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Abstract

Modern multicore platforms suffer from inefficiencies
due to contention and communication caused by shar-
ing resources or accessing shared data. In this pa-
per, we demonstrate that information from low-cost hard-
ware performance counters commonly available on mod-
ern processors is sufficient to identify and separate the
causes of communication traffic and performance degra-
dation. We have developed SAM, a Sharing-Aware Map-
per that uses the aggregated coherence and bandwidth
event counts to separate traffic caused by data sharing
from that due to memory accesses. When these counts ex-
ceed pre-determined thresholds, SAM effects task to core
assignments that colocate tasks that share data and dis-
tribute tasks with high demand for cache capacity and
memory bandwidth. Our new mapping policies automat-
ically improve execution speed by up to 72% for individ-
ual parallel applications compared to the default Linux
scheduler, while reducing performance disparities across
applications in multiprogrammed workloads.

1 Introduction

Multicore processors share substantial hardware re-
sources including last-level cache (LLC) space and mem-
ory bandwidth. At the same time, a parallel application
with multiple tasks1 running on different CPU cores may
simultaneously access shared data. Both data and re-
source sharing can result in performance slowdowns and
symptoms including high data traffic (bandwidth con-
sumption) and high LLC miss rates. To maximize effi-
ciency, multicore platforms on server, desktop, as well
as mobile environments must intelligently map tasks to
CPU cores for multiprogrammed and parallel workloads.

Despite similar symptoms, data and resource shar-
ing behaviors require very different task→CPU map-
ping policies—in particular, applications with strong data
sharing benefit from colocating the related tasks on cores
that are in proximity to each other (e.g., cores on one
socket) while applications with high memory demand
or large working sets might best be distributed across

1In this paper, a task refers to an OS-schedulable entity such as a
process or a thread.

sockets with separate cache and memory bandwidth re-
sources. The mapping efficiency is further complicated
by the dynamic nature of many workloads.

A large body of prior work has devised scheduling
techniques to mitigate resource contention [5–7, 14, 15,
17, 18, 21, 22] in the absence of data sharing. Rela-
tively few have investigated data sharing issues [19, 20]
for parallel applications. Tam et al. [19] used direct sam-
pling of data access addresses to infer data sharing be-
havior. While more recent multicore platforms do some-
times provide such sampled tracing capability, trace pro-
cessing in software comes at a significant cost. Tang
et al. [20] demonstrated the behavior of latency-critical
datacenter applications under different task placement
strategies. Their results reinforce the need to provide a
low-cost, online, automated approach to place simultane-
ously executing tasks on CPUs for high efficiency.

This paper presents our operating system strategy for
task placement that manages data sharing and resource
contention in an integrated fashion. In order to separate
the impact of data sharing from resource contention, we
use aggregate information from existing hardware perfor-
mance counters along with a one-time characterization of
event thresholds that impact performance significantly.
Specifically, we use performance counters that identify
on- and off-chip traffic due to coherence activity (when
data for a cache miss is sourced from another core) and
combine this knowledge with LLC miss rates and band-
width consumption to separate sharing-related slowdown
from slowdown due to resource contention.

Our adaptive online Sharing-Aware Mapper (SAM)
uses an iterative, interval-based approach. Based on the
sampled counter values in the previous interval, as well
as measured thresholds in terms of performance impact
using microbenchmarks, we identify tasks that share data
and those that have high memory and/or cache demand.
We then perform a rebalance in order to colocate the
tasks that share data on cores that are in proximity and
with potentially shared caches. This decision is weighed
against the need to distribute tasks with high bandwidth
uses across cores that share fewer resources.

SAM improves the execution speed by up to 72% for
stand-alone parallel applications compared to the default
Linux scheduler, without the need for user input or ma-
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nipulation. For concurrent execution of multiple parallel
and sequential applications, our performance improve-
ments are up to 36%, while at the same time reducing
performance disparities across applications. The rest of
this paper presents the design, implementation, and eval-
uation of our sharing-aware mapping of tasks to CPUs on
multicore platforms.

2 Sharing and Contention Tracking

Hardware counters are commonplace on modern pro-
cessors, providing detailed information such as the in-
struction mix, rate of execution, and cache/memory ac-
cess behavior. These counters can also be read at low
latency (on the order of a µSec). We explore the use
of commonly available event counters to efficiently track
data sharing as well as resource contention on multicores.

Our work addresses several challenges. First, pre-
defined event counters may not precisely suit our infor-
mation tracking needs. In particular, no single counter
reports the data sharing activities on multicores. Sec-
ondly, it may be challenging to identify event thresholds
that should trigger important control decisions (such as
saturating uses of a bottleneck resource). Finally, while
many events may be defined in a performance counter ar-
chitecture, usually only a small number can be observed
at one time. For example, the Intel Ivy Bridge archi-
tecture used in our evaluation platform can only monitor
four programmable counters at a time (in addition to three
fixed-event counters).

In this paper, we use these low-cost performance coun-
ters to infer valuable information on various bottlenecks
in the system. Particularly, we focus on intra- and inter-
socket coherence activity, memory bandwidth utiliza-
tion, and access to remote memory (NUMA). We use
the counters and microbenchmarks to analyze the effect
of these factors on performance. We obtain thresholds
for memory bandwidth utilization and coherence activity
that result in significant performance degradation. These
thresholds further enable our system to identify and miti-
gate sharing bottlenecks during execution.

2.1 Coherence Activities

Coherence can be a significant bottleneck in large scale
systems. In multithreaded applications, access to shared
data and synchronization variables trigger coherence ac-
tivities when the threads are distributed across multiple
cores. When data-sharing threads are colocated on the
same multicore socket, coherence is handled within the
socket using a high speed bus or a ring. When threads are
distributed across sockets, the coherence cost increases
significantly due to the higher latency of off-chip access.

Despite the gamut of events monitored by modern day

processors, accounting for coherence activity in a manner
portable across platforms can still be a challenge. Our
goal is to identify performance counters that are available
across a range of architectural performance monitoring
units, and that can help isolate intra- and inter-socket co-
herence. We use the following four counters—last-level
cache (LLC) hits, LLC misses, misses at the last private
level of cache, and remote memory accesses.

In multi-socket machines, there is a clear increase
in overhead when coherence activities cross the socket
boundary. Any coherence request that can be resolved
from within the socket is handled using an intra-socket
protocol. If the request cannot be satisfied locally, it is
treated as a last-level cache (LLC) miss and handed over
to an inter-socket coherence protocol.

