
FlashFQ: A Fair Queueing I/O Scheduler for Flash-Based SSDs

Kai Shen Stan Park

Department of Computer Science, University of Rochester

Abstract

On Flash-based solid-state disks (SSDs), different

I/O operations (reads vs. writes, operations of differ-

ent sizes) incur substantially different resource usage.

This presents challenges for fair resource management

in multi-programmed computer systems and multi-tenant

cloud systems. Existing timeslice-based I/O schedulers

achieve fairness at the cost of poor responsiveness, par-

ticularly when a large number of tasks compete for I/O

simultaneously. At the same time, the diminished ben-

efits of I/O spatial proximity on SSDs motivate fine-

grained fair queueing approaches that do not enforce

task-specific timeslices. This paper develops a new Flash

I/O scheduler called FlashFQ. It enhances the start-time

fair queueing schedulers with throttled dispatch to ex-

ploit restricted Flash I/O parallelism without losing fair-

ness. It also employs I/O anticipation to minimize fair-

ness violation due to deceptive idleness. We implemented

FlashFQ in Linux and compared it with several existing

I/O schedulers—Linux CFQ [2], an Argon [19]-inspired

quanta scheduler, FIOS timeslice scheduler [17], FIOS

with short timeslices, and 4-Tag SFQ(D) [11]. Results

on synthetic I/O benchmarks, the Apache web server,

and Kyoto Cabinet key-value store demonstrate that only

FlashFQ can achieve both fairness and high responsive-

ness on Flash-based SSDs.

1 Introduction

NAND Flash devices are increasingly used as solid-

state disks (SSDs) in computer systems. Compared to

traditional secondary storage, Flash-based SSDs deliver

much higher I/O performance which can alleviate the

I/O bottlenecks in critical data-intensive applications. At

the same time, the SSD resource management must rec-

ognize unique Flash characteristics and work with in-

creasingly sophisticated firmware management. For in-

stance, while the raw Flash device desires sequential

writes, the write-order-based block mapping on modern

SSD firmware can translate random write patterns into

sequential writes on Flash and thereby relieve this burden

for the software I/O scheduler. On the other hand, dif-

ferent I/O operations on Flash-based SSDs may exhibit

large resource usage discrepancy. For instance, a write

can consume much longer device time than a read due to

the erase-before-write limitation on Flash. In addition, a

larger I/O operation can take much longer than a small

request does (unlike on a mechanical disk when both are

dominated by mechanical seek/rotation delays). Without

careful regulation, heavy resource-consuming I/O opera-

tions can unfairly block light operations.

Fair I/O resource management is desirable in a

multi-programmed computer system or a multi-tenant

cloud platform. Existing I/O schedulers including

Linux CFQ [2], Argon [19], and our own FIOS [17]

achieve fairness by assigning timeslices to tasks that si-

multaneously compete for the I/O resource. One critical

drawback for this approach is that the tasks that com-

plete their timeslices early may experience long periods

of unresponsiveness before their timeslices are replen-

ished in the next epoch. Such unresponsiveness is partic-

ularly severe when one must wait for a large number of

co-running tasks in the system to complete their times-

lices. Poor responsiveness is harmful but unnecessary on

Flash-based SSDs that often complete an I/O operation

in a fraction of a millisecond.

High responsiveness is supported by classic fair

queueing approaches that originated from network

packet switching [6, 8, 9, 16] but were also used in stor-

age systems [3, 11, 18]. They allow fine-grained inter-

leaving of requests from multiple tasks / flows as long as

fair resource utilization is maintained through balanced

virtual time progression. The lagging virtual time for an

inactive task / flow is brought forward to avoid a large

burst of requests from one task / flow and prolonged unre-

sponsiveness for others. One drawback for fine-grained

fair queueing on mechanical disks is that frequent task

switches induce high seek and rotation costs. Fortu-

nately, this is only a minor concern for Flash-based SSDs

due to diminished benefits of I/O spatial proximity on

modern SSD firmware.

This paper presents a new operating system I/O sched-

uler (called FlashFQ) that achieves fairness and high re-

sponsiveness at the same time. FlashFQ enhances the

start-time fair queueing scheduler SFQ(D) [11] with two

new mechanisms to support I/O on Flash-based SSDs.

