
The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

1.1

The Self-Reducibility Technique

Fall 2007

Amal Fahad, Chetan Bhole,
Jonathan Gordon, Mehdi Manshadi

Department of Computer Science
University of Rochester

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Definitions
Sparse sets
Self-reducibility
Hardness

NP-hard Tally Sets
Statement
Proof
Correctness
Runtime Proof

coNP-hard Sparse
Sets
Statement
Proof
Correctness
Runtime Proof

Summary

References

1.2

Part I

The Pruning Technique

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Definitions
Sparse sets
Self-reducibility
Hardness

NP-hard Tally Sets
Statement
Proof
Correctness
Runtime Proof

coNP-hard Sparse
Sets
Statement
Proof
Correctness
Runtime Proof

Summary

References

1.3

Overview

1 Definitions
Sparse sets
Self-reducibility
Hardness

2 NP-hard Tally Sets
Statement
Proof
Correctness
Runtime Proof

3 coNP-hard Sparse Sets
Statement
Proof
Correctness
Runtime Proof

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Definitions
Sparse sets
Self-reducibility
Hardness

NP-hard Tally Sets
Statement
Proof
Correctness
Runtime Proof

coNP-hard Sparse
Sets
Statement
Proof
Correctness
Runtime Proof

Summary

References

1.4

Definitions of Sparse Sets

Sparse Set

A set S is sparse if it contains at most polynomially many
elements at each length.
(∃ polynomial p) (∀n) [||{x | x ∈ S ∧ |x | = n}|| ≤ p(n)].

• Another valid definition of sparse sets is
(∃d ∈ N) (∀n) [||S≤n|| ≤ pd(n)]
where pd(n) = nd + d

Tally Set

A set T is a tally set exactly if T ⊆ 1∗.

• Not all Tally sets are decidable.
As we have seen we have THP is not decidable.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Definitions
Sparse sets
Self-reducibility
Hardness

NP-hard Tally Sets
Statement
Proof
Correctness
Runtime Proof

coNP-hard Sparse
Sets
Statement
Proof
Correctness
Runtime Proof

Summary

References

1.5

Some more definitions

Self-reducibility

A language L is self-reducible if a deterministic poly-time oracle
TM T exists such that L = L(T L) and for any input x of length n,
T L(x) queries the oracle for words of length at most n − 1.

Disjunctive Self-Reducibility of SAT

A boolean formula having at least one variable is satisfiable if and
only if either it is satisfiable with its first variable set to false or it
is satisfiable with its first variable set to true.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Definitions
Sparse sets
Self-reducibility
Hardness

NP-hard Tally Sets
Statement
Proof
Correctness
Runtime Proof

coNP-hard Sparse
Sets
Statement
Proof
Correctness
Runtime Proof

Summary

References

1.6

The disjunctive Self-Reducibility Tree

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Definitions
Sparse sets
Self-reducibility
Hardness

NP-hard Tally Sets
Statement
Proof
Correctness
Runtime Proof

coNP-hard Sparse
Sets
Statement
Proof
Correctness
Runtime Proof

Summary

References

1.7

Some more definitions
Hardness

A set L is hard for a particular class C if we can reduce every set in
C to L.
Note: L does not have to be in C. If it is, that’s completeness.

• NP-hard : L is NP-hard if SAT ≤p
m L since SAT is known to

be NP-complete.

modified Reference:
http://www.scottaaronson.com/talks/nphard.gif

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Definitions
Sparse sets
Self-reducibility
Hardness

NP-hard Tally Sets
Statement
Proof
Correctness
Runtime Proof

coNP-hard Sparse
Sets
Statement
Proof
Correctness
Runtime Proof

Summary

References

1.8

The Pruning Technique

Theorem 1.2

If there is a tally set that is NP-hard, then P = NP.

Corollary

If there is a tally set that is NP-complete, then P = NP

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Definitions
Sparse sets
Self-reducibility
Hardness

NP-hard Tally Sets
Statement
Proof
Correctness
Runtime Proof

coNP-hard Sparse
Sets
Statement
Proof
Correctness
Runtime Proof

Summary

References

1.9

Proof

Given: ∃T s.t. T ⊆ 1∗ and SAT ≤p
m T , hence,

(∀x)[|g(x)| ≤ |x |k + k]

where g is a deterministic, polynomial-time function reducing SAT
to T and k is an integer, which must exist since g is computable
by some deterministic polynomial-time Turing machine that
outputs at most one character per step.

• We create a deterministic, polynomial-time algorithm for SAT
using the tree-pruning technique. And so if we can decide
SAT in polynomial time, then P = NP.

• Let there be v1 to vm variables in our formula.

• Our algorithm has stages 0, 1, . . . , m + 1 described below.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Definitions
Sparse sets
Self-reducibility
Hardness

NP-hard Tally Sets
Statement
Proof
Correctness
Runtime Proof

coNP-hard Sparse
Sets
Statement
Proof
Correctness
Runtime Proof

Summary

References

1.10

Algorithm
Stage 0

Outputs C = {F} where F is the original formula

Stage i

Input to stage i : C = {F1, . . . , Fl} (the output from the previous stage)
Step 1: Replace vi by True or False to get

C = {F1[vi = True], F2[vi = True], . . . Fl [vi = True],

F1[vi = False], F2[vi = False], . . . , Fl [vi = False]}

Step 2: C′ = ∅
Step 3: For each f in C do:

1 Compute g(f)

2 If g(f) ∈ 1∗ and for no formula h ∈ C′ does g(f) = g(h), then add
f to C′.

Output of stage i : C = C′

Stage m+1 : The Last stage.

Input is C which is now a variable-free formula collection.
F is satisfiable if an element in C is true.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Definitions
Sparse sets
Self-reducibility
Hardness

NP-hard Tally Sets
Statement
Proof
Correctness
Runtime Proof

coNP-hard Sparse
Sets
Statement
Proof
Correctness
Runtime Proof

Summary

References

1.11

Correctness

1 We know SAT ≤p
m T , hence

F ∈ SAT ⇐⇒ g(F) ∈ T

if g(F) 6∈ T , F cannot be in SAT . Hence in step 3, part 2 we
do not include such Fi in our new collection.