We use the cache misses at the last private level, as well
as LLC hits and misses, to indirectly infer the intra-socket
coherence activities. LLC hit counters count the number
of accesses served directly by the LLC and do not include
data accesses satisfied by intra-socket coherence activity.
Thus, by subtracting LLC hits and misses from the last
private level cache misses, we can determine the number
of LLC accesses that were serviced by the intra-socket
coherence protocol.

To measure inter-socket coherence activity, we exploit
the fact that the LLC treats accesses serviced by both off-
socket coherence as well as by memory as misses. The
difference between LLC misses and memory accesses
gives us the inter-socket coherence activity. In our im-
plementation, the Intel Ivy Bridge processor directly sup-
ports counting LLC misses that were not serviced by
memory, separating and categorizing them based on co-
herence state. We sum the counters to determine inter-
socket coherence activities.

We devise a synthetic microbenchmark to help ana-
lyze the performance impact of cross-socket coherence
activities. The microbenchmark creates two threads that
share data. We ensure that the locks and data do not in-
duce any false sharing. Using a dual-socket machine, we
compare the performance of the microbenchmark when
consolidating both threads on a single socket against exe-
cution when distributing them across sockets (a common
result of Linux’s default scheduling strategy). The latter
induces inter-socket coherence traffic while all coherence
traffic uses the on-chip network in the former case.

We vary the rate of coherence activity by changing the
ratio of computation to shared data access within each
loop in order to study its performance impact. Figure 1
shows the performance of consolidating the threads onto
the same socket relative to distributing across sockets.
At low coherence traffic rates, the consolidation and dis-
tribution strategies do not differ significantly in perfor-
mance, but when the traffic increases, the performance
improvement from colocation can be quite substantial.
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Figure 1: Speedup when consolidating two threads that
share data onto the same socket (eliminating inter-socket
coherence) in comparison to distributing them across
sockets as coherence activity is varied.

We use these experiments to identify a per-thread co-
herence activity threshold at which inter-socket coher-
ence causes substantial performance degradation (which
we identify as a degradation of >5%). Specifically on
our experimental platform with 2.2 GHz processors, the
threshold is 2.5×10−4 coherence events per CPU cycle,
or 550,000 coherence events per second.

2.2 Memory Bandwidth Utilization

Our approach requires the identification of a memory
bandwidth utilization threshold that signifies the resource
exhaustion and likely performance degradation. Since all
cores on a socket share the access to memory, we ac-
count for this resource threshold on a per-socket basis—
aggregating the memory bandwidth usage of all tasks
running on each particular socket.

One challenge we face is that the maximum bandwidth
utilization is not a static hardware property but it further
depends on the row buffer hit ratio (RBHR) of the mem-
ory access loads. DRAM rows must be pre-charged and
activated before they can be read or written to. For spatial
locality, DRAMs often activate an entire row of data (on
the order of 4 KB) instead of just the cache line being ac-
cessed. Once this row is opened, subsequent accesses to
the same row incur much lower latency and consume less
device time. Hence, the spatial locality in an application’s
memory access pattern plays a key role in its performance
and resource utilization.

Figure 2 shows the aggregate memory bandwidth used
with increasing numbers of tasks. All tasks in each test
run on one multicore socket in our machine. We show
results for both low- and high-RBHR workloads, using a
memory copy microbenchmark where the number of con-
tiguous words copied is one cache line within a row or an
entire row, respectively. Behaviors of most real-world ap-
plications lie between these two curves. We can clearly
see that the bandwidth available to a task is indeed af-
fected by its RBHR. For example, on our machine, three
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Figure 2: Socket-level memory bandwidth usage (mea-
sured by the LLC MISSES performance counter) for
workloads of high and low row buffer hit ratios (RBHRs)
at increasing number of tasks.

tasks with high RBHR may utilize more memory band-
width than ten low-RBHR tasks do. If we use the max-
imum bandwidth usage of high-RBHR workloads as the
available memory resource, then a low-RBHR workload
would never reach it and therefore be always determined
as having not used the available resource (even when the
opposite is true).

In this paper, we are more concerned with detecting
and mitigating memory bandwidth bottlenecks than uti-
lizing the memory bandwidth at its maximum possible
level. We can infer from Figure 2 that the difference
between the low / high-RBHR bottleneck bandwidths (at
10 tasks) is about 10%. We conservatively use the low
RBHR bandwidth as the maximum available without at-
tempting to track RBHR. Our high-resource-use thresh-
old is set at 20% below the above-defined maximum
available memory bandwidth. Specifically on our experi-
mental platform with 2.2 GHz processors, the threshold is
0.034 LLC misses per cycle, or 75,000,000 LLC misses
per second. A conservative setting might result in detect-
ing bottlenecks prematurely but will avoid missing ones
that will actually result in performance degradation.

2.3 Performance Counters on Ivy Bridge

Our experimental platform contains processors from
Intel’s Ivy Bridge line. On our machine, cores have pri-
vate L1 and L2 caches, and an on-chip shared L3 (LLC).
The Intel Performance Monitoring Unit (PMU) provides
the capability of monitoring certain events (each of which
may have several variants) at the granularity of individual
hardware contexts. Instructions, cycles, and unhalted cy-
cles can be obtained from fixed counters in the PMU. The
remaining events must use the programmable counters.

We encounter two constraints in using the pro-
grammable counters—there are only four programmable
counters and we can monitor only two variants of any par-
ticular event using these counters. Solutions to both con-
straints require multiplexing the programmable counters.
We separate the counters into disjoint groups and then

3



alternate the groups monitored during successive inter-
vals of application execution, effectively sampling each
counter group from a partial execution.

In order to monitor intra-socket coherence activity,
we use the main event MEM LOAD UOPS RETIRED.
One caveat is that since the event is a load-based event,
only reads are monitored. In our experiments, we found
that since typical long-term data use involves a read fol-
lowed by a write, these counters were a good indica-
tor of coherence activity. We use three variants of this
event, namely L2 MISS (misses at the last private level
of cache), L3 HIT (hits at, or accesses serviced by, the
LLC), and L3 MISS (misses at the LLC), and use these
events to infer the intra-socket coherence activity, as de-
scribed in Section 2.1.

To obtain inter-socket coherence activity, we use the
MEM LOAD UOPS LLC MISS RETIRED event. We
get the inter-socket coherence activity by summing up
two variants of this event—REMOTE FWD and RE-
MOTE HITM.

