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K-tournaments

Consider the set of k people playing a game with the following properties:

1) Game consists of multiple matches, with only two players in each match
2) Each player play against each other exactly once.
3) Every match has a winner

Such a setting can be represented by a directed graph.



Example: 4-tournament




Curious fact about tournaments

The interesting fact about tournaments is that we can select a very small subset of
players such that each player not from that subset defeats someone from that set.

How small?

A logarithmically small!



Theorem 3.1:

Let G = (V, E) be a k-tournament, where V = {1, ..., k} is the set of nodes or
players, and E is the set of edges or matches.

Then there exists a subset H of V, such that:
1) [H| < [log(k +1)]

) Yolve (V- H) = dglge HaAl(g.v) e E))



Example: 7-tournament
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Proof of Theorem 3.1:

In a k-tournament, each player plays exactly k - 1 games.

There must be at least one player who lost to at least ['(k - 1)/21 other players.
Add this player to H.

Remove the nodes corresponding to that player and to all the players who
defeated him from the graph. The resulting graph has at most k/2T1 - 1
vertices.

Apply the same procedure to the new graph.

Since at each step we decrease the size of graph by factor of 2 (at least), we
end up with at most Llog (k + 1)l steps, so |H| < Llog (k + 1)..
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Definitions

o P-sel
o Alanguage L is P-selective if there is a polynomial-time function f such that:
o f(x,y)is eitherx ory
o IfxeLory€el, f(x,y)EL

o Notice that f(x,y) can do anything if x and y are not in L, so in some sense, f(X,y) selects which

string is “more likely” to be in L
e Example:

o For a fixed real numberr, {<a,b> | a/b <r}
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Definitions

e P/poly
o Can be thought of as having “small circuits” that decide each length
o Easier to think of it as polynomial amount of advice
o More generally, for a class of languages C and class of functions F, let C/F denote the class of
languages L such that:
m There exists a language A€ C, and h(n) such that |h(n)|€F, and L = {x | <x,h(|x])> <€A}
o So P/poly is equivalently:
m Thereis a language A€P and h(n) of polynomial length such that x €L iff <x,h(|x|)> €A
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Connection Between Tournaments and P-sel

If L is P-selective, let f be a P-selector for L

Then for a given length n, f gives a tournament on L™
o We have an edge fromato biff(a,b) =b
o Note: This requires f(a,b) = f(b,a)

Then Theorem 3.1 gives a set H with at most log(2"+1) < n+1 strings
Every string in L™ is either in H, or beats a string in H
Furthermore, any string in H or that beats a string in His in L™
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P-sel € P/poly

Recall our definitions. To show a language L is in P/poly, we need a function
g and a language AcP such that:
o  xeL iff <x,g(|x]|)>€A
So let g(n) encode the, at most, n+1 strings in H
o |g(n)| is polynomial in n
Then A is accepted by the following deterministic Turing machine:
o  Oninput <x,y> do the following:
m Foreach hiny, accept if x=h or f(x,h)=x
m If we fail all the above, reject

Then xeL iff <x,g(|x|)>€A, so L is in P/poly
In fact, since g(n) has at most n+1 strings of length n, it has quadratic length
So we can strengthen this result to P-sel & P/quadratic

14



3.2 Optimal Adviceforthe
Semi-feasible Sets



Theorem 3.9

If G is a k-tournament, then there isa v € V; such that
Ve = Ry 6 (V).
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Required Notations

Given a directed graph G, and a node v € Vg, let

Ry () = {v}
And foreachi> 0, let

Ric(v) = Rio1g(v) U{z € V| (3w € Rim1 ¢ () ) [(w, 2) € Eg]}.
Foranyi, G, and § € Vg, define

Ric(S)= (welV;|QveS)|weR )]k
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If G isa k-tournament, thenthereisav € Vg suchthat Vg = Rz g(v).

Proof: By Induction
1-tournament and 2-tournament holds trivially.
Assume: k’-tournament holds in G’ graph.

Consider: k'+1 —tournamentin G graph where a is the
new vertex.
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If G isa k-tournament, thenthereisav € Vg suchthat V; = R, g(v).

Thereisanodeb inG' suchthatR, 4/ (b) = Vg,
Case 1: If the edge between a and b points to a.
Case 2: If the edge between a and b pointsto b.
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If G isa k-tournament, thenthereisav € Vi suchthat V; = Ry (v).