2

F1 ∈ SAT ⇐⇒ g(F1) ∈ T

F2 ∈ SAT ⇐⇒ g(F2) ∈ T

But if g(F1) = g(F2) then

F1 ∈ SAT ⇐⇒ F2 ∈ SAT

Meaning it is sufficient to show that either one of F1 ∈ SAT
or F2 ∈ SAT and so in step 3, part 2, we need only include
one such formula in our new collection.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Definitions
Sparse sets
Self-reducibility
Hardness

NP-hard Tally Sets
Statement
Proof
Correctness
Runtime Proof

coNP-hard Sparse
Sets
Statement
Proof
Correctness
Runtime Proof

Summary

References

1.12

Proof of polynomial time

• Number of formulae at the output of each stage ≤ pk + k + 1
where |F | = p

• m + 1 levels where m is the number of variables in our formula
• At each node we call g(Fi) which is also bounded by pk + k

Hence a polynomial-time algorithm (O(mp2k)) for SAT , so
P = NP.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Definitions
Sparse sets
Self-reducibility
Hardness

NP-hard Tally Sets
Statement
Proof
Correctness
Runtime Proof

coNP-hard Sparse
Sets
Statement
Proof
Correctness
Runtime Proof

Summary

References

1.13

The Pruning Technique

Theorem 1.4

If there is a sparse set that is ≤p
m-hard for coNP, then P = NP.

Corollary 1.5

If there is a sparse coNP-complete set, then P = NP.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Definitions
Sparse sets
Self-reducibility
Hardness

NP-hard Tally Sets
Statement
Proof
Correctness
Runtime Proof

coNP-hard Sparse
Sets
Statement
Proof
Correctness
Runtime Proof

Summary

References

1.14

Proof
Given:

1 ∃ S s.t. S is sparse i.e.
(∀n) [||S≤n|| ≤ pd(n)] where pd(n) = nd + d

2 SAT ≤p
m S .

where g is a deterministic, polynomial-time function reducing
SAT to S and let k be such that

(∀x)|g(x)| ≤ |x |k + k

• Like before we create a deterministic, polynomial-time
algorithm that allows us to decide whether the formula F is
Satisfiable or not.

• Let there be v1 to vm variables in our formula.

• Our algorithm has stages 0, 1, . . . , m + 1 described below.
We can terminate before stage m + 1.

Stage 0

Outputs C = {F} where F is the original formula

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Definitions
Sparse sets
Self-reducibility
Hardness

NP-hard Tally Sets
Statement
Proof
Correctness
Runtime Proof

coNP-hard Sparse
Sets
Statement
Proof
Correctness
Runtime Proof

Summary

References

1.15

Algorithm
Stage i

Input to stage i : C = {F1, . . . ,Fl} (the output from the previous
stage)
Step 1: Let

C = {F1[vi = True], . . .Fl [vi = True],
F1[vi = False], . . .Fl [vi = False]}

Step 2: Set C′ = ∅
Step 3: For each formula f in C:

1 Compute g(f)

2 If for no formula h ∈ C′ does g(f) = g(h), add f to C′

Step 4: If C′ contains at least pd(pk(|F |)) + 1 elements, stop and
immediately declare that F ∈ SAT .

Stage m + 1

If some member of C evaluates to true, F ∈ SAT . Otherwise,
F 6∈ SAT .

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Definitions
Sparse sets
Self-reducibility
Hardness

NP-hard Tally Sets
Statement
Proof
Correctness
Runtime Proof

coNP-hard Sparse
Sets
Statement
Proof
Correctness
Runtime Proof

Summary

References

1.16

Correctness

1 If we reach stage m + 1 then trivially we have a collection of
formulae in which all variables are assigned and we can check
if F is in SAT by checking if any one of the formulae in our
collection is satisfied.

2 If we stop abruptly at step 4 of any stage then we use the
following argument to show that F ∈ SAT
We know,

Fi ∈ SAT ⇐⇒ g(Fi) ∈ S

We had pd(pk(|F |))+1 or more unique elements generated by
g . But our sparse set can only be as big as pd(pk(|F |)). That
means at least one element computed by g was not in S .
But,

g(Fi) 6∈ S ⇒ Fi 6∈ SAT

Therefore, Fi ∈ SAT meaning F ∈ SAT

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Definitions
Sparse sets
Self-reducibility
Hardness

NP-hard Tally Sets
Statement
Proof
Correctness
Runtime Proof

coNP-hard Sparse
Sets
Statement
Proof
Correctness
Runtime Proof

Summary

References

1.17

Proof of polynomial time

• Number of formulae at the output of each stage is ≤
pd(pk(|F |))

• At the most m + 1 levels where m is the number of variables
in F

• At each node we call g(Fi) which is also bounded by |F |k + k
The algorithm clearly runs in polynomial time on the size of the

input F and we can show whether F is in SAT or not thus proving
P = NP

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Definitions
Sparse sets
Self-reducibility
Hardness

NP-hard Tally Sets
Statement
Proof
Correctness
Runtime Proof

coNP-hard Sparse
Sets
Statement
Proof
Correctness
Runtime Proof

Summary

References

1.18

Summary

We showed that we can show P = NP using the pruning method
on self-reducibility trees in the following cases:

1 If there is a tally set that is ≤p
m-hard for NP, then P = NP

2 If there is a sparse set that is ≤p
m-hard for coNP, then

P = NP

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Definitions
Sparse sets
Self-reducibility
Hardness

NP-hard Tally Sets
Statement
Proof
Correctness
Runtime Proof

coNP-hard Sparse
Sets
Statement
Proof
Correctness
Runtime Proof

Summary

References

1.19

References

• Lane Hemaspaandra and Mitsunori Ogihara. The Complexity
Theorem Companion. Springer: Springer, 2002.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.20

Part II

Mahaney’s Theorem

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.21

Overview

4 Introduction

5 Proof of Theorem 1.4
Breadth-first Search Method
Depth-first Search Method

Algorithm
Correctness
Running Time

6 Mahaney’s Theorem
Complement of Sparse Set
Pseudocomplement of Sparse Set
Algorithm and Correctness

7 Summary

8 References

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.22

Introduction

Last Lecture

We proved:

• If there is an NP-complete tally set, then P = NP.
• If there is a coNP-complete sparse set, then P = NP.

This Lecture

We will prove Mahaney’s Theorem:

• If there is an NP-complete sparse set, then P = NP.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.22

Introduction

Last Lecture

We proved:

• If there is an NP-complete tally set, then P = NP.
• If there is a coNP-complete sparse set, then P = NP.