We read the remote DRAM access event count
from MEM LOAD UOPS LLC MISS RETIRED: RE-
MOTE DRAM.

We use the LLC MISSES event (which includes both
reads and writes) as an estimate of overall bandwidth con-
sumption. Although the LLC MISSES event count in-
cludes inter-socket coherence and remote DRAM access
events, since these latter are prioritized in our algorithm,
further division of bandwidth was deemed unnecessary.

In total, we monitor seven programmable events, with
three variants for each of two particular events, allowing
measurement of one sample for each event across two it-
erations. Since different interval sizes can have statistical
variation, we normalize the counter values with the mea-
sured unhalted cycles for the interval.

3 SAM: Sharing-Aware Mapping

We have designed and implemented SAM, a perfor-
mance monitoring and adaptive mapping system that si-
multaneously reduces costly communication and maxi-
mizes resource utilization efficiency for the currently ex-
ecuting tasks. We identify resource sharing bottlenecks
and their associated costs/performance degradation im-
pact. Our mapping strategy attempts to shift load away
from such bottleneck resources.

3.1 Design

Using thresholds for each bottleneck as described in
Section 2, we categorize each task based on whether its
characteristics exceed these thresholds. The four activity
categories of interest are: inter-socket coherence, intra-
socket coherence, remote DRAM access, and per-socket

memory bandwidth demand.
Figure 3 defines the symbols that are used for SAM’s

task→CPU mapping algorithm illustrated in Figure 4.
Reducing inter-socket coherence activity by colocating
tasks has the highest priority. Once tasks with high inter-
socket coherence traffic are identified, we make an at-
tempt to colocate the tasks by moving them to sockets
with idle cores that already contain tasks with high inter-
socket coherence activity, if there are any. If not, we use
our task categorization to distinguish CPU or memory
bound tasks—SAM swaps out memory intensive tasks
only after swapping CPU bound tasks, and avoids moving
tasks with high intra-socket coherence activity. Moving
memory-intensive tasks is our reluctant last choice since
they might lead to expensive remote memory accesses.

Our second priority is to reduce remote memory ac-
cesses. Remote memory accesses are generally more ex-
pensive than local memory accesses. Since a reluctant
migration might cause remote memory accesses, we reg-
ister the task’s original CPU placement prior to the mi-
gration. We then use this information to relocate the task
back to its original socket whenever we notice that it in-
curs remote memory accesses. To avoid disturbing other
tasks, we attempt to swap tasks causing remote memory
accesses with each other whenever possible. Otherwise,
we search for idle or CPU-bound tasks to swap for the
task that generates remote memory accesses.

After reducing remote memory accesses, we look to
balancing memory bandwidth utilization. SAM identi-
fies memory-intensive tasks on sockets where the band-
width is saturated. The identified tasks are relocated to
other sockets whose bandwidth is not entirely consumed.
We track the increase in bandwidth utilization after every
migration to avoid overloading a socket with too many
memory-intensive tasks. In some situations, such reloca-
tion can cause an increase in remote memory accesses,
but this is normally less damaging than saturating the
memory bandwidth.

3.2 Implementation Notes

Performance counter statistics are collected on a per
task (process or thread) basis with the values accumulated
in the task control block. Performance counter values are
read on every operating system tick and the values are
attributed to the currently executing task.

Our mapping strategy is implemented as a kernel mod-
ule that is invoked by a privileged daemon process. The
collected counter values for currently executing tasks are
examined at regular intervals. Counter values are first
normalized using unhalted cycles and then used to derive
values for memory bandwidth utilization, remote mem-
ory accesses, and intra- and inter-socket coherence activ-
ity for each running task. These values are attributed to
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𝒞T : Per task inter-socket coherence threshold 
MT : Per task memory utilization threshold 
ℛT : Per task remote memory access threshold 
𝒮   : Set of all sockets 
𝒞i  : Set of cores in socket i 

𝒞𝑖,𝑗
𝑖𝑛𝑡𝑒𝑟: 𝐼𝑛𝑡𝑒𝑟 − 𝑠𝑜𝑐𝑘𝑒𝑡 𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑐𝑜𝑟𝑒 𝑗 𝑜𝑛 𝑠𝑜𝑐𝑘𝑒𝑡 𝑖 

𝒞𝑖,𝑗
𝑖𝑛𝑡𝑟𝑎: 𝐼𝑛𝑡𝑟𝑎 − 𝑠𝑜𝑐𝑘𝑒𝑡 𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑐𝑒 𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 𝑏𝑦 𝑐𝑜𝑟𝑒 𝑗 𝑜𝑛 𝑠𝑜𝑐𝑘𝑒𝑡 𝑖 

𝑀𝑖,𝑗    ∶ 𝑀𝑒𝑚𝑜𝑟𝑦 𝑏𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑏𝑦 𝑐𝑜𝑟𝑒 𝑗 𝑜𝑛 𝑠𝑜𝑐𝑘𝑒𝑡 𝑖 

