitial.

3. If the next scheduled message is a Stage 2 prover message for session i and W(i) 6= ⊥, then use
W(i) to complete the WI proof of knowledge; if W(i) = ⊥ and start message of session i is in hinitial

return h, otherwise halt with output fail.

4. If the next scheduled message is a Stage 1 prover message for slot s′, pick a random message
β ← {0, 1}n2

. Append β to h. Let v ← V ∗(h).

5. Otherwise, if v is the closing message for s′ = slot (i′, j′), then update W with v (using R) and
proceed as follows.
(a) If s = s′, then return h.

(b) Otherwise, if session i′ starts in hinitial, then return h.

(c) Otherwise, if W(i′) 6= ⊥ or the time elapsed since the opening of slot (i′, j′) exceeds gd−`,
then continue.

(d) Otherwise, let h′ be the prefix of the history h where the prover message for s′ is generated.
Set R′ ← φ. Repeat the following m times:

i. h∗ ← SOLVEV ∗

d (x, `+ 1, h′, s′,W,R′)
ii. If h∗ contains an accepting proof transcript for slot s′, extract witness for session i′ from

h and h∗ and update W.
iii. Otherwise, if the last message in h∗ is the closing message for the last slot of an session

that started in hinitial return h∗.
iv. Otherwise, add h∗ to R′.

SV ∗(x, z):
Let d ← mind{gd(δ) > 2∆}. Run SOLVEV ∗

d (x, 0, , , , ) and output whatever SOLVE outputs with one
exception. If an execution of SOLVEV ∗

d (x, 0, , , , ) queries V ∗ more that 2n times, proceed as follows:
Let h denote the view reached in the “main-line” simulation (i.e., in the top-level of the recursion).
Continue the simulation in a “straight-line” fashion from h by using a brute-force search to find a “fake”
witness each time Stage 2 of an session i is reached.

Figure 6: Description of our black-box ZK simulator.
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4 Analysis of the Simulator

To prove correctness of the simulator, we show that the output of the simulator is correctly dis-
tributed and its expected running-time is bounded. We first prove in Claim 2 that the simulator
never outputs fail. Using Claim 2, we show that the output distribution of the simulator is correct
in Prop. 3, and that the expected running time of the simulator is at most poly(mdrd) in Prop. 6.
Theorem 1 then follows from Prop. 3 and 6, together with the fact that if δ = (g−1)k(2∆) then
d = k.

Claim 2 is given below, while Prop. 3 and 6 are given in the appendix; in any case, the proofs
of Prop. 3 and 6 are essentially identical to [PV08], modulo a change of parameters. Throughout
the analysis we assume without loss of generality that the adversary verifier V ∗ is deterministic (as
it can always get its random coins as part of the auxiliary input).

Claim 2 For every x ∈ L, SV ∗(x, z) never outputs fail.

Proof: Recall that SV ∗(x, z) outputs fail only if SOLVEV ∗
d (x, 0, , , ) outputs fail. Furthermore,

SOLVE outputs fail at recursive level ` only if it reaches Stage 2 of an unsolved session that started
at level ` (see Step 3 of SOLVE). We complete the proof in two parts. First we show SOLVEV ∗

d will
rewind at least one of the first r slots of every session at level `. Then, we show that SOLVE always
extracts a witness when it rewinds a slot.

In order for SOLVE to be stuck at a session i that starts at recursive level `, session i must
reach Stage 2 within g(d−`)(δ) time-steps (otherwise SOLVE would have rewound as per Step 2).
This implies that t, the time between the opening of the first slot and the closing of th last slot of
session i, must satisfy p(t) ≤ g(d−`)(δ) (due to penalty-based delays). This in turn implies that one
of the first r slots of session i must have taking time at most

t

r
≤ p−1(g(d−`)(δ))

r
≤ g(d−`−1)(δ)

(here we use the monotonicity of p). By construction, SOLVE would have rewound this slot (i.e.,
execute Step 5.(d)).

Next we show that whenever SOLVE rewinds a slot, a witness for that session is extracted.
Assume for contradiction that SOLVE fails to extract a witness after rewinding a particular slot.
Let level ` and slot j of session i be the first time this happens. This means at the end of Step 5.(d),
m views are obtained, yet none of them contained a second transcript for slot j. Observe that in
such a view, SOLVE most have encountered Stage 2 of some unsolved session i′ (i.e., stuck). Yet,
we can show that the m − 1 other sessions can each cause SOLVE to be stuck at most once; this
contradicts the fact that SOLVE is stuck on all m good views.

For every session i′ that SOLVE gets stuck on, both the opening and the closing of the last slot
occurs inside the rewinding of slot (i, j); otherwise, SOLVE would have rewound one of the r slots
that occurred before the opening of slot (i, j) successfully and extracted a witness for session i′ (l, i, j
was the first “failed” slot). Furthermore, the transcript of this slot enables SOLVE to never get stuck
on session i′ again, since the next time that the last slot of session i′ closes will allow SOLVE to
extract a witness for session i′.
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A Indistinguishability of the Simulation

Proposition 3 The ensembles {VIEW2[P (x,w)↔ V ∗(x, z)]} and {SV ∗(x, z)} are identical over
x ∈ L,w ∈ RL(x), z ∈ {0, 1}∗.