This Lecture

We will prove Mahaney’s Theorem:

• If there is an NP-complete sparse set, then P = NP.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.23

Proof of Theorem 1.4
Theorem 1.4

If there is a sparse set that is ≤p
m-hard for coNP, then P = NP

Suppose S is a sparse set that is ≤p
m-hard for coNP, then SAT ≤p

m S .
There is a polynomial-time function g :

g : SAT → S

∀x |g(x)| ≤ Pg (|x |)

∀n Cs(n) ≤ Ps(n)

for monotonically increasing polynomials Pg and Ps and where
Cs(n) = ||S≤n|| is called the census function.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.24

Breadth-first Search Method
g : SAT → S

∀x |g(x)| ≤ Pg (|x |)
∀n Cs(n) ≤ Ps(n)

This doesn’t work if S is NP-complete. Why? SAT ≤p
m S

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.24

Breadth-first Search Method
g : SAT → S

∀x |g(x)| ≤ Pg (|x |)
∀n Cs(n) ≤ Ps(n)

This doesn’t work if S is NP-complete. Why? SAT ≤p
m S

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.25

Depth-first Search Method
Another proof for Theorem 1.4 (a depth-first search method):

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.25

Depth-first Search Method
Another proof for Theorem 1.4 (a depth-first search method):

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.26

Depth-first Search Method
Another proof for Theorem 1.4 (a depth-first search method):

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.27

Depth-first Search Method
Another proof for Theorem 1.4 (a depth-first search method):

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.28

Depth-first Search Method
Another proof for Theorem 1.4 (a depth-first search method):

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.29

Depth-first Search Method
Another proof for Theorem 1.4 (a depth-first search method):

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.30

Depth-first Search Method
Another proof for Theorem 1.4 (a depth-first search method):

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.31

Depth-first Search Method
Another proof for Theorem 1.4 (a depth-first search method):

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.32

Depth-first Search Method
Another proof for Theorem 1.4 (a depth-first search method):

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.33

Depth-first Search Method
Another proof for Theorem 1.4 (a depth-first search method):

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.34

Depth-first Search Method
Another proof for Theorem 1.4 (a depth-first search method):

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.35

Depth-first Search Method
Another proof for Theorem 1.4 (a depth-first search method):

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.36

Depth-first Search Method
Another proof for Theorem 1.4 (a depth-first search method):

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.37

Depth-first Search Method
Another proof for Theorem 1.4 (a depth-first search method):

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.38

Depth-first Algorithm

Decide(F)

SL = { g(False) };
Search(F);
Declare unsatisfiable and halt.

End.

Search(G)

if G = True
Declare satisfiable and halt.

else if g(G) is in SL
return;

else
For v , the first variable in G :
Search(G{v = False});
Search(G{v = True});
Add g(G) to SL;
return;

End.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.38

Depth-first Algorithm

Decide(F)

SL = { g(False) };
Search(F);
Declare unsatisfiable and halt.

End.

Search(G)

if G = True
Declare satisfiable and halt.

else if g(G) is in SL
return;

else
For v , the first variable in G :
Search(G{v = False});
Search(G{v = True});
Add g(G) to SL;
return;

End.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.39

Correctness

Argument

• The only way that Search declares a formula satisfiable is by
finding a satisfying assignment.

• That is: If Search declares G is satisfiable, then G is definitely
satisfiable.

• The only way that we don’t expand a node is that we already
know that the corresponding formula is unsatisfiable.

• That is: If G is satisfiable, then finally Search finds a
satisfying assignment.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.39

Correctness

Argument

• The only way that Search declares a formula satisfiable is by
finding a satisfying assignment.

• That is: If Search declares G is satisfiable, then G is definitely
satisfiable.

• The only way that we don’t expand a node is that we already
know that the corresponding formula is unsatisfiable.

• That is: If G is satisfiable, then finally Search finds a
satisfying assignment.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.39

Correctness

Argument

• The only way that Search declares a formula satisfiable is by
finding a satisfying assignment.

• That is: If Search declares G is satisfiable, then G is definitely
satisfiable.

• The only way that we don’t expand a node is that we already
know that the corresponding formula is unsatisfiable.

• That is: If G is satisfiable, then finally Search finds a
satisfying assignment.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.39

Correctness

Argument

• The only way that Search declares a formula satisfiable is by
finding a satisfying assignment.

• That is: If Search declares G is satisfiable, then G is definitely
satisfiable.

• The only way that we don’t expand a node is that we already
know that the corresponding formula is unsatisfiable.

• That is: If G is satisfiable, then finally Search finds a
satisfying assignment.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.39

Correctness

Argument

• The only way that Search declares a formula satisfiable is by
finding a satisfying assignment.

• That is: If Search declares G is satisfiable, then G is definitely
satisfiable.

• The only way that we don’t expand a node is that we already
know that the corresponding formula is unsatisfiable.

• That is: If G is satisfiable, then finally Search finds a
satisfying assignment.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.40

Running Time
How many nodes does the Search method visit?

Unsatisfiable Nodes

|g(Fi)| ≤ Pg (|Fi |) ≤ Pg (|F |)
||SL|| ≤ Ps(Pg (|F |))

Claim: No two interior nodes can be labelled with the same value
in SL unless they are on the same path from the root.

Maximum number of unsatisfiable interior nodes: m · Ps(Pg (|F |))
where m is the number of variables in F .

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.40

Running Time
How many nodes does the Search method visit?

Unsatisfiable Nodes

|g(Fi)| ≤ Pg (|Fi |) ≤ Pg (|F |)
||SL|| ≤ Ps(Pg (|F |))

Claim: No two interior nodes can be labelled with the same value
in SL unless they are on the same path from the root.

Maximum number of unsatisfiable interior nodes: m · Ps(Pg (|F |))
where m is the number of variables in F .

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.40

Running Time
How many nodes does the Search method visit?

Unsatisfiable Nodes

|g(Fi)| ≤ Pg (|Fi |) ≤ Pg (|F |)
||SL|| ≤ Ps(Pg (|F |))

Claim: No two interior nodes can be labelled with the same value
in SL unless they are on the same path from the root.

Maximum number of unsatisfiable interior nodes: m · Ps(Pg (|F |))
where m is the number of variables in F .

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.40

Running Time
How many nodes does the Search method visit?

Unsatisfiable Nodes

|g(Fi)| ≤ Pg (|Fi |) ≤ Pg (|F |)
||SL|| ≤ Ps(Pg (|F |))

Claim: No two interior nodes can be labelled with the same value
in SL unless they are on the same path from the root.

Maximum number of unsatisfiable interior nodes: m · Ps(Pg (|F |))
where m is the number of variables in F .