ℛ𝑖,𝑗    ∶ 𝑅𝑒𝑚𝑜𝑡𝑒 𝑚𝑒𝑚𝑜𝑟𝑦 𝑎𝑐𝑐𝑒𝑠𝑠𝑒𝑠 𝑏𝑦 𝑐𝑜𝑟𝑒 𝑗 𝑜𝑛 𝑠𝑜𝑐𝑘𝑒𝑡 𝑖 

𝒞𝑦𝑐𝑙𝑒𝑠𝑖,𝑗
𝑖𝑛𝑡𝑒𝑟: 𝐶𝑦𝑐𝑙𝑒𝑠 𝑐𝑜𝑢𝑛𝑡 𝑓𝑜𝑟 𝑐𝑜𝑟𝑒 𝑗 𝑜𝑛 𝑠𝑜𝑐𝑘𝑒𝑡 𝑖 

𝒫𝑖
𝑀𝑒𝑚 : {  𝑗 | 𝑗 ∈ 𝒞𝑖  ⋀ 𝑀𝑖,𝑗 > 𝑀𝑇   }  

𝒫𝑖
𝑅𝑒𝑚 ∶ {  𝑗 | 𝑗 ∈ 𝒞𝑖  ⋀ 𝑅𝑖,𝑗 > 𝑅𝑇  } 

𝒫𝑖
𝐼𝑑𝑙𝑒  ∶ {  𝑗 |  𝑗 ∈ 𝒞𝑖  ⋀ 𝐶𝑦𝑐𝑙𝑒𝑠𝑖,𝑗 = 0} 

𝒫𝑖
𝑖𝑛𝑡𝑒𝑟:  { 𝑗 |  𝑗 ∈ 𝒞𝑖  ⋀ 𝐶𝑖,𝑗

𝑖𝑛𝑡𝑒𝑟 > 𝒞𝑇  }   

𝒫𝑖
𝑖𝑛𝑡𝑟𝑎: {  𝑗 |  𝑗 ∈ 𝒞𝑖  ⋀ (𝐶𝑖,𝑗

𝑖𝑛𝑡𝑒𝑟 ≤ 𝒞𝑇)  ⋀ (𝐶𝑖,𝑗
𝑖𝑛𝑡𝑟𝑎 ≥ 𝒞𝑇 )} 

𝒫𝑖
𝐶𝑃𝑈  ∶ 𝒞𝑖 − 𝒫𝑖

𝑀𝑒𝑚 −  𝒫𝑖
𝐼𝑑𝑙𝑒 − 𝒫𝑖

𝑖𝑛𝑡𝑒𝑟 − 𝒫𝑖
𝑖𝑛𝑡𝑟𝑎  

𝑀𝑖 ∶  ∑ ℳ𝑖,𝑗𝑗∈𝒞𝑖
    

𝑆𝑜𝑐𝑡𝑎𝑠𝑘(𝑖,𝑗) ∶ 𝑂𝑟𝑖𝑔𝑖𝑛𝑎𝑙 𝑠𝑜𝑐𝑘𝑒𝑡 𝑓𝑟𝑜𝑚 𝑤ℎ𝑖𝑐ℎ 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑦 𝑟𝑢𝑛𝑛𝑖𝑛𝑔 

𝑜𝑛 𝑠𝑜𝑐𝑘𝑒𝑡 𝑖, 𝑐𝑜𝑟𝑒 𝑗 𝑤𝑎𝑠 𝑟𝑒𝑙𝑢𝑐𝑡𝑎𝑛𝑡𝑙𝑦 𝑚𝑖𝑔𝑟𝑎𝑡𝑒𝑑.  

Figure 3: SAM algorithm definitions.

the corresponding core and used to update/maintain per-
core and per-socket data structures that store the consol-
idated information. Per-core values are added to deter-
mine per-socket values.

Task relocation is accomplished by manipulating task
affinity (using sched setaffinity on Linux) to restrict
scheduling to specific cores or sockets. This allows seam-
less inter-operation with Linux’s default scheduler and
load balancer.

SAM’s decisions are taken at 100 mSec intervals. We
performed a sensitivity analysis on the impact of the in-
terval length and found that while SAM was robust to
changes in interval size (varied from 10 mSecs to over 1
second), a 100-mSec interval hit the sweet spot in terms
of balancing reaction times. We find that we can detect
and decide on task migrations effectively at this rate. We
were able to obtain good control and response for inter-
vals up to one second. Effecting placement changes at in-
tervals higher than a second can reduce the performance
benefits due to lack of responsiveness.

4 Evaluation

We assess the effectiveness of our hardware counter-
based sharing and contention tracking, and evaluate the
performance of our adaptive task→CPU mapper. Our
performance monitoring infrastructure was implemented
in Linux 3.14.8. Our software environment is Fedora 19
running GCC 4.8.2. We conducted experiments on a
dual-socket machine with each socket containing an In-
tel Xeon E5-2660 v2 “Ivy Bridge” processor (10 physi-
cal cores with 2 hyperthreads each, 2.20 GHz, 25 MB of
L3 cache). The machine has a NUMA configuration in
which each socket has an 8 GB local DRAM partition.

// Inter-socket coherence activity found. Need to colocate appropriate tasks. 

𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑖 ∈ 𝒮 𝑖𝑓 (𝒫𝑖
𝑖𝑛𝑡𝑒𝑟! = ∅) 

  𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑗 ∈ 𝒮 ⋀ (𝑗 ! = 𝑖)  

               𝑤ℎ𝑖𝑙𝑒 ((|𝒫𝑖
𝑖𝑛𝑡𝑒𝑟 +  𝒫𝑖

𝑖𝑛𝑡𝑟𝑎| < |𝐶𝑖|) ⋀  (𝒫𝑗
𝑖𝑛𝑡𝑒𝑟  ! = ∅))  

                             𝑤ℎ𝑖𝑙𝑒 (𝒫𝑖
𝐼𝑑𝑙𝑒 ! = ∅ ⋀  𝒫𝑗

𝑖𝑛𝑡𝑒𝑟  ! = ∅) 

                               𝑚𝑜𝑣𝑒 (𝒫𝑗
𝑖𝑛𝑡𝑒𝑟[0],  𝒫𝑖

𝐼𝑑𝑙𝑒[0]) 

                              𝑤ℎ𝑖𝑙𝑒 (𝒫𝑖
𝐶𝑃𝑈! = ∅ ⋀  𝒫𝑗

𝑖𝑛𝑡𝑒𝑟  ! = ∅) 

        𝑠𝑤𝑎𝑝 (𝒫𝑗
𝑖𝑛𝑡𝑒𝑟[0], 𝒫𝑖

𝐶𝑃𝑈[0]) 

   𝑤ℎ𝑖𝑙𝑒 (𝒫𝑖
𝑀𝑒𝑚! = ∅ ⋀  𝒫𝑖𝑛𝑡𝑒𝑟  ! = ∅) 

        𝑠𝑤𝑎𝑝 (𝒫𝑗
𝑖𝑛𝑡𝑒𝑟[0], 𝒫𝑖

𝑀𝑒𝑚[0]}, 𝑙𝑒𝑡 𝑎 =  𝒫𝑖
𝑀𝑒𝑚[0] 

    // This is a reluctant task migration. Store original 

// socket id to restore task when possible. 

𝑖𝑓 (𝑆𝑜𝑐𝑡𝑎𝑠𝑘(𝑗,𝑎) == −1)  

     𝑆𝑜𝑐𝑡𝑎𝑠𝑘(𝑗,𝑎) = 𝑖 

// Mitigate any remote memory accesses encountered. 

𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑖 ∈ 𝒮 𝑖𝑓 (𝒫𝑖
𝑅𝑒𝑚! = ∅) 

  𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑗 ∈ 𝒫𝑖
𝑅𝑒𝑚, 𝑙𝑒𝑡 𝑎 =  𝑆𝑜𝑐𝑡𝑎𝑠𝑘(𝑖,𝑗) 

                           // Swap with a task migrated reluctantly from the current socket.    