* Case 1: If the edge between a and b points to a.
We are done.As R, s (b) = Vg
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If G isa k-tournament, thenthereisav € Vg suchthat Vg = R3 g(v).

*Case 2: If the edge between a and b pointsto b.
*If a € R, g(b) then we are done.
*If a € R, q(b) then

* For each node ¢ € R; ;(b) edge between a and c
points to c.

* 50 REJG (ﬂ_} — VG

21



Theorem 3.10 P-sel C NP/linear
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Theorem 3.10 P-sel C NP/linear

What does it mean?
If L is a P-sel set, then L is also a NP/linear set

L is a P-sel set = there exists a selector function f for L (which selects the

one that is “more likely” in L)

L is a NP/linear set = there is an advice function g and set A such that if

x € L then (z, g(|z|)) € A

How to prove this? Q

Hint Hint: We’ll use Theorem 3.9 (if G is a k-tournament, we can find a “core”
node which has a relatively short distance (<=2) to any other nodes) 23



Theorem 3.10 P-sel C NP/linear

What we have: a selector function f for set L

What we want: a linear advice function and an “interpreter” set A

Consider this advice function g:

n+1 . =n __
i {1 ifL=" =

Ow, otherwise > @
wn, is a length n string in L=" such that, by Theorem 3.9, each node in the 5

tournament induced on L=" by f can be reached from w, via paths of length
at most two. (Basically w, is the core of the tournament graph!)

This is great, now we have a linear advice (=n+1) and it seems to be useful, but
how to construct the set A (the interpreter) based on the advice function?



Theorem 3.10 P-sel C NP/linear

The interpreter is defined as:

A = {(z,0w)|there is a path of length at most two, in the
tournament induced on L=" by f, from w to =}

So if x is in L, by construction of the advice function we know <x, g(|x|)>isin A

What if x is notin L? @
J
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If x ¢ L, then (z,g(|z|)) ¢ A, as if (z,g(|z|)) € A, then we have a directed
path from w to x within 2 steps (0, 1, 2):

it — i —r %

Remember an edge from a — b means that f(a,b) = b, or ”b beats a in the
tournament”. So b is "more likely” in L than a. If a is in already in L, then b
must be in L.

In our this case a is w, b is x. So based on our assumption ({z, g(|z|)) € A), x
turns out to be in L!l! We get a contradiction, so our assumption is not correct.

So now we know if z ¢ L, then (z, g(|z|)) ¢ A! And thus by our construction
of g and A, L is a NP/linear set.
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This is the end of lecture 1.

o a8 ol
- .- U
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Attention

e WEe’'ll have an in-class quiz at the end of this lecture.

e In the quiz you need to show some understanding to the material covered
today.

e During the quiz you can’t use today’s slides, but you can take a sheet of note
during the lecture (if you didn’t do it before) and use it in the quiz.
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At the end of last lecture we proved Theorem 3.10:

P-sel C NP /linear

L is a P-sel set = there exists a selector function f for L (which selects the

one that is “more likely” in L)

L is a NP/linear set = there is an advice function g (linear!) and NP set A
such that x € L <= (z,¢g(|z|)) € A
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And remember we constructed an elegant advice function:
Foreachn > 0
1n+1 ifL:n — @
g(n) =
Ow, otherwise

Wy, is the core of the tournament graph!

The length of the advice string here is n + 1, but is it optimal? Or can we have
even shorter advice strings, like in the length n ?
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No, not a chancel

'R’Eal(_y?

&
J
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Theorem 3.13 P-sel & NP/n.

We'll show that n bits simply cannot hold enough information to disambiguate a
certain family of semi-feasible sets.

How? @

A direct way is to find a set L that is

1. semi-feasible (i.e. P-sel set)
2. butis not NP/n
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Construction Strategy

We want to construct a set L, consisting mostly of holes.

Holes?

That means at widely spaced lengths, our set will include exactly some (possibly
empty) left cut of strings of that length, and at other lengths it will be empty.

What does it mean?
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2
92" 41| o.. .0

Interesting

Holes \\ T lengths

—]
2 X </ok o 0
\ ]
—
1 O o
0 o]
string lengths Key: O = element is not in L.

X = element is in L.

For example, the “length 2" row in this example
says that 00 € L, 01 ¢ L, 10 ¢ L, and 11 &€ L,



Construction Strategy

We want to construct a set L, consisting mostly of holes.