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.41

Running Time
How many nodes does the Search method visit?

Satisfiable Interior Nodes

Maximum: m

Maximum number of interior nodes that the Search method visits:
m + m · Ps(Pg (|F |))

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.41

Running Time
How many nodes does the Search method visit?

Satisfiable Interior Nodes

Maximum: m

Maximum number of interior nodes that the Search method visits:
m + m · Ps(Pg (|F |))

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.41

Running Time
How many nodes does the Search method visit?

Satisfiable Interior Nodes

Maximum: m

Maximum number of interior nodes that the Search method visits:
m + m · Ps(Pg (|F |))

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.42

Mahaney’s Theorem
Theorem

If there is an NP-complete sparse set, then P = NP.

Suppose S is an NP-complete sparse set, then there is a
polynomial-time function f :

f : SAT → S

f : SAT → S

Is S in NP? If yes,

h : S → S

g = h ◦ f : SAT → S

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.42

Mahaney’s Theorem
Theorem

If there is an NP-complete sparse set, then P = NP.

Suppose S is an NP-complete sparse set, then there is a
polynomial-time function f :

f : SAT → S

f : SAT → S

Is S in NP? If yes,

h : S → S

g = h ◦ f : SAT → S

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.42

Mahaney’s Theorem
Theorem

If there is an NP-complete sparse set, then P = NP.

Suppose S is an NP-complete sparse set, then there is a
polynomial-time function f :

f : SAT → S

f : SAT → S

Is S in NP? If yes,

h : S → S

g = h ◦ f : SAT → S

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.43

Is S in NP?

A nondeterministic, polynomial-time TM that accepts S :

On input x ,
Let n = |x |
Let k = Cs(n)
In a nondeterministic fashion, guess distinct strings
s1, s2, . . . , sk (such that |si | ≤ n)
If all of these strings are in S ,

then accept x if it is not among the si ’s.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.44

Is S in NP?

A nondeterministic, polynomial-time TM that accepts S :

On input x ,
Let n = |x |
Let k = Cs(n) ?
In a nondeterministic fashion, guess distinct strings
s1, s2, . . . , sk (such that |si | ≤ n)
If all of these strings are in S ,

then accept x if it is not among the si ’s.

But: This algorithm is wrong. Cs(n) may not be P-time
computable.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.45

Pseudocomplement of S

A nondeterministic, polynomial-time TM that accepts S
p
(the

pseudo-complement of S):

On input 〈x , k, 0n〉
• If |x | > n, reject.
• If k > Ps(n), reject.
• Guess distinct strings s1, s2, . . . , sk in a nondeterministic
fashion (such that |si | ≤ n) and guess proofs that each
belongs to S .

• If this guess succeeded, then accept x if x is not among the
si ’s.

k = Cs(n): 〈x , k, 0n〉 ∈ S
p ⇔ x ∈ S (for |x | ≤ n)

(What happens if k > Cs(n) or k < Cs(n)?)

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.45

Pseudocomplement of S

A nondeterministic, polynomial-time TM that accepts S
p
(the

pseudo-complement of S):

On input 〈x , k, 0n〉
• If |x | > n, reject.
• If k > Ps(n), reject.
• Guess distinct strings s1, s2, . . . , sk in a nondeterministic
fashion (such that |si | ≤ n) and guess proofs that each
belongs to S .

• If this guess succeeded, then accept x if x is not among the
si ’s.

k = Cs(n): 〈x , k, 0n〉 ∈ S
p ⇔ x ∈ S (for |x | ≤ n)

(What happens if k > Cs(n) or k < Cs(n)?)

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.45

Pseudocomplement of S

A nondeterministic, polynomial-time TM that accepts S
p
(the

pseudo-complement of S):

On input 〈x , k, 0n〉
• If |x | > n, reject.
• If k > Ps(n), reject.
• Guess distinct strings s1, s2, . . . , sk in a nondeterministic
fashion (such that |si | ≤ n) and guess proofs that each
belongs to S .

• If this guess succeeded, then accept x if x is not among the
si ’s.

k = Cs(n): 〈x , k, 0n〉 ∈ S
p ⇔ x ∈ S (for |x | ≤ n)

(What happens if k > Cs(n) or k < Cs(n)?)

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.46

Pruning Functions

f : SAT → S ∀x |f (x)| ≤ Pf (|x |)

h : S
p → S ∀x |h(x)| ≤ Ph(|x |)

where Pf and Ph are monotonically increasing polynomials.

Let n = Pf (|F |)
Pruning functions: gk(Fi) = h(〈f (Fi), k, 0n〉) (for k ≤ Ps(n))

|gk(Fi)| ≤ Ph(|〈f (Fi), k , 0n〉|)
≤ Pg (|F |)

for some polynomial Pg .

When k = Cs(n)
Fi ∈ SAT ⇔ gk(Fi) ∈ S
gk : SAT → S
||SL|| ≤ Ps(Pg (|F |))

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.46

Pruning Functions

f : SAT → S ∀x |f (x)| ≤ Pf (|x |)
h : S

p → S ∀x |h(x)| ≤ Ph(|x |)
where Pf and Ph are monotonically increasing polynomials.

Let n = Pf (|F |)
Pruning functions: gk(Fi) = h(〈f (Fi), k, 0n〉) (for k ≤ Ps(n))

|gk(Fi)| ≤ Ph(|〈f (Fi), k , 0n〉|)
≤ Pg (|F |)

for some polynomial Pg .

When k = Cs(n)
Fi ∈ SAT ⇔ gk(Fi) ∈ S
gk : SAT → S
||SL|| ≤ Ps(Pg (|F |))

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.46

Pruning Functions

f : SAT → S ∀x |f (x)| ≤ Pf (|x |)
h : S

p → S ∀x |h(x)| ≤ Ph(|x |)
where Pf and Ph are monotonically increasing polynomials.

Let n = Pf (|F |)
Pruning functions: gk(Fi) = h(〈f (Fi), k, 0n〉) (for k ≤ Ps(n))

|gk(Fi)| ≤ Ph(|〈f (Fi), k, 0n〉|)
≤ Pg (|F |)

for some polynomial Pg .

When k = Cs(n)
Fi ∈ SAT ⇔ gk(Fi) ∈ S
gk : SAT → S
||SL|| ≤ Ps(Pg (|F |))

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.46

Pruning Functions

f : SAT → S ∀x |f (x)| ≤ Pf (|x |)
h : S

p → S ∀x |h(x)| ≤ Ph(|x |)
where Pf and Ph are monotonically increasing polynomials.

