
The Tournament Divide and
Conquer Technique

Daniel Rubery
Georgiy Platonov

Mohammad Rafayet Ali
Xiong Zhang

1

K-tournaments
Consider the set of k people playing a game with the following properties:

1) Game consists of multiple matches, with only two players in each match
2) Each player play against each other exactly once.
3) Every match has a winner

Such a setting can be represented by a directed graph.

2

Example: 4-tournament

3

Curious fact about tournaments
The interesting fact about tournaments is that we can select a very small subset of
players such that each player not from that subset defeats someone from that set.

How small?

A logarithmically small!

4

Theorem 3.1:
Let G = (V, E) be a k-tournament, where V = {1, …, k} is the set of nodes or
players, and E is the set of edges or matches.

Then there exists a subset H of V, such that:

1)

2)

5

Example: 7-tournament

6

Example: 7-tournament

7

Example: 7-tournament

8

Example: 7-tournament

9

Proof of Theorem 3.1:
● In a k-tournament, each player plays exactly k - 1 games.
● There must be at least one player who lost to at least ⌈(k - 1)/2⌉ other players.
● Add this player to H.
● Remove the nodes corresponding to that player and to all the players who

defeated him from the graph. The resulting graph has at most ⌈k/2⌉ - 1
vertices.

● Apply the same procedure to the new graph.
● Since at each step we decrease the size of graph by factor of 2 (at least), we

end up with at most ⌊log (k + 1)⌋ steps, so |H| ≤ ⌊log (k + 1)⌋.

10

Definitions
● P-sel

○ A language L is P-selective if there is a polynomial-time function f such that:
○ f(x,y) is either x or y
○ If x∈L or y∈L, f(x,y)∈L

○ Notice that f(x,y) can do anything if x and y are not in L, so in some sense, f(x,y) selects which
string is “more likely” to be in L

● Example:
○ For a fixed real number r, {<a,b> | a/b < r}

11

Definitions
● P/poly

○ Can be thought of as having “small circuits” that decide each length
○ Easier to think of it as polynomial amount of advice

○ More generally, for a class of languages C and class of functions F, let C/F denote the class of
languages L such that:

■ There exists a language A∈C, and h(n) such that |h(n)|∈F, and L = {x | <x,h(|x|)>∈A}
○ So P/poly is equivalently:

■ There is a language A∈P and h(n) of polynomial length such that x∈L iff <x,h(|x|)>∈A

12

Connection Between Tournaments and P-sel
● If L is P-selective, let f be a P-selector for L
● Then for a given length n, f gives a tournament on L=n

○ We have an edge from a to b if f(a,b) = b
○ Note: This requires f(a,b) = f(b,a)

● Then Theorem 3.1 gives a set H with at most log(2n+1) ≤ n+1 strings
● Every string in L=n is either in H, or beats a string in H
● Furthermore, any string in H or that beats a string in H is in L=n

13

P-sel ⊆ P/poly
● Recall our definitions. To show a language L is in P/poly, we need a function

g and a language A∊P such that:
○ x∊L iff <x,g(|x|)>∊A

● So let g(n) encode the, at most, n+1 strings in H
○ |g(n)| is polynomial in n

● Then A is accepted by the following deterministic Turing machine:
○ On input <x,y> do the following:

■ For each h in y, accept if x=h or f(x,h)=x
■ If we fail all the above, reject

● Then x∊L iff <x,g(|x|)>∊A, so L is in P/poly
● In fact, since g(n) has at most n+1 strings of length n, it has quadratic length
● So we can strengthen this result to P-sel ⊆ P/quadratic

14

15

16

17

18

19

20

21

Theorem 3.10
What does it mean?

22

Theorem 3.10
What does it mean?

How to prove this?

Hint Hint: We’ll use Theorem 3.9 (if G is a k-tournament, we can find a “core”
node which has a relatively short distance (<=2) to any other nodes) 23

Theorem 3.10
What we have: a selector function f for set L

What we want: a linear advice function and an “interpreter” set A

Consider this advice function g:

This is great, now we have a linear advice (=n+1) and it seems to be useful, but
how to construct the set A (the interpreter) based on the advice function? 24

Theorem 3.10
The interpreter is defined as:

So if x is in L, by construction of the advice function we know <x, g(|x|)> is in A

What if x is not in L?

25

26

This is the end of lecture 1.

27

The Tournament Divide and
Conquer Technique

Daniel Rubery
Georgiy Platonov

Mohammad Rafayet Ali
Xiong Zhang

28

Attention
● We’ll have an in-class quiz at the end of this lecture.
● In the quiz you need to show some understanding to the material covered

today.
● During the quiz you can’t use today’s slides, but you can take a sheet of note

during the lecture (if you didn’t do it before) and use it in the quiz.

Be prepared!