Yet we will ensure that the set is of limited complexity, so we can conduct a brute-
force search for strings.

So P(olynomial) selector function exists!!
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Weird Notation for Length of Strings

Pl
Let lo = 2, and for each i > 1, let I; = 22° l

Let Q = {JD,ZI,EQ, }

2 2222
Example for I: I; = 22" I, =22° .
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3 Conditions for the Construction

LCxh |yzh Y% - . That is, all strings in L have
lengths from the set Q.

For each x and vy, if |z| = |y| and = <;., y and y € L, then
z € L. That is, at each length L is a (perhaps empty) left
cut of the strings at that length.

L € DTIME[22").

(3.5)

(3.6)

(3.7)
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2 Claims

Claim 3.14 Any set L satisfying equations 3.5, 3.6, and 3.7 is semi-
feasible.

Claim 3.15 There is a set L ¢ NP /n satisfying equations 3.5, 3.6, and 3.7.

Translation?

There is a semi-feasible set (satisfying the 3 requirements) which is not NP/n .
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Hint: It's not surprising if we have
questions for both of the claims later!



Proof of Claim 3.14

Claim 3.14 Any set L satisfying equations 3.5, 3.6, and 3.7 is semi-

feasible.

Let L satisfy the 3 requirements, to prove L is semi-feasible, we need to construct

a P-selector function f for L

x if
Y if
f(z,y) = { min{z,y} if
min{z,y} if

Y
T
X

x

¢ Q,
ZQ A
€EQA
EQA

max{z,y} if|z|€ QA

e e e

€Q,

€ QA |z| =y,
€ QA |z| # |y| A min{z,y} € L,
€ QA lz| # |y| A min{z,y} & L.

41



Proof of Claim 3.14

Let’s go through all the cases one by one:

T if [yl € Q,
Y if |z| € Q A |yl € Q,
f(z,y) =< min{z,y} if|lz|eQAlyleQA|z|=]yl,
min{z,y} if|z|€QA |yl € QA |z| #|y| A min{z,y} € L,
max{z,y} if|r|€QAly|€ QA |z|#|y| A min{_m,y'}&’L.

Can you see that by this construction, if one of (x, y) is in L, then the output of

f(x,y) is in L! @\E
)3 42



x if ) ng
Y if |z| QA |yl € Q,
f(z,y) = { min{z,y} if|lz|€QAlyl€QA]|z|=]y|,
min{z,y} if|z|€ QA |yl € QA |z| # |y| A min{z,y} € L,
max{z,y} if|z|€ QA |y| € QA lz|# |y| A min{z,y} & L.

But is this function P time computable?
For the first 3 cases: clearly yes, since we only need to check the length of x and y

For the last 2 cases, the trickiest part is in computing whether or not min{x, y} is
in L. Is this part P time computable?
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22

Recall that Q is of the form: Q = {2,2%° ,2222 -

In the last two cases, if |z| € Q, |y| € Q, and |z| # |y|

Then the following must hold:

max{lz|, [y} > 22"

Why?
For example |z| =1; and |y| =;, and j > ¢

gmin{|z|,|y|}

if j —4 = 1 then maz{|z|, [y|} = 22

in{|=z|,|yl|}

if 5 — ¢ > 1 then maz{|z|, |y|} > 92”"
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L is in 22" time on input of length n. (Condition 3.7)

So we’ll have a machine testing whether min{z,y} € L, and that machine

n{|z|,|ul}

will run in 227 , which time amount is polynomial in maz(|z|, |y|), since

min{|e|.|ul}
maz{|z], ly|} > 2

Thus we can easily compute whether min{z,y} is in L in time polynomial
in |z| + |y|-

Thus f is a P-selector for L, i.e. L is semi-feasible.

45



Proof of Claim 3.15

There is a set L &€ NP /n satisfying Equation
3.5, 3.6, and 3.7
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Definitions

* Ny, N5, N3, ... standard NDPT

* NP = {B|(3i)[L(N;) = B]}

e <,,.>a 2-ary pairing function

* N;, N5, N3, ... be such that, for each i and k N(Lmis simply N;
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Proof by Diagonalization

Stage I: We define the contents of L=
If [ & Q then

L=t =¢
Move to stage [ + 1

If [ € Q then do the following for at most 221 steps (total).
If number of steps reached but we couldn’t complete then

L=t =¢



Proof by Diagonalization

Say lis < i,k > th element of Q.
(k)= Ilj€Q Aj< 1

Consider ﬁ<i,k>, for each 2! potential advice string y of length [ do:

For each 2! strings x of length [ run ﬁ(i,k)((x, y))
If none of the 2 runs accept then
rightmost, = 1'7!
Otherwise, _
rightmosty, = max{x| |x| = [ A N xy({x, y))accepts}
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Proof by Diagonalization

* For each 2! advice strings we have at most one rightmost string

* Total number of rightmost string is at most 2.