Let n = Pf (|F |)
Pruning functions: gk(Fi) = h(〈f (Fi), k, 0n〉) (for k ≤ Ps(n))

|gk(Fi)| ≤ Ph(|〈f (Fi), k, 0n〉|)
≤ Pg (|F |)

for some polynomial Pg .

When k = Cs(n)

Fi ∈ SAT ⇔ gk(Fi) ∈ S
gk : SAT → S
||SL|| ≤ Ps(Pg (|F |))

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.46

Pruning Functions

f : SAT → S ∀x |f (x)| ≤ Pf (|x |)
h : S

p → S ∀x |h(x)| ≤ Ph(|x |)
where Pf and Ph are monotonically increasing polynomials.

Let n = Pf (|F |)
Pruning functions: gk(Fi) = h(〈f (Fi), k, 0n〉) (for k ≤ Ps(n))

|gk(Fi)| ≤ Ph(|〈f (Fi), k, 0n〉|)
≤ Pg (|F |)

for some polynomial Pg .

When k = Cs(n)
Fi ∈ SAT ⇔ gk(Fi) ∈ S

gk : SAT → S
||SL|| ≤ Ps(Pg (|F |))

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.46

Pruning Functions

f : SAT → S ∀x |f (x)| ≤ Pf (|x |)
h : S

p → S ∀x |h(x)| ≤ Ph(|x |)
where Pf and Ph are monotonically increasing polynomials.

Let n = Pf (|F |)
Pruning functions: gk(Fi) = h(〈f (Fi), k, 0n〉) (for k ≤ Ps(n))

|gk(Fi)| ≤ Ph(|〈f (Fi), k, 0n〉|)
≤ Pg (|F |)

for some polynomial Pg .

When k = Cs(n)
Fi ∈ SAT ⇔ gk(Fi) ∈ S
gk : SAT → S

||SL|| ≤ Ps(Pg (|F |))

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.46

Pruning Functions

f : SAT → S ∀x |f (x)| ≤ Pf (|x |)
h : S

p → S ∀x |h(x)| ≤ Ph(|x |)
where Pf and Ph are monotonically increasing polynomials.

Let n = Pf (|F |)
Pruning functions: gk(Fi) = h(〈f (Fi), k, 0n〉) (for k ≤ Ps(n))

|gk(Fi)| ≤ Ph(|〈f (Fi), k, 0n〉|)
≤ Pg (|F |)

for some polynomial Pg .

When k = Cs(n)
Fi ∈ SAT ⇔ gk(Fi) ∈ S
gk : SAT → S
||SL|| ≤ Ps(Pg (|F |))

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.47

Polynomial Algorithm for SAT
Decide(F)

for k = 0 to Ps(n) {
SL = {gk(False)}
Run the Search method on F with pruning function gk .
If the number of interior nodes visited by the Search
method exceeds m +m ·Ps(Pg (|F |)), halt the search for
this k.

}
Declare unsatisfiable and halt.

End.

Running time: polynomial in |F |.

Correctness

• Decide declares F as satisfiable only if it finds a satisfying
assignment.

• If F is satisfiable, when k = Cs(n), the Search method finally
will find a satisfying assignment.

• F is declared as satisfiable if and only if F is satisfiable.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.47

Polynomial Algorithm for SAT
Decide(F)

for k = 0 to Ps(n) {
SL = {gk(False)}
Run the Search method on F with pruning function gk .
If the number of interior nodes visited by the Search
method exceeds m +m ·Ps(Pg (|F |)), halt the search for
this k.

}
Declare unsatisfiable and halt.

End.

Running time: polynomial in |F |.

Correctness

• Decide declares F as satisfiable only if it finds a satisfying
assignment.

• If F is satisfiable, when k = Cs(n), the Search method finally
will find a satisfying assignment.

• F is declared as satisfiable if and only if F is satisfiable.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.47

Polynomial Algorithm for SAT
Decide(F)

for k = 0 to Ps(n) {
SL = {gk(False)}
Run the Search method on F with pruning function gk .
If the number of interior nodes visited by the Search
method exceeds m +m ·Ps(Pg (|F |)), halt the search for
this k.

}
Declare unsatisfiable and halt.

End.

Running time: polynomial in |F |.

Correctness

• Decide declares F as satisfiable only if it finds a satisfying
assignment.

• If F is satisfiable, when k = Cs(n), the Search method finally
will find a satisfying assignment.

• F is declared as satisfiable if and only if F is satisfiable.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.47

Polynomial Algorithm for SAT
Decide(F)

for k = 0 to Ps(n) {
SL = {gk(False)}
Run the Search method on F with pruning function gk .
If the number of interior nodes visited by the Search
method exceeds m +m ·Ps(Pg (|F |)), halt the search for
this k.

}
Declare unsatisfiable and halt.

End.

Running time: polynomial in |F |.

Correctness

• Decide declares F as satisfiable only if it finds a satisfying
assignment.

• If F is satisfiable, when k = Cs(n), the Search method finally
will find a satisfying assignment.

• F is declared as satisfiable if and only if F is satisfiable.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.47

Polynomial Algorithm for SAT
Decide(F)

for k = 0 to Ps(n) {
SL = {gk(False)}
Run the Search method on F with pruning function gk .
If the number of interior nodes visited by the Search
method exceeds m +m ·Ps(Pg (|F |)), halt the search for
this k.

}
Declare unsatisfiable and halt.

End.

Running time: polynomial in |F |.

Correctness

• Decide declares F as satisfiable only if it finds a satisfying
assignment.

• If F is satisfiable, when k = Cs(n), the Search method finally
will find a satisfying assignment.

• F is declared as satisfiable if and only if F is satisfiable.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.47

Polynomial Algorithm for SAT
Decide(F)

for k = 0 to Ps(n) {
SL = {gk(False)}
Run the Search method on F with pruning function gk .
If the number of interior nodes visited by the Search
method exceeds m +m ·Ps(Pg (|F |)), halt the search for
this k.

}
Declare unsatisfiable and halt.

End.

Running time: polynomial in |F |.

Correctness

• Decide declares F as satisfiable only if it finds a satisfying
assignment.

• If F is satisfiable, when k = Cs(n), the Search method finally
will find a satisfying assignment.

• F is declared as satisfiable if and only if F is satisfiable.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.48

Summary

Mahaney’s Theorem

If there is an NP-complete sparse set, then P = NP.