Proof: Consider the following hybrid simulator S̃V ∗ that receives the real witness w to the state-
ment x. S̃V ∗ on input x,w, and z proceeds just like SV ∗ in order to generate the prover messages
in Stage 1, but proceeds as the honest prover using the witness w in order to generate messages in
Stage 2 (instead of using the “fake” witness as SV ∗ would have). Using the same proof as in Claim 2,
we can show that S̃V ∗(x, (w, z)) never outputs fail. Furthermore, as the prover messages in Stage 1
are chosen uniformly and S̃V ∗ behaves like an honest prover in Stage 2. Therefore, we get:

Claim 4 The following ensembles are identical:

• {VIEW2[P (x,w)↔ V ∗(x, z)]}x∈L,w∈RL(x),z∈{0,1}∗

• {S̃V ∗(x, (w, z))}x∈L,w∈RL(x),z∈{0,1}∗

To show the proposition, it suffices to show that output distributions of S̃V ∗ and SV ∗ are identical.
This follows from the perfect-WI property of Stage 2 of the protocols, since the only difference
between the simulators S̃V ∗ and SV ∗ is the choice of witness used. For completeness, we provide a
proof below.

Claim 5 The following ensembles are identical:

• {S̃V ∗(x, (w, z))}x∈L,w∈RL(x),z∈{0,1}∗

• {SV ∗(x, z)}x∈L,w∈RL(x),z∈{0,1}∗

Proof: To prove the claim we will rely on the fact that the running time of the simulator is
bounded. This holds since S stops executing SOLVE whenever it performs more than 2n queries
and continues the simulation in a straight-line fashion, extracting “fake” witnesses using brute-force
search. Assume, for contradiction, that the claim is false, i.e. there exists a deterministic verifier
V ∗ such that the ensembles are not identical.

We consider several hybrid simulators, Si for i = 0 to N , where N is an upper-bound on the
running time of the simulator. Si receives the real witness w to the statement x and behaves exactly
like S, with the exception that Stage 2 messages in the first i sessions are generated using the honest
prover strategy (and the witness w). By construction, S0 = S̃ and SN = S. By assumption the
outputs of S1 and SN are not identically distributed, therefore there must exist some j such that
the output of Sj and Sj+1 are different. Furthermore, since Sj proceeds exactly as Sj+1 in the first
j sessions, and also the same in Stage 1 of the j + 1st session, there exists a partial view v—which

15



defines an instance x′ ∈ L ∨ L′ for Stage 2 of the j + 1st session—such that the outputs of Sj and
Sj+1 are not identical conditioned on the event that Sj and Sj+1 feed V ∗ the view v. Since the
only difference between the view of V ∗ in Sj and Sj+1 is the choice of the witness used in Stage
2 argument of the j + 1st session, we contradict the perfect-WI property of the Stage 2 argument.

B Running Time of the Simulator

We consider the hybrid simulator S̃V ∗ constructed in proof of Prop. 3. It follows by the same proof
as in Claim 5 that the running time distributions of S̃ and S are identical. Therefore, it suffices to
analyze the expected running time of S̃.

Proposition 6 For all x ∈ L, z ∈ {0, 1}∗, and all V ∗ such that V ∗(x, z) opens up at most m
sessions, E[timeS̃V ∗ (x,z)] ≤ poly(mdrd)

Proof: Recall that S̃V ∗(x, z) starts running SOLVE, but in the event that SOLVE uses more than
2n queries to V ∗, it instead continues in a straight-line simulation using a brute-force search. By
linearity of expectation, the expected running time of S is

poly(E[# queries made to V ∗ by SOLVE ])
+ E[time spent in straight-line simulation]

In Claim 7 below, we show that expected time spent in straight-line simulation is negligible.
In Claim 8 we show that the expected number of queries made by SOLV E to V ∗ is at most
m2(d+1−`)(2r)d+1−`. The proof of the proposition follows.

Claim 7 The expected time spent by S̃V ∗ in straight-line simulation is negligible.

Proof: The straight-line simulation takes at most poly(2n) steps since it takes O(2n) steps to
extract a “fake” witness. Recall that, SOLVE runs the brute-force search only if it picks the same
challenge (β) twice. Since, SOLVE is cut-off after 2n steps, it can pick at most 2n challenges.
Therefore, by the union bound, the probability that it obtains the same challenge twice is at most
2n

2n2 . Thus, the expected time spent by SV ∗ in straight-line simulation is at most 2n

2n2 poly(2n), which
is negligible.