- J; = (ZHU{1"1}) — {z|@y € £Y[rightmost, = z]} is not empty.
* Let j; be lexicographically smallest element of J;.

*Set L' = {x| I = |x| Ax <jex ji}

e Equation 3.5, 3.6, and 3.7 holds.

* Remains toshow L € NP /n
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ShowL & NP/n

* Let L € NP /n via NP language L'. L(N;") = L'

* For each k', Ny 1y = Ny,

* The stage [ that satisfies (i, k') = ||{j|j € Q Aj < [}|| requires about
2’:2'1'(2“6)2 steps

* For sufficiently large [, this is less than 221’

* Let k'’ be one k'’ for which completion occur.
* Let ""denote (i’, k'")th element of Q.
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ShowL & NP/n

* Notice- none of the Zl”advicgrstring of length I, when given to
N ir rry yields at length 1", L=!

* We have two claims:

1. If |j;7| = U", then for each [" length advice string v,

« Either N./({j,7,y)) rejects (yet j,» € L)

* Or for some length "’ string z >, j;» it holds that N;/({z, y)) accepts (yet
Z&L)

f |j1H| =1" =1, then L="is empty but for each advice string
y € 2! there isanx € £ such that N; ({x,y)) accepts.
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ShowL & NP/n

* Thus L & L' /n. This contradicts our assumption that L € NP /n via NP
language L'.

*So L& NP/n
* P-sel £ NP /n
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This is the end of the lecture 2.
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Lecture 3

Unique solutions collapse the Polynomial
Hierarchy



Motivation

Looking at functions that give a satisfying assignment of clauses. We want some
kind of function such that for any F in SAT, f(F) is a satisfying assignment of F

If there is a deterministic polynomial time function f, then P=NP
There definitely exists an FP function with NP oracle.

We will define a weaker function, between FP and FPNP, whose existence implies
PH = NPN\P



Definitions

1) Let f be a multivalued function. set-f(x) denotes the set of all

2)

values that are an output of f(x). If f(x) has no output then set-f
(x) is the empty set.

We consider any given nondeterministic polynomial-time
machine N to implicitty compute a (potentially partial)
multivalued function, namely, the function fN defined by the set
set-f(x) = { y | some computation path of N(x) outputs y }.
NPMYV denotes the class of functions computed in this sense by
nondeterministic polynomial-time machines.



More definitions

3) A (potentially partial) multivalued function f is said to be single-
valued if Vx(||set-f(x)|| < 1). NPSV denotes the class of all
single-valued NPMV functions.

4) Given a multivalued functions f and g, we say that g is a
refinement of f if
a. Vx(set-g(x) € set-f(x)), and
b. VXx(set-g(x) =2 = set-f(x) = 2).



Yet more definitions

5) Let F be any (possibly partial, possibly multivalued) function
class. We say a set L is F-selective if there is a multivalued
function f € F such that
a. VX, y(set-f(x,y) € {x, y}), and
b. VX, y((x €L Vye€EL)= (set-f(x,y) & L Aset-f(x,y) # 2)).



Theorem 3.21

If all NPMV functions have NPSV refinements,
then PH = NPNP,



We will use the following two lemmas:

1) NPSV-sel N NP € (NP N coNP)/poly. (Lemma 3.25)

2) NP < (NP N coNP)/poly = PH = NPNF, (Lemma 3.26)



Proof of Lemma 3.25: NPSV-sel N NP S (NP M coNP)/poly

Let L be a language in NPSV-sellINP. Let N be a NPTM accepting L, and f an
NPSV selector.

WLOG, for any x,y we have set-f(x,y) = set-f(y,x).

Now we construct an NPNcoNP interpreter A and an advice function g.