What about an NP-hard sparse set?

Theorem 1.9 (see Hemaspaandra-Ogihara)

NP has sparse ≤p
m-hard sets if and only if NP has sparse

≤p
m-complete sets.

Any questions?

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.48

Summary

Mahaney’s Theorem

If there is an NP-complete sparse set, then P = NP.

What about an NP-hard sparse set?

Theorem 1.9 (see Hemaspaandra-Ogihara)

NP has sparse ≤p
m-hard sets if and only if NP has sparse

≤p
m-complete sets.

Any questions?

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

Proof of Theorem
1.4
Breadth-first
Search Method
Depth-first Search
Method
Algorithm
Correctness
Running Time

Mahaney’s
Theorem
Complement of
Sparse Set
Pseudocomplement
of Sparse Set
Algorithm and
Correctness

Summary

References

1.49

References

• S. Mahaney. “Sparse Sets and Reducibilities”. Studies in
Complexity Theory, pages 63-118. John Wiley and Sons,
1986.

• Lane Hemaspaandra and Mitsunori Ogihara. The Complexity
Theorem Companion. Springer: Springer, 2002.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

E and NE

Theorem
Lemma 1.19
Warm-up Proof
Lemma 1.21

Summary

References

1.50

Part III

The Hartmanis–Immerman–Sewelson
Encoding

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

E and NE

Theorem
Lemma 1.19
Warm-up Proof
Lemma 1.21

Summary

References

1.51

Overview

9 Introduction

10 E and NE

11 Theorem
Lemma 1.19
Warm-up Proof
Lemma 1.21

12 Summary

13 References

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

E and NE

Theorem
Lemma 1.19
Warm-up Proof
Lemma 1.21

Summary

References

1.52

Introduction

The Question

Is there any sparse set in NP − P?
That is, is there a sparse set in NP that’s so hard it has no
polynomial-time algorithm?

Such a set would, necessarily, not be NP-complete. Why?
Remember Mahaney’s Theorem from last lecture: We proved that
if any sparse set is NP-complete, then P = NP. Well, if P = NP,
then NP − P is empty, so our set can’t exist.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

E and NE

Theorem
Lemma 1.19
Warm-up Proof
Lemma 1.21

Summary

References

1.52

Introduction

The Question

Is there any sparse set in NP − P?
That is, is there a sparse set in NP that’s so hard it has no
polynomial-time algorithm?

Such a set would, necessarily, not be NP-complete. Why?

Remember Mahaney’s Theorem from last lecture: We proved that
if any sparse set is NP-complete, then P = NP. Well, if P = NP,
then NP − P is empty, so our set can’t exist.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

E and NE

Theorem
Lemma 1.19
Warm-up Proof
Lemma 1.21

Summary

References

1.52

Introduction

The Question

Is there any sparse set in NP − P?
That is, is there a sparse set in NP that’s so hard it has no
polynomial-time algorithm?

Such a set would, necessarily, not be NP-complete. Why?
Remember Mahaney’s Theorem from last lecture: We proved that
if any sparse set is NP-complete, then P = NP. Well, if P = NP,
then NP − P is empty, so our set can’t exist.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

E and NE

Theorem
Lemma 1.19
Warm-up Proof
Lemma 1.21

Summary

References

1.53

E and NE

E and NE are exponential-time analogs of P and NP. Recall:

P =
⋃
k

DTIME [nk]

NP =
⋃
k

NTIME [nk]

E =
⋃
c>0

DTIME [2cn]

NE =
⋃
c>0

NTIME [2cn]

And just as P ⊆ NP, E ⊆ NE .

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

E and NE

Theorem
Lemma 1.19
Warm-up Proof
Lemma 1.21

Summary

References

1.53

E and NE

E and NE are exponential-time analogs of P and NP. Recall:

P =
⋃
k

DTIME [nk]

NP =
⋃
k

NTIME [nk]

E =
⋃
c>0

DTIME [2cn]

NE =
⋃
c>0

NTIME [2cn]

And just as P ⊆ NP, E ⊆ NE .

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

E and NE

Theorem
Lemma 1.19
Warm-up Proof
Lemma 1.21

Summary

References

1.53

E and NE

E and NE are exponential-time analogs of P and NP. Recall:

P =
⋃
k

DTIME [nk]

NP =
⋃
k

NTIME [nk]

E =
⋃
c>0

DTIME [2cn]

NE =
⋃
c>0

NTIME [2cn]

And just as P ⊆ NP, E ⊆ NE .

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

E and NE

Theorem
Lemma 1.19
Warm-up Proof
Lemma 1.21

Summary

References

1.54

Theorem

Theorem

The following are equivalent:
1 E = NE
2 NP − P contains no sparse sets
3 NP − P contains no tally sets

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

E and NE

Theorem
Lemma 1.19
Warm-up Proof
Lemma 1.21

Summary

References

1.55

Theorem Proof: Part One

Lemma 1.19

If NP − P contains no tally sets, then E = NE .

Proof: Since we know that E ⊆ NE , we can prove this by
showing that NE ⊆ E .

Set up

L ∈ NE , so there must exist a nondeterministic, exponential-time
TM N s.t. L(N) = L.

Define a tally set

L′ = {1k | (∃x ∈ L)[k = (1x)2]}

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

E and NE

Theorem
Lemma 1.19
Warm-up Proof
Lemma 1.21

Summary

References

1.56

Proof L′ ∈ NP

Does L′ ∈ NP? We give an NPTM for L′:

Algorithm for L′

On input y ,

• Reject if y is not of the form 1k (for some k > 0).
• Otherwise, simulate nondeterministically N(w) where w is all
digits of k except the leftmost 1.

Run-time: |w | is logarithmic in the length of y , so the run-time is
at most O(2c log |y |) = O(|y |c) for some c . So, the algorithm runs
nondeterministically (because N is nondeterministic) and runs in
polynomial-time.

Since L′ is a tally set in NP and our assumption is that NP − P
contains no tally sets, this means that L′ ∈ P.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

E and NE

Theorem
Lemma 1.19
Warm-up Proof
Lemma 1.21

Summary

References

1.57

Proof L ∈ E

There is a deterministic, polynomial-time TM M s.t. L(M) = L′.
We use this to construct a TM that accepts L:

Algorithm for L

On input y ,

• Compute b = 1(1y)2

• Simulate M(b).
• Accept iff M accepts.

Run-time: Since M is polynomial-time and |b| ≤ 2|y |+1, the
number of steps M(b) requires is exponential-time:
(2|y |+1)c = 2c|y |+c .