29

Recap
At the end of last lecture we proved Theorem 3.10:

30

And remember we constructed an elegant advice function:

The length of the advice string here is n + 1, but is it optimal? Or can we have
even shorter advice strings, like in the length n ?

31

No, not a chance!

32

Theorem 3.13
We’ll show that n bits simply cannot hold enough information to disambiguate a
certain family of semi-feasible sets.

How?

A direct way is to find a set L that is

1. semi-feasible (i.e. P-sel set)
2. but is not NP/n

33

Construction Strategy
We want to construct a set L, consisting mostly of holes.

Holes?

That means at widely spaced lengths, our set will include exactly some (possibly
empty) left cut of strings of that length, and at other lengths it will be empty.

What does it mean?

34

Interesting
lengths

35

Holes

Construction Strategy
We want to construct a set L, consisting mostly of holes.

Yet we will ensure that the set is of limited complexity, so we can conduct a brute-
force search for strings.

So P(olynomial) selector function exists!!

36

Weird Notation for Length of Strings

37

3 Conditions for the Construction

38

2 Claims

Translation?

There is a semi-feasible set (satisfying the 3 requirements) which is not NP/n .

39

Hint: It’s not surprising if we have
questions for both of the claims later!

40

Proof of Claim 3.14

Let L satisfy the 3 requirements, to prove L is semi-feasible, we need to construct
a P-selector function f for L

41

Proof of Claim 3.14
Let’s go through all the cases one by one:

Can you see that by this construction, if one of (x, y) is in L, then the output of
f(x,y) is in L!

42

But is this function P time computable?

For the first 3 cases: clearly yes, since we only need to check the length of x and y

For the last 2 cases, the trickiest part is in computing whether or not min{x, y} is
in L. Is this part P time computable?

43

Recall that Q is of the form:

In the last two cases, if

Then the following must hold:

Why?

44

45

46

47

48

49

50

51

52

53

This is the end of the lecture 2.

54

The Tournament Divide and
Conquer Technique

Daniel Rubery
Georgiy Platonov

Mohammad Rafayet Ali
Xiong Zhang

Lecture 3

Unique solutions collapse the Polynomial
Hierarchy

Motivation
Looking at functions that give a satisfying assignment of clauses. We want some
kind of function such that for any F in SAT, f(F) is a satisfying assignment of F

If there is a deterministic polynomial time function f, then P=NP

There definitely exists an FP function with NP oracle.

We will define a weaker function, between FP and FPNP, whose existence implies
PH = NPNP

Definitions

1) Let f be a multivalued function. set-f(x) denotes the set of all
values that are an output of f(x). If f(x) has no output then set-f
(x) is the empty set.

2) We consider any given nondeterministic polynomial-time
machine N to implicitly compute a (potentially partial)
multivalued function, namely, the function fN defined by the set
set-fN(x) = { y | some computation path of N(x) outputs y }.
NPMV denotes the class of functions computed in this sense by
nondeterministic polynomial-time machines.

More definitions

3) A (potentially partial) multivalued function f is said to be single-
valued if ∀x(||set-f(x)|| ≤ 1). NPSV denotes the class of all
single-valued NPMV functions.

4) Given a multivalued functions f and g, we say that g is a
refinement of f if
a. ∀x(set-g(x) ⊆ set-f(x)), and
b. ∀x(set-g(x) = ∅ ⇒ set-f(x) = ∅).

Yet more definitions

5) Let F be any (possibly partial, possibly multivalued) function
class. We say a set L is F-selective if there is a multivalued
function f ∈ F such that
a. ∀x, y(set-f(x, y) ⊆ {x, y}), and
b. ∀x, y((x ∈ L ∨ y ∈ L) ⇒ (set-f(x,y) ⊆ L ∧set-f(x,y) ≠ ∅)).

Theorem 3.21

If all NPMV functions have NPSV refinements,
then PH = NPNP.

We will use the following two lemmas:

1) NPSV-sel ∩ NP ⊆ (NP ∩ coNP)/poly. (Lemma 3.25)

2) NP ⊆ (NP ∩ coNP)/poly ⇒ PH = NPNP. (Lemma 3.26)

Proof of Lemma 3.25: NPSV-sel ∩ NP ⊆ (NP ∩ coNP)/poly

Let L be a language in NPSV-sel∩NP. Let NL be a NPTM accepting L, and f an
NPSV selector.

WLOG, for any x,y we have set-f(x,y) = set-f(y,x).

Now we construct an NP∩coNP interpreter A and an advice function g.

Let A be all strings of the form <x, <<a1,a2,…,az>, <w1,...,wz’>>> such that:
z = z’
∀i (wi is an accepting path of NL on ai)
∃i (x∈set-f(x,ai))

Proof of Lemma 3.25: NPSV-sel ∩ NP ⊆ (NP ∩ coNP)/poly

Clearly, A is in NP.