               𝑖𝑓 (∃𝑘∈𝒞𝑎
(𝑆𝑜𝑐𝑡𝑎𝑠𝑘(𝑎,𝑘) == 𝑖))  

               𝑠𝑤𝑎𝑝 (𝑗, 𝑘)              

               𝑒𝑙𝑠𝑒 𝑖𝑓 (𝒫𝑎
𝐼𝑑𝑙𝑒! = ∅) 

      𝑚𝑜𝑣𝑒 (𝑗,  𝒫𝑎
𝐼𝑑𝑙𝑒[0]) 

    𝑒𝑙𝑠𝑒 𝑖𝑓 (𝒫𝑎
𝐶𝑃𝑈! = ∅) 

      𝑠𝑤𝑎𝑝 (𝑗,  𝒫𝑎
𝐶𝑃𝑈[0]) 

   𝑒𝑙𝑠𝑒 𝑖𝑓 (𝒫𝑎
𝑀𝑒𝑚! = ∅) 

      𝑠𝑤𝑎𝑝 (𝑗,  𝒫𝑎
𝑀𝑒𝑚[0]), 𝑙𝑒𝑡 𝑏 =   𝒫𝑎

𝑀𝑒𝑚[0] 
    𝑖𝑓 (𝑆𝑜𝑐𝑡𝑎𝑠𝑘(𝑎,𝑏) == −1) 

    𝑆𝑜𝑐𝑡𝑎𝑠𝑘(𝑎,𝑏) = 𝑖 

// Balance the memory intensive load to other sockets.  

𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑖 ∈ 𝒮 𝑖𝑓 (𝒫𝑖
𝑀𝑒𝑚! = ∅) ⋀  (ℳ𝑖 >  ℳ𝑇) 

  𝑓𝑜𝑟 𝑒𝑣𝑒𝑟𝑦 𝑗 ∈ 𝒮  𝑖𝑓 ((𝑗 ! = 𝑖) ⋀  (ℳ𝑗 < ℳ𝑇)) 

                          // Balance memory intensive tasks across sockets.  

                          // If cores are unavailable, look for other sockets to balance load.  

  𝑟𝑒𝑠 =  𝑏𝑎𝑙𝑎𝑛𝑐𝑒(𝒫𝑖
𝑀𝑒𝑚, 𝒫𝑗

𝑀𝑒𝑚)    

  𝑖𝑓 (𝑟𝑒𝑠 == 𝐵𝑎𝑙𝑎𝑛𝑐𝑒_𝑆𝑢𝑐𝑒𝑠𝑠𝑓𝑢𝑙)  

   𝑏𝑟𝑒𝑎𝑘  

Figure 4: SAM task→CPU mapping algorithm.

4.1 Benchmarks

We use a variety of benchmarks from multiple domains
in our evaluation. First, we use the synthetic microbench-
marks described in Sections 2.1 and 2.2 that stress the
inter- and intra-socket coherence and memory bandwidth
respectively. We create two versions of the coherence
activity microbenchmark—one (Hubench) generating a
near-maximum rate of coherence activity (1.3×10−3 co-
herence events per CPU cycle) and another (Lubench)
generating coherence traffic close to the threshold we
identified in Section 2 (2.6×10−4 coherence events per
cycle). We also use the high-RBHR memcpy microbench-
mark (MemBench). MemBench saturates the memory
bandwidth on one socket and needs to be distributed
across sockets to maximize memory bandwidth utiliza-
tion.

PARSEC 3.0 [2] is a parallel benchmark suite con-
taining a range of applications including image process-
ing, chip design, data compression, and content similarity
search. We use a subset of the PARSEC benchmarks that
exhibit non-trivial data sharing. In particular, Canneal
uses cache-aware simulated annealing to minimize the
routing cost of a chip design. Bodytrack is a computer
vision application that tracks a human body through an
image sequence. Both benchmarks depend on data that
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Figure 5: Performance of standalone applications on
Linux with SAM and without (default Linux) SAM. The
performance metric is the execution speed (the higher the
better) normalized to that of the best static task→CPU
mapping determined through offline testing.

is shared among its worker threads. We observe that the
data sharing however is not as high as other workloads
that we discuss below.

The SPEC CPU2006 [1] benchmark suite has a good
blend of memory-intensive and CPU-bound applications.
Many of its applications have significant memory utiliza-
tion with high computation load as well. The memory-
intensive applications we use are libq, soplex, mcf, milc,
and omnetpp. The CPU-bound applications we use are
sjeng, bzip2, h264ref, hmmer, and gobmk.

GraphLab [13] and GraphChi [12] are emerging sys-
tems that support graph-based parallel applications. Un-
like most PARSEC applications, the graph-based appli-
cations tend to have considerable sharing across worker
threads. In addition, the number of worker threads is
not always static and is dependent on the phase of ex-
ecution and amount of parallelism available in the ap-
plication. Such phased behaviors are a good stress
test to ascertain SAM’s stability of control. Our eval-
uation uses a range of machine learning and filtering
applications—TunkRank (Twitter influence ranking), Al-
ternating Least Squares (ALS) [23], Stochastic gradi-
ent descent (SGD) [11], Singular Value Decomposition
(SVD) [10], Restricted Bolzman Machines (RBM) [8],
Probabilistic Matrix Factorization (PMF) [16], Biased
SGD [10], and Lossy SDG [10].

4.2 Standalone Application Evaluation

We first evaluate the impact of SAM’s mapping deci-
sions on standalone parallel application executions. Fig-
ure 5 shows the performance obtained by SAM and the

Application Coherence Remote Workload
memory characteristic

Hubench (8t) 4 0 Data sharing
Lubench (8t) 4 0 Data sharing
MemBench (8t) 0 0 Memory bound
MemBench (6t) 0 0 Memory bound
Canneal (4t) 8 3 CPU bound
Bodytrack (4t) 2 0 CPU bound
TunkRank (4t) 6 1 Data sharing
TunkRank (10t) 13 1 Data sharing
RBM (4t) 12 0 CPU bound
ALS (4t) 1 0 CPU bound
Small Dataset
ALS (4t) 6 3 CPU bound
ALS (10t) 9 1 CPU bound
SGD (4t) 12 2 Data sharing
SGD (10t) 14 3 Data sharing
BSGD (4t) 8 2 Data sharing
BSGD (10t) 20 3 Data sharing
SVD (4t) 12 1 Data sharing
SVD (10t) 24 7 Data sharing
PMF (4t) 20 0 CPU bound
LSGD (4t) 6 3 Data sharing
LSGD (10t) 18 3 Data sharing
SVD (8t) 22 6 Data sharing
SVD (6t) 18 6 Data sharing

Table 1: Actions taken by our scheduler for each stan-
dalone application run. Coherence indicates the num-
ber of task migrations performed to reduce inter-socket
coherence. Remote memory indicates the number of
task migrations performed to reduce remote memory ac-
cesses. Workload characteristic classifies each applica-
tion as either CPU bound, data sharing intensive, or mem-
ory bound.

default Linux scheduler. The performance is normalized
to that of the best static task→CPU mapping obtained of-
fline for each application.