Thus L ∈ E . Since our proof holds for any L ∈ NE , NE ⊆ E and
thus our lemma is proved:

So, if NP − P contains no tally sets, then E = NE .

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

E and NE

Theorem
Lemma 1.19
Warm-up Proof
Lemma 1.21

Summary

References

1.58

Warm-up Proof

We want to prove:

Lemma 1.21

If E = NE then NP − P contains no sparse sets

First, though, we prove the simpler claim:

Prove

If E = NE then NP − P contains no tally sets.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

E and NE

Theorem
Lemma 1.19
Warm-up Proof
Lemma 1.21

Summary

References

1.59

E = NE ⇒ NP − P contains no tally sets

Let L be a tally set in NP.

Define

L′ = {x | (x is 0 or x is a binary string of nonzero length with no
leading zeros) and 1(x)2 ∈ L}

Using the NPTM N that accepts L, we can give an algorithm to
accept L′ in nondeterministic exponential time:

Algorithm for L′

On input y ,

• Reject if (y 6= 0 and has leading zeros) or y = ε.
• Otherwise, simulate N(x) nondeterministically
where x = 1(y)2 .

L′ ∈ NE , so (by our assumption) L′ ∈ E .

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

E and NE

Theorem
Lemma 1.19
Warm-up Proof
Lemma 1.21

Summary

References

1.60

L ∈ P

Since L′ ∈ E , there is a deterministic, exponential-time TM that
accepts L′. We’ll call this TM ME . We can use it to construct a
polynomial-time algorithm for L.

Algorithm for L

On input y ,
• Reject if y 6∈ 1k for some k
• Otherwise, write k as 0 if k = 0 or as (k)2 with no leading
zeros.

• Then simulate ME for L′ on (k)2.

Why is this polynomial-time?

Why doesn’t this work for sparse sets?

This proof uses the fact that the length of a string in a tally set
determines the string (a string of length n must be 1n). This is
not true for all sparse sets. We need a new encoding.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

E and NE

Theorem
Lemma 1.19
Warm-up Proof
Lemma 1.21

Summary

References

1.60

L ∈ P

Since L′ ∈ E , there is a deterministic, exponential-time TM that
accepts L′. We’ll call this TM ME . We can use it to construct a
polynomial-time algorithm for L.

Algorithm for L

On input y ,
• Reject if y 6∈ 1k for some k
• Otherwise, write k as 0 if k = 0 or as (k)2 with no leading
zeros.

• Then simulate ME for L′ on (k)2.

Why is this polynomial-time?

Why doesn’t this work for sparse sets?
This proof uses the fact that the length of a string in a tally set
determines the string (a string of length n must be 1n). This is
not true for all sparse sets. We need a new encoding.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

E and NE

Theorem
Lemma 1.19
Warm-up Proof
Lemma 1.21

Summary

References

1.61

Theorem Proof: Part Two

Lemma 1.21

If E = NE then NP − P contains no sparse sets.

Let L be a sparse set in NP. We need to show it’s in P.

There is some polynomial q such that (∀n)[||L=n|| ≤ q(n)]

Hartmanis–Immerman–Sewelson Encoding

L′ = {0#n#k | ||L=n|| ≥ k} ∪
{1#n#c#i#j | (∃z1, z2, . . . , zc ∈ L=n)

[z1 <lex z2 <lex . . . <lex zc ∧ the jth bit of zi is 1]}

Since L ∈ NP, we can show L′ ∈ NE .

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

E and NE

Theorem
Lemma 1.19
Warm-up Proof
Lemma 1.21

Summary

References

1.62

L′ ∈ NE

Algorithm for L′

On input y ,
• If first bit is 0

• Get binary values of n and k
• Guess k distinct strings that are n bits long.
• If there is such a set of strings that each string is accepted by

NL then accept.
• Otherwise, reject.

• If first bit is 1
• Get binary values of n, c, i , and j .
• Guess c distinct strings that are n bits long.
• Put them in lexical order.
• If there is a set such that each string is accepted by NL and

the jth bit of the ith string is 1, accept.
• Otherwise, reject.

Algorithm is nondeterministic, exponential-time. L′ ∈ NE , so
L′ ∈ E (by our assumption). This means there is a deterministic,
exponential-time TM M ′ which accepts L′.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

E and NE

Theorem
Lemma 1.19
Warm-up Proof
Lemma 1.21

Summary

References

1.63

L ∈ P
We give an algorithm to prove that L ∈ P:

On input x ,
• Let n = |x |
• Simulate M ′ on 0#n#0, 0#n#1, . . . , 0#n#q(n) to see
which of them belong to L′

• Let c = max{k | 0 ≤ k ≤ q(n) ∧ 0#n#k ∈ L′ = ||L=n||}
• Now simulate M ′ on
1#n#c#1#1, 1#n#c#1#2, . . . , 1#n#c#1#n,
1#n#c#2#1, 1#n#c#2#2, . . . , 1#n#c#2#n,
. . .
1#n#c#c#1, 1#n#c#c#2, . . . , 1#n#c#c#n

• If x is in the set of the n-length strings given by M ′’s
answers, then accept. Otherwise, reject.

This is polynomially many queries. L′ ∈ E , but each of the
polynomially-many queries to the TM M ′ is of length O(log n).
Thus the algorithm is polynomial-time.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

E and NE

Theorem
Lemma 1.19
Warm-up Proof
Lemma 1.21

Summary

References

1.64

Summary

Theorem

The following are equivalent:
1 E = NE
2 NP − P contains no sparse sets
3 NP − P contains no tally sets

We have shown that if NP − P has no tally sets, E = NE and if
E = NE , NP − P has no sparse sets, thus we have proved our
theorem.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Introduction

E and NE

Theorem
Lemma 1.19
Warm-up Proof
Lemma 1.21

Summary

References

1.65

References

• Lane Hemaspaandra and Mitsunori Ogihara. The Complexity
Theorem Companion. Springer: Springer, 2002.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Sparse NP
Hardness and
Completeness
Theorem
Proof
Algorithm
End of Proof

Summary

References

1.66

Part IV

One More Thing

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Sparse NP
Hardness and
Completeness
Theorem
Proof
Algorithm
End of Proof

Summary

References

1.67

Overview

14 Sparse NP Hardness and Completeness
Theorem
Proof
Algorithm
End of Proof

15 Summary

16 References

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Sparse NP
Hardness and
Completeness
Theorem
Proof
Algorithm
End of Proof

Summary

References

1.68

Introduction

Now we’ll look at a point we mentioned on our summary slide for
Mahaney’s Theorem but which we didn’t have time to prove.
Recall:

Mahaney’s Theorem

If NP has sparse complete sets, then P = NP.