First, while SFQ(D) allows concurrent dispatch of re-

quests (called depth) to exploit I/O parallelism, it vio-

lates fairness when parallel I/O operations on a Flash de-

vice interfere with each other. We introduce a throttled

dispatch technique to exploit restricted Flash I/O par-

Kai Shen
Typewritten Text
In Proc. of the 2013 USENIX Annual Technical Conference



allelism without losing fairness. Second, existing fair

queueing schedulers are work-conserving—they never

idle the device when there is pending work to do. How-

ever, work-conserving I/O schedulers are susceptible to

deceptive idleness [10] that causes fairness violation. We

propose anticipatory fair queueing to mitigate the effects

of deceptive idleness. We have implemented FlashFQ

with the throttled dispatch and anticipatory fair queueing

mechanisms in Linux.

The rest of this paper is organized as follows. Sec-

tion 2 discusses related work. Section 3 characterizes key

motivations and challenges for our fair queueing sched-

uler on Flash-based SSDs. Sections 4 and 5 present

the design techniques and implementation issues in our

FlashFQ scheduler. Section 6 illustrates our experimen-

tal evaluation and comparison with several alternative

I/O schedulers. Section 7 concludes this paper with a

summary of our findings.

2 Related Work

Flash I/O characterization and operating system sup-

port have been recognized in research. Agrawal et al. [1]

discussed the impact of block erasure (before writes) and

parallelism on the performance of Flash-based SSDs.

Work by Chen et al. [4] further examined strided ac-

cess patterns and identified abnormal performance issues

like those caused by storage fragmentation. File system

work [5,14,15] attempted to improve the sequential write

patterns through the use of log-structured file systems.

These efforts are orthogonal to our research on Flash I/O

scheduling.

New I/O scheduling heuristics were proposed to im-

prove Flash I/O performance. In particular, write

bundling [12], write block preferential [7], and page-

aligned request merging/splitting [13] help match I/O re-

quests with the underlying Flash device data layout. The

effectiveness of these write alignment techniques, how-

ever, is limited on modern SSDs with write-order-based

block mapping. Further, these Flash I/O schedulers have

paid little attention to the issue of fairness.

Fairness-oriented resource scheduling has been ex-

tensively studied. Fairness can be realized through

per-task timeslices (as in Linux CFQ [2], Argon [19],

and FIOS [17]) and credits (as in the SARC rate con-

troller [20]). The original fair queueing approaches, in-

cluding Weighted Fair Queueing (WFQ) [6], Packet-by-

Packet Generalized Processor Sharing (PGPS) [16], and

Start-time Fair Queueing (SFQ) [8, 9], take virtual time-

controlled request ordering over several task queues to

maintain fairness. While they are designed for network

packet scheduling, later fair queueing approaches like

Cello’s proportionate class-independent scheduler [18],

YFQ [3] and SFQ(D) [11] are adapted to support I/O re-

sources. In particular, they allow the flexibility to re-

order and parallelize I/O requests for better efficiency.

Most of these fair-share schedulers (with the only ex-

ception of FIOS) do not address unique characteristics

on Flash-based SSDs and many (including FIOS) do not

support high responsiveness.

3 Motivations and Challenges

Timeslice Scheduling vs. Fair Queueing Timeslice-

based I/O schedulers such as Linux CFQ, Argon, and

FIOS achieve fairness by assigning timeslices to co-

running tasks. A task that completes its timeslice early

would have to wait for others to finish before its timeslice

is replenished in the next epoch, leading to a period of

unresponsiveness at the end of each epoch. Figure 1(A)

illustrates this effect in timeslice scheduling. While some

schedulers allow request interleaving (as shown in Fig-

ure 1(B)), the period of unresponsiveness still exists at

the end of an epoch. This unresponsiveness is particu-

larly severe in a highly loaded system where one must

wait for a large number of co-running tasks to complete

their timeslices. One may shorten the per-task timeslices

to improve responsiveness. However, outstanding re-

quests at the end of a timeslice may consume resources at

the next timeslice that belongs to some other task. Such

resource overuse leads to unfairness and this problem

is particularly pronounced when each timeslice is short

(Figure 1(C)).

In fine-grained fair queueing (as shown in Fig-

ure 1(D)), requests from multiple tasks are interleaved in

a fine-grained fashion to enable fair progress by all tasks.

It achieves fairness and high responsiveness at the same

time. Furthermore, since fine-grained fair queueing does

not restrict the request-issuing task in each timeslice, it

works well with I/O devices possessing internal paral-

lelism (Figure 1(E)).

Finally, due to substantial background maintenance

such as Flash garbage collection, Flash-based SSDs pro-

vide time-varying capacities (more I/O capacity at one

moment