A̅ is also in NP, as follows:

Accept any syntactically ill-formed input, or if z ≠ z’
Deterministically check that each wi is an accepting path of ai
Reject if, for some i, x = ai
Since we now know each ai is in L, set-f(ai,x) must have exactly one value
For each i, non-deterministically choose a path for f(ai,x)

If it outputs nothing, reject
If it outputs x, reject
If it outputs ai, continue

Accept if each path gives f(ai,x) = ai.

Proof of Lemma 3.25: NPSV-sel ∩ NP ⊆ (NP ∩ coNP)/poly

Create a tournament on L=n. If a,b ∈ L=n, then there is an edge from a to b if set-f
(a,b) = {b}.

Now use Theorem 3.1 to get a set H with at most n+1 strings. For every x∈L=n,
there is an h∈H, such that x=h or set-f(x,h) = {x}.

Then our advice function is g(n) = <<h1,h2,...,hn>,<w1,w2,...,wn>>, where each wi is
an accepting path of hi. This is polynomial length in n.

x ∈ L iff <x, g(|x|)> ∈ A

So L∈(NP∩coNP)/poly, and since L was arbitrary in NPSV-sel∩NP, we get the
Lemma.

Proof of Lemma 3.26: NP ⊆ (NP ∩ coNP)/poly ⇒ PH = NPNP

By theorem 1.16 (Karp-Lipton)

NP ⊆ P/poly ⇒ PH = NPNP.

This result relativizes, i.e.

∀A(NPA ⊆ PA/poly ⇒ PHA = NPNP^A).

Proof of Lemma 3.26: NP ⊆ (NP ∩ coNP)/poly ⇒ PH = NPNP

Assume NP ⊆ (NP ∩ coNP)/poly. Then SAT ∈ (NP ∩ coNP)/poly
via some B ∈ NP ∩ coNP, and some advice g in poly.

From

∀A(NPA ⊆ PA/poly ⇒ PHA = NPNP^A)

we have

NPB ⊆ PB/poly ⇒ PHB = NPNP^B.

Proof of Lemma 3.26: NP ⊆ (NP ∩ coNP)/poly ⇒ PH = NPNP

Having

NPB ⊆ PB/poly ⇒ PHB = NPNP^B,

we are going to prove that

NP ⊆ (NP ∩ coNP)/poly ⇒ NPB ⊆ PB/poly

and
 PHB = NPNP^B ⇒ PH = NPNP.

Proof of Lemma 3.26: NP ⊆ (NP ∩ coNP)/poly ⇒ PH = NPNP

It is easy to prove that

NP ⊆ NPB ⊆ NPNP ∩ coNP = NP

So NP = NPB

Proof of Lemma 3.26: NP ⊆ (NP ∩ coNP)/poly ⇒ PH = NPNP

For any L∈NP, let h be a reduction from L to SAT.

Let padn(x) add dummy clauses to a SAT formula so that it is length n, and let
l(n) be the maximum length of h(x) for x in {0,1}n.

x∈L iff h(x)∈SAT iff padl(n)(h(x))∈SAT iff {<padl(n)(h(x)),g(l(n))>}∈B

So L can be decided with advice g’(n) = <l(n),g(l(n))>

By the advice interpreter:

{<x,<len,w>> | <padlen(h(x)), w>∈B}, which is PB

So NP=NPB⊆PB/poly

Proof of Lemma 3.26: NP ⊆ (NP ∩ coNP)/poly ⇒ PH = NPNP

By Karp-Lipton, PHB = NPNP^B

Finally, note that

B ∈ NP ∩ coNP, PHB = PH and NPNP^B = NPNP.

So

NP ⊆ (NP ∩ coNP)/poly ⇒ PH = NPNP.

Theorem 3.21
Now, using these two lemmas, we can prove Theorem 3.20, as follows.

Construct a NPMV-selector for SAT by set-f(x,y) = {x,y}∩SAT.

This is NPMV by guessing an argument and assignment of variables, then
outputting the argument if the assignment is valid.

By the hypothesis of the Theorem, f has a NPSV refinement g.

Then g is a NPSV selector for SAT.

Then SAT∈NPSV-sel.

Theorem 3.21
SAT∈NPSV-sel. Will show that this gives NP⊆NPSV-sel.

For any NP language L, let h polynomial many-one reduce L to SAT.

Then define g’(x,y) =

{x} if g(h(x),h(y)) = h(x)

{y} if g(h(x),h(y)) = h(y)

∅ otherwise

Then g’(x,y) is an NPSV-selector for L, so L∈NPSV-sel, and NP⊆NPSV-sel.

Theorem 3.21
So we have that, if every NPMV function has an NPSV refinement, then
NP⊆NPSV-sel.

Lemma 3.25 says NPSV-sel∩NP⊆(NP∩coNP)/poly

So NP⊆(NP∩coNP)/poly

This is the hypothesis of Lemma 3.26, so PH = NPNP

Thank you!