We can see that SAM considerably improves the appli-
cation performance. Our task placement mirrors that of
the best configuration obtained offline, thereby resulting
in almost identical performance. Improvement over the
default Linux scheduler can reach 72% in the best case
and varies in the range of 30–40% for most applications.
This performance improvement does not require any ap-
plication changes, application user/deployer knowledge
of system topology, or need for recompilation.

Parallel applications that have nontrivial data sharing
among its threads benefit from SAM’s remapping strat-
egy. Figure 6(A) shows the average per-thread instruc-
tions per unhalted cycle (IPC). SAM results in increased
IPC for almost all the applications. Figure 6(B) demon-
strates that we have almost eliminated all the per-thread
inter-socket coherence traffic, replacing it with intra-
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(D) Off−chip traffic per socket

Figure 6: Measured hardware metrics for standalone applications. Fig. (A): per-thread instructions per unhalted
cycle (IPC); Fig. (B): per-thread inter-socket coherence activity; Fig. (C): per-thread intra-socket coherence activity;
Fig. (D): per-socket LLC misses per cycle. All values are normalized to unhalted CPU cycles.

socket coherence traffic (Figure 6(C)). Figure 6(D) uses
LLC misses per socket per cycle to represent aggregate
per socket off-chip traffic. We can see that off-chip traffic
for applications with high data sharing is reduced. Ta-
ble 1 summarizes the mapping actions (whether due to
inter-socket coherence or remote memory access) taken
for every workload shown in Figure 5.

Interestingly, although Figure 6(B) shows that
TunkRank (Twitter influence ranking) has fairly low av-
erage inter-socket coherence activity, it shows the most
performance boost with SAM. In this application, there
are phases of high coherence activity between phases of
heavy computation, which SAM is able to capture and
eliminate. The application also scales well with addi-
tional processors (high inherent parallelism). The better
a data-sharing application scales, the higher the speedup
when employing SAM. With SAM, TunkRank scales al-
mostlinearly on our multicore platform.

While most workloads achieve good speedup, in some
cases SAM’s performance is only on par with (or slightly
better than) default Linux. Such limited benefits are due
to two primary reasons. First, applications may be CPU
bound without much coherence or memory traffic. ALS,
RBM, and PMF are examples of such applications. Al-
though inter-socket coherence activity for these applica-
tions is above threshold, resulting in some migrations (see

Table 1) due to SAM’s affinity control, the relative impact
of this colocation is small. Second, some workloads are
memory intensive but contain low inter-socket coherence
activity. Linux uses a static heuristic of distributing tasks
across sockets, which is already the ideal action for these
workloads. In such cases, SAM does not have additional
room to improve performance.

Table1 does not contain a column for migrations to
balance memory bandwidth because for standalone ap-
plications, SAM does not effect such migrations. First,
for purely memory intensive workloads (MemBench),
the default strategy to distribute tasks works ideally and
therefore we do not perform any more migrations. Sec-
ond, for workloads that are both memory intensive and
with high data sharing, SAM prioritizes inter-socket co-
herence activity avoidance over balancing memory band-
width utilization.

Graph-based machine learning applications exhibit
phased execution and dynamic task creation and paral-
lelism (mainly in the graph construction and distribution
stages). The burst of task creation triggers load balancing
in Linux. While Linux respects core affinity, tasks may
be migrated to balance load. Linux task migrations do not
sufficiently consider application characteristics and may
result in increased remote DRAM accesses, inter-socket
communication, resource contention, and bandwidth sat-
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uration. SAM is able to mitigate the negative impact of
these load balancing decisions, as demonstrated by the
non-trivial number of migrations due to coherence activ-
ity and remote memory accesses performed by SAM (Ta-
ble 1). SAM constantly monitors the system and manip-
ulates processor affinity (which the Linux load balancer
respects) to colocate or distribute tasks across sockets and
cores.

4.3 Multiprogrammed Workload Evaluation

Table 2 summarizes the various application mixes we
employed to evaluate SAM’s performance on multipro-
grammed workloads. They are designed to produce dif-
ferent levels of data sharing and memory utilization. Two
factors come into play. First, applications incur perfor-
mance penalties due to resource competition. Second,
bursty and phased activities disturb the system frequently.

In order to compare the performance of different mixes
of applications, we first normalize each application’s run-
time with its offline optimum standalone runtime, as in
Figure 5. We then take the geometric mean of the nor-
malized performance of all the applications in the work-
load mix (counting each application once regardless of
the number of tasks employed) to derive a single met-
ric that represents the speedup of the mix of applications.
We use this metric to compare the performance of SAM
against the default Linux scheduler.

The performance achieved is shown in Figure 7. Nat-
urally, due to competition for resources, most applica-
tions will run slower than their offline best standalone
execution. Even if applications utilize completely differ-
ence resources, they may still suffer performance degra-
dation. For example, when inter-socket coherence miti-
gation conflicts with memory load balancing, no sched-
uler can realize the best standalone performance for each
co-executing application.

SAM outperforms the default Linux scheduler by 2%
to 36% as a result of two main strategies. First, we try
to balance resource utilization whenever possible with-
out affecting coherence traffic. This benefits application
mixes that have both applications that share data and use
memory. Second, we have information on inter-socket
coherence activity and can therefore use it to colocate
tasks that share data. However, we do not have exact in-
formation to indicate which tasks share data with which
other tasks. We receive the validation of a successful mi-
gration if it produces less inter-socket and more intra-
socket activity after the migration. Higher intra-socket
activity helps us identify partial or full task groupings in-
side a socket.