Let A be all strings of the form <x, <<a,a,,...,a,>, <W,,...,w_>>> such that:
z=Z7

Vi (w. is an accepting path of N on a,)
i (xEset-f(x,a))



Proof of Lemma 3.25: NPSV-sel N NP S (NP M coNP)/poly

Clearly, Ais in NP.
A is also in NP, as follows:

Accept any syntactically ill-formed input, or if z # Z’
Deterministically check that each w. is an accepting path of a,
Reject if, for some i, x = a,
Since we now know each a. is in L, set-f(a,x) must have exactly one value
For each i, non-deterministically choose a path for f(a,,x)
If it outputs nothing, reject
If it outputs x, reject
If it outputs a,, continue
Accept if each path gives f(a,x) = a..



Proof of Lemma 3.25: NPSV-sel N NP S (NP M coNP)/poly

Create a tournament on L™. If a,b € L™, then there is an edge from a to b if set-f
(a,b) = {b}.

Now use Theorem 3.1 to get a set H with at most n+1 strings. For every x€L™,
there is an h€H, such that x=h or set-f(x,h) = {x}.

Then our advice function is g(n) = <<h1,h2,...,hn>,<w1,wz,...,wn>>, where each w. IS
an accepting path of h.. This is polynomial length in n.

x € Liff <x, g(|x|)> € A

So L€ (NPNcoNP)/poly, and since L was arbitrary in NPSV-selNNP, we get the
Lemma.



Proof of Lemma 3.26: NP € (NP N coNP)/poly = PH = NP\P

By theorem 1.16 (Karp-Lipton)
NP < P/poly = PH = NP\,
This result relativizes, i.e.

Vv A(NPA € PA/poly = PHA = NPNP*A),



Proof of Lemma 3.26: NP € (NP N coNP)/poly = PH = NP\P

Assume NP € (NP M coNP)/poly. Then SAT € (NP N coNP)/poly
via some B € NP N coNP, and some advice g in poly.

From
VvV ANPA S PA/poly = PHA = NPNP™A)

we have

NP8 < PB/poly = PHE = NPNPE,



Proof of Lemma 3.26: NP € (NP N coNP)/poly = PH = NP\P
Having
NPB < PB/poly = PHB = NPNP"8,

we are going to prove that

NP < (NP N coNP)/poly = NP? < PB/poly

and
PHB = NPNP'B = pPH = NPNP,



Proof of Lemma 3.26: NP € (NP N coNP)/poly = PH = NP\P

It is easy to prove that
NP € NP® € NP 1ol = NP
So NP = NP®



Proof of Lemma 3.26: NP € (NP N coNP)/poly = PH = NP\P

For any LENP, let h be a reduction from L to SAT.

Let pad (x) add dummy clauses to a SAT formula so that it is length n, and let
I(n) be the maximum length of h(x) for x in {0,1}".

x €L iff h(x) € SAT iff pad, (h(x)) € SAT iff {<pad, (h(x)),9(l(n))>}<B
So L can be decided with advice g’(n) = <I(n),g(l(n))>
By the advice interpreter:

{<x,<len,w>> | <pad __(h(x)), w>€B}, which is P®

So NP=NPE< PB/poly



Proof of Lemma 3.26: NP € (NP N coNP)/poly = PH = NP\P

By Karp-Lipton, PHB = NPNFP"B
Finally, note that
B € NP N coNP, PHB = PH and NPNP"8 = NPNP,

So
NP < (NP N coNP)/poly = PH = NP,



Theorem 3.21

Now, using these two lemmas, we can prove Theorem 3.20, as follows.
Construct a NPMV-selector for SAT by set-f(x,y) = {x,y}\SAT.

This is NPMV by guessing an argument and assignment of variables, then
outputting the argument if the assignment is valid.

By the hypothesis of the Theorem, f has a NPSV refinement g.
Then g is a NPSV selector for SAT.

Then SATENPSV-sel.



Theorem 3.21

SATENPSV-sel. Will show that this gives NP ENPSV-sel.
For any NP language L, let h polynomial many-one reduce L to SAT.
Then define g’(x,y) =

{x} if g(h(x),h(y)) = h(x)

{y} if g(h(x),h(y)) = h(y)

@ otherwise

Then g’'(x,y) is an NPSV-selector for L, so LENPSV-sel, and NP SNPSV-sel.



Theorem 3.21

So we have that, if every NPMV function has an NPSV refinement, then
NP ENPSV-sel.

Lemma 3.25 says NPSV-selNNP & (NPMNcoNP)/poly
So NP & (NPNcoNP)/poly

This is the hypothesis of Lemma 3.26, so PH = NP\P



Thank you!