Claim 8 For all x ∈ L, h, s,W,R, ` ≤ d such that SOLVEV ∗
d (x, `, h, s,W,R) never outputs fails,

E[# queries by SOLVEV ∗
d (x, `, h, s,W,R)] ≤ m2(d+1−`)(2r)d+1−`

Proof: We prove the claim by induction on `. To simplify notation let α(`) = m2(d+1−`)(2r)d+1−`.
When ` = d + 1, we claim that SOLVE does not perform any recursive calls and hence, the number
of queries made by SOLVE can be at most the total number of messages, which is mr. Recall that,
simulator cuts off the rewinding if it exceeds g0(δ) = δ time steps. Since an entire session cannot
go to completion within δ time step, there are no recursive calls at this level.

Assume the claim is true for ` = `′ + 1. We show that it holds also for ` = `′. Consider some
fixed x ∈ L, h, s,W, R such that SOLVEV ∗

d (x, `′, h, s,W,R) never outputs fails. We show that

E[# queries by SOLVEV ∗
d (x, `′, h, s,W,R)] ≤ m2(d+1−`′)rd+1−`′

= α(`′) = m2(2r)α(`′ + 1)

Towards this goal we introduce some additional notation. Given a view ĥ extending the view h,
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• Let q`′
ŝ (ĥ) denote the probability that the view ĥ occurs in the “main-line” execution of

SOLVEV ∗
d (x, `′, h, s,W,R) (i.e., starting on level `) and that slot ŝ opens immediately after ĥ.

• Let Γŝ denote the set of views such that q`′
ŝ (ĥ) > 0.

We bound the number of queries made by SOLVEV ∗
d (x, `′, h, s,W,R) as the sum of the queries

SOLVE makes on level `′, and the queries made by recursive calls. The number of queries made by
SOLVE on level `′ is upper-bounded by the total number of messages verifier messages, i.e. mr. The
number of queries made on recursive calls is computed by summing the queries made by recursive
calls on over every slot ŝ and taking expectation over every view ĥ (such that q`′

ŝ (ĥ) > 0).
More precisely,
E[# queries by SOLVEV ∗

d (x, `′, h, s,W,R)] ≤ mr +
∑

ŝ

∑
ĥ∈Γŝ

q`′
ŝ (ĥ)Eŝ(ĥ)

where Eŝ(ĥ) denotes the expected number of queries made by SOLVE from the view ĥ on ŝ. There
are two steps involved in computing Eŝ(ĥ). The first step involves finding the expected number
of times SOLVE is run on a slot and the second step using the induction hypothesis computing a
bound for Eŝ(ĥ).
Step 1: Given a view ĥ from where slot ŝ opens, let p` denote the probability that SOLVE rewinds
slot ŝ from ĥ, i.e., p` is the probability that in the simulation from ĥ at level `, V ∗ completes slot ŝ
within time gd−`(1) from the opening of slot ŝ. Let y` denote the probability that when executing
SOLVE at level ` from ĥ, V ∗ either aborts in the session of slot ŝ or takes more than time gd−`(δ)
to respond to slot ŝ. We clearly have that p` ≤ 1− y` (note that equality does not necessarily hold
since SOLVE might also return to a lower recursive level). Furthermore, it holds that y` = y`+1.
This follows since SOLVE generates random Stage 1 messages, and uses the same (real) witness
to generate Stage 2 messages, independent of the level of the recursion; additionally by Claim 2,
SOLVE never halts outputting fail, we conclude that the view of V ∗ in the “main-line” simulation
by SOLVE on level l is identically distributed to its view on level l + 1.

Therefore, the expected number of times SOLVE recursively executes ŝ at level ` + 1, before
obtaining a good view, is at most 1

1−y`+1 = 1
1−y` ≤ 1

p` . Using linearity of expectation, the expected
number of times SOLVE executes ŝ before obtaining m good views is at most m

p` . Since, SOLVE

rewinds ŝ from ĥ only with probability p`, the expected number of recursive calls to level `+ 1 from
ĥ is at most p` m

p` = m.
Step 2: From the induction hypothesis, we know that the expected number of queries made by
SOLVE at level `′+1 is at most α(`′+1). Therefore, if SOLVE is run u times on a slot, the expected
total number of queries made by SOLVE is bounded by uα(`′ + 1). We conclude that

Eŝ(ĥ) ≤
∑
u∈N

Pr[u recursive calls are made by SOLVE from ĥ]uα(`′ + 1)

= α(`′ + 1)
∑
u∈N

u · Pr[u recursive calls are made by SOLVE from ĥ]

≤ mα(`′ + 1)

Therefore, E[# queries by SOLVEV ∗
d (x, `′, h, s,W,R)] ≤

mr +
∑

ŝ

∑
ĥ∈Γŝ

q`′
ŝ (ĥ)Eŝ(ĥ) ≤ mr +

∑
ŝ

mα(`′ + 1)
∑
ĥ∈Γŝ

q`′
ŝ (ĥ)

≤ mr +
∑

ŝ

mα(`′ + 1) ≤ mr + (mr)mα(`′ + 1) ≤ α(`′)

This completes the induction step and concludes the proof of Claim 8.

17