Does this hold if we replace “complete” with “hard”?

Yes:

Theorem 1.9

NP has sparse ≤p
m-hard sets if and only if NP has sparse

≤p
m-complete sets.

That is, the existence of sparse NP-hard sets and the existence of
sparse NP-complete sets stand or fall together.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Sparse NP
Hardness and
Completeness
Theorem
Proof
Algorithm
End of Proof

Summary

References

1.69

Proof

Since our theorem is “if and only if”, we must show both
directions:

Complete ⇒ Hard

If there are sparse ≤p
m-complete sets in NP, then there are sparse

≤p
m-hard sets in NP, obviously: Every set that is ≤p

m-complete is
also ≤p

m-hard.

Hard ⇒ Complete

If NP has a ≤p
m-hard sparse set, then it has a ≤p

m-complete sparse
set.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Sparse NP
Hardness and
Completeness
Theorem
Proof
Algorithm
End of Proof

Summary

References

1.70

Proof

S is a sparse NP-hard set.
f : SAT → S

We know SAT ≤p
m S since S is ≤p

m-hard for NP, so let f be that
P-computable reduction function.

S ′ = {0k#y | k ≥ 0 ∧ (∃x ∈ SAT)[k ≥ |x | ∧ f (x) = y]}

S ′ is a padded encoding of f (SAT).

If 0k#z ∈ S ′ then z ∈ S .
By definition of S ′, z = f (x) where x ∈ SAT , so f (x) ∈ S .

Why is this necessary? Why not just S ′ = {x#y | . . .}?

That wouldn’t be sparse. We rely on the fact that there is only
one prefix 0k for each k, whereas the binary representation of
x ∈ SAT is not sparse.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Sparse NP
Hardness and
Completeness
Theorem
Proof
Algorithm
End of Proof

Summary

References

1.70

Proof

S is a sparse NP-hard set.
f : SAT → S

We know SAT ≤p
m S since S is ≤p

m-hard for NP, so let f be that
P-computable reduction function.

S ′ = {0k#y | k ≥ 0 ∧ (∃x ∈ SAT)[k ≥ |x | ∧ f (x) = y]}

S ′ is a padded encoding of f (SAT).

If 0k#z ∈ S ′ then z ∈ S .
By definition of S ′, z = f (x) where x ∈ SAT , so f (x) ∈ S .

Why is this necessary? Why not just S ′ = {x#y | . . .}?
That wouldn’t be sparse. We rely on the fact that there is only
one prefix 0k for each k, whereas the binary representation of
x ∈ SAT is not sparse.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Sparse NP
Hardness and
Completeness
Theorem
Proof
Algorithm
End of Proof

Summary

References

1.71

Algorithm for S ′

S ′ ∈ NP. We show this by giving an algorithm:

Algorithm for S ′

On input 0k#z ,
• Nondeterministically guess a string x of length at most k
• Nondeterministically guess a potential certificate of x ∈ SAT
(a complete assignment of the variables for the formula x)

• Accept if the guessed string and certificate is such that
f (x) = z and the certificate proves x ∈ SAT (substituting the
assignments gives a true formula).

Correctness: We accept an input only if it is in S ′: We’ve
guessed the x that satisfies our requirements that x ∈ SAT , our
given k ≥ |x |, and f (x) (the element of S we get from reducing
from our element in SAT) is the input’s z .
The algorithm is obviously nondeterministic and polynomial.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Sparse NP
Hardness and
Completeness
Theorem
Proof
Algorithm
End of Proof

Summary

References

1.72

End of Proof

S ′ ∈ NP

We’ve shown that given any sparse, NP-hard set S , there exists
S ′ ∈ NP.

S ′ is NP-hard

Given f : SAT → S , there exists a polynomial-time reduction
f ′ : SAT → S ′ where f ′(x) = 0|x|#f (x).

S ′ is Sparse

And given S is sparse, S ′ is sparse. Why?

Thus we’ve shown that the existence of sparse NP-hard set S
necessitates the existence of S ′, which is an NP-complete sparse
set. Our proof is complete.

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Sparse NP
Hardness and
Completeness
Theorem
Proof
Algorithm
End of Proof

Summary

References

1.73

Summary
What have we covered?

• Sparse sets and tally sets
• Self-reducibility (L = L(T L), query words of length ≤ n − 1)
• Hardness and completeness
• The pruning technique
• If there is a tally set that is NP-hard, then P = NP
• If there is a sparse set that is coNP-hard, then P = NP
• Depth-first, breadth-first search methods
• Pseudocomplement
• If there is an NP-complete (or hard) sparse set, then P = NP
• The Hartmanis–Immerman–Sewelson Encoding
• E and NE
• Equivalent: E = NE , NP − P contains no sparse sets,

NP − P contains no tally sets

Any questions? (One more proof to go if we have time!)

The
Self-Reducibility

Technique

Amal Fahad, Chetan
Bhole,

Jonathan Gordon,
Mehdi Manshadi

Overview

Sparse NP
Hardness and
Completeness
Theorem
Proof
Algorithm
End of Proof

Summary

References

1.74

References

• Lane Hemaspaandra and Mitsunori Ogihara. The Complexity
Theorem Companion. Springer: Springer, 2002.

	The Pruning Technique
	Overview
	Definitions
	Sparse sets
	Self-reducibility
	Hardness

	NP-hard Tally Sets
	Statement
	Proof
	Correctness
	Runtime Proof

	coNP-hard Sparse Sets
	Statement
	Proof
	Correctness
	Runtime Proof

	Summary
	References

	Mahaney's Theorem
	Overview
	Introduction
	Proof of Theorem 1.4
	Breadth-first Search Method
	Depth-first Search Method

	Mahaney's Theorem
	Complement of Sparse Set
	Pseudocomplement of Sparse Set
	Algorithm and Correctness

	Summary
	References

	The Hartmanis--Immerman--Sewelson Encoding
	Overview
	Introduction
	E and NE
	Theorem
	Lemma 1.19
	Warm-up Proof
	Lemma 1.21

	Summary
	References

	One More Thing
	Overview
	Sparse NP Hardness and Completeness
	Theorem
	Proof
	Algorithm
	End of Proof

	Summary
	References