For the mixes of microbenchmarks (#1–#3), SAM ex-
ecutes the job about 25% faster than Linux. SAM’s rel-
ative performance approaches 1—indicating comparable

Multiprog.
workload # Application mixes
1 12 MemBench, 8 HuBench
2 14 MemBench, 6 HuBench
3 10 MemBench, 6 HuBench, 4 CPU
4 2 libq, 2 bzip2, 2 sjeng, 2 omnetpp
5 2 libq, 2 soplex, 2 gobmk, 2 hmmer
6 2 mcf, 2 milc, 2 sjeng, 2 h264ref
7 2 milc, 2 libq, 2 h264ref, 2 sjeng
8 2 mcf, 2 libq, 2 h264ref, 2 sjeng, 4 TunkRank
9 10 SGD, 10 BSGD
10 10 SGD, 10 LSGD
11 10 LSGD, 10 BSGD
12 10 LSGD, 10 ALS
13 10 SVD, 10 SGD
14 10 SVD, 10 BSGD
15 10 SVD, 10 LSGD
16 8 SVD, 8 LSGD
17 20 SGD, 20 BSGD
18 20 SGD, 20 LSGD
19 20 LSGD, 20 BSGD
20 20 LSGD, 20 ALS
21 20 SVD, 20 SGD
22 20 SVD, 20 BSGD
23 20 SVD, 20 LSGD
24 16 BSGD, 10 MemBench, 14 CPU
25 16 LSGD, 10 MemBench, 14 CPU
26 16 SGD, 10 MemBench, 14 CPU

Table 2: Multiprogrammed application mixes. For each
mix, the number preceding the application’s name indi-
cates the number of tasks it spawns. We generate various
combinations of applications to evaluate scenarios with
varying data sharing and memory utilization.

performance to the case that all microbenchmarks reach
respective optimum offline standalone performance si-
multaneously. SAM is able to preferentially colocate
tasks that share data over tasks that are memory inten-
sive. Since the memory benchmark saturates memory
bandwidth at fairly low task counts, colocation does not
impact performance.

The speedups obtained for the SPEC CPU benchmark
mixes relative to Linux are not high. The SPEC CPU mix
of applications tend to be either memory or CPU bound.
Since Linux prefers to split the load among sockets, it can
perform well for memory intensive workloads. We per-
form significantly better than the Linux scheduler when
the workload mix comprises applications that share data
and use memory bandwidth.

A caveat is that Linux’s static task→CPU mapping pol-
icy is very dependent on the order of task creation. For
example, different runs of the same SPECCPU mix of
applications discussed above can result in a very differ-
ent sequence of task creation, forcing CPU-bound tasks
to be colocated on a socket and memory-intensive tasks
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Figure 7: Speedup (execution time normalized to the
offline optimum standalone execution: higher is better)
of multiprogrammed workloads with (SAM) and without
(default Linux) SAM. We show the geometric mean of all
application speedups within each workload as well as the
max-min range (whiskers) for the individual applications.

to be colocated on the other. We use the best-case Linux
performance as our comparison base. Since SAM ob-
serves and reacts to the behavior of individual tasks, its
scheduling performance does not depend heavily on the
task creation order.

Figure 7 also plots the minimum and maximum
speedups of applications in each workload mix using
whiskers. The minimum and maximum speedups are im-
portant to understand the fairness of our mapping strat-
egy. The application that has the minimum speedup is
slowed down the most in the workload mix. The ap-
plication that has the maximum speedup is the least af-
fected by the contention in the system. We can see that
SAM improves upon the fairness of the Linux scheduler
in a significant fashion. The geometric mean of the mini-
mum speedup for all the workload mixes for SAM is 0.83.
The same for the default Linux scheduler is 0.69. Simi-
larly, the geometric mean of the maximum speedup for
all workload mixes for SAM and Linux are 0.96 and 0.87
respectively. From this analysis, we can conclude that in
addition to improving overall performance, SAM reduces
the performance disparity (a measure of fairness) among
multiple applications when run together.

Figure 8(A) plots the per-thread instructions per cycle
for the mixed workloads. We can see that largely, the ef-
fect of our actions is to increase the IPC. As with the stan-
dalone applications, Figure 8(B) shows that SAM sig-
nificantly reduces inter-socket coherence activity, replac-
ing it with intra-socket coherence activity (Figure 8(C)).
Note that for some workloads, SAM shows reductions in
both intra- and inter-socket coherence. This is likely due

to working sets that exceed the capacity of the private
caches, resulting in hits in the LLC when migrations are
effected to reduce inter-socket coherence.

Figure 8(D) uses LLC misses per cycle to represent
aggregate per socket off-chip traffic. Our decision to pri-
oritize coherence activity can lead to reduced off-chip
traffic, but this may be counteracted by an increase in
the number of remote memory accesses. At the same
time, our policy may also reduce main memory accesses
by sharing the last level cache with tasks that actually
share data (thereby reducing pressure on LLC cache ca-
pacity). We also improve memory bandwidth utilization
when possible without disturbing the colocated tasks that
share data. Workload mixes #24–#26 have a combina-
tion of data-sharing, memory-intensive, and CPU-bound
tasks. In these cases, SAM improves memory bandwidth
utilization by moving the CPU-bound tasks to accommo-
date distribution of the memory-intensive tasks.

In our experiments, both hardware prefetcher and hy-
perthreading are turned on by default. Hyperthreads add
an additional layer of complexity to the mapping process
due to resource contention for logical computational units
as well as the private caches. Since SAM utilizes one
hardware context on each physical core before utilizing
the second, when the number of tasks is less than or equal
to the number of physical cores, SAM’s policy decisions
are not affected by hyperthreading.

In order to determine the interaction of the prefetcher
with the SAM mapper, we compare the relative perfor-
mance of SAM when turning off prefetching. We observe
that on average, prefetching is detrimental to the per-
formance of multiprogrammed workloads with or with-
out the use of SAM. The negative impact of prefetch-
ing when using SAM is slightly lower than with default
Linux.

4.4 Overhead Assessment

SAM’s overhead has three contributors: accessing per-
formance counters, making mapping decisions based on
the counter values, and migrating tasks to reflect the de-
cisions. In our prototype, reading the performance coun-
ters, a cost incurred on every hardware context, takes
takes 8.89µSecs. Counters are read at a 1-mSec inter-
val. Mapping decisions are centralized and are taken at
100 mSecs intervals. Each call to the mapper, including
the subsequent task migrations, takes about 9.97µSecs.
The overall overhead of our implementation is below 1%.
We also check the overall system overhead by running all
our applications with our scheduler but without perform-
ing any actions on the decisions taken. There was no dis-
cernible difference between the two runtimes, meaning
that the overhead is within measurement error.

Currently, SAM’s policy decisions are centralized in
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Figure 8: Measured hardware metrics for multiprogrammed application workloads. Fig. (A): per-thread instructions
per unhalted cycle (IPC); Fig. (B): per-thread inter-socket coherence activity; Fig. (C): per-thread intra-socket coher-
ence activity; Fig. (D): per-socket LLC misses per cycle. All values are normalized to unhalted CPU cycles.

a single daemon process, which works well for our 40-
CPU machine, since most of the overhead is attributed to
periodically reading the performance counters. Data con-
solidation in the daemon process has a linear complexity
on the number of processors and dominates in cost over
the mapping decisions. For all practical purposes, SAM
scales linearly with the number of processors. In the fu-
ture, if the total number of cores is very large, mapping
policies might need to be distributed for scalability.

4.5 Sensitivity Analysis

We study the sensitivity of SAM’s performance gains
to the thresholds identified in Section 2 for determin-
ing high coherence activity and memory bandwidth con-
sumption.

Too low a coherence activity threshold can classify ap-
plications with little benefit from colocation as ones with
high data sharing; it can also result in misclassifying tasks
that have just been migrated as ones with high data shar-
ing due to the coherence activity generated as a result of
migration. For some workloads, this may reduce the abil-
ity to beneficially map tasks with truly high data sharing.
Too high a coherence activity threshold can result in not
identifying a task as high data sharing when it could ben-
efit from colocation.

We found that SAM’s performance for our workloads
was relatively resilient to a wide range of values for the
threshold. The coherence activity threshold could be var-
ied from 10% of the value determined in Section 2 to 2
times this value. Using threshold values below the low
end result in a loss of performance of up to 9% for one
mixed workload. Using threshold values >2 times the
determined threshold for the mixed workloads and >3
times for the standalone applications results in a loss of
up to 18% and 30% performance respectively for a couple
of workloads.

SAM’s resilience with respect to the memory band-
width threshold is also quite good, although the range of
acceptable values is tighter than for coherence activity.
For the memory bandwidth threshold, too low a value
can lead to prematurely assuming that a socket’s mem-
ory bandwidth is saturated, resulting in lost opportuni-
ties for migration. Too high a value can result in perfor-
mance degradation due to bandwidth saturation. In the
case of the SPECCPU benchmarks, lowering our deter-
mined threshold by 30% resulted in both sockets being
considered as bandwidth saturated, and a performance
loss of up to 27% due to lost migrations opportunities.
Similarly, for MemBench, raising the memory threshold
by 25% leads to non-recognition of bandwidth saturation,
which produces up to 85% loss in performance.
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5 Related Work

The performance impact of contention and interfer-
ence on shared multicore resources (particularly the LLC
cache, off-chip bandwidth, and memory) has been well
recognized in previous work. Suh et al. [18] used hard-
ware counter-assisted marginal gain analysis to mini-
mize the overall cache misses. Software page color-
ing [5, 22] can effectively partition the cache space with-
out special hardware features. Mutlu et al. [15] pro-
posed parallelism-aware batch scheduling in DRAM to
reduce inter-task interference at the memory level. Mars
et al. [14] utilized active resource pressures to predict
the performance interference between colocated applica-
tions. These techniques, however, manage multicore re-
source contention without addressing the data sharing is-
sues in parallel applications.

Blagodurov et al. [3] examined data placement in
non-uniform memory partitions but did not address data
sharing-induced coherence traffic both within and across
sockets. Tam et al. [19] utilized address sampling (avail-
able on Power processors) to identify task groups with
strong data sharing. Address sampling is a relatively ex-
pensive mechanism to identify data sharing (compared
to our performance counter-based approach) and is not
available in many processors in production today.

Calandrino and Anderson [4] proposed cache-aware
scheduling for real-time schedulers. The premise of their
work is that working sets that do not fit in the shared
cache will cause thrashing. The working set size of an
application was approximated to the number of misses
incurred at the shared cache. Their scheduling is aided
with job start times and execution time estimates, which
non-real time systems often do not have. Knauerhase et
al. [9] analyze the run queue of all processors of a system
and schedule them so as to minimize cache interference.
Their scheduler is both fair and less cache contentious.
They do not, however, consider parallel workloads and
the effect of data sharing on the last level cache.

Tang et al. [20] demonstrate the impact of task place-
ment on latency-critical datacenter applications. They
show that whether applications share data and/or have
high memory demand can dramatically affect perfor-
mance. They suggest the use of information on the num-
ber of accesses to “shared” cache lines to identify intra-
application data sharing. While this metric is a use-
ful indicator of interference between tasks, it measures
only one aspect of data sharing—the cache footprint, but
misses another important aspect of data sharing—off-
chip traffic in the case of active read-write sharing. Ad-
ditionally, their approach requires input statistics from an
offline stand-alone execution of each application.

Previous work has also pursued fair uses of shared
multicore resources between simultaneously executing

tasks. Ebrahimi et al. [6] proposed a new hardware de-
sign to track contention at different cache/memory levels
and throttle tasks with unfair resource usage or dispro-
portionate progress. At the software level, fair resource
use can be accomplished through scheduling quantum ad-
justment [7] or duty cycle modulation-enabled speed bal-
ancing [21]. These techniques are complementary and
orthogonal to our placement strategies, and can be used
in conjunction with our proposed approach for improved
fairness and quality of service.

6 Conclusions

In this paper, we have designed and implemented a per-
formance monitoring and sharing-aware adaptive map-
ping system. Our system works in conjunction with
Linux’s default scheduler to simultaneously reduce costly
communications and improve resource utilization effi-
ciency. The performance monitor uses commonly avail-
able hardware counter information to identify and sep-
arate data sharing from DRAM memory access. The
adaptive mapper uses a cost-sensitive approach based on
the performance monitor’s behavior identification to relo-
cate tasks in an effort to improve both parallel and mixed
workload application efficiency in a general-purpose ma-
chine. We show that performance counter information al-
lows us to develop effective and low-cost mapping tech-
niques without the need for heavy-weight access traces.
For stand-alone parallel applications, we observe perfor-
mance improvements as high as 72% without requiring
user awareness of machine configuration or load, or per-
forming compiler profiling. For multiprogrammed work-
loads consisting of a mix of parallel and sequential appli-
cations, we achieve up to 36% performance improvement
while reducing performance disparity across applications
in each mix. Our approach is effective even in the pres-
ence of workload variability.
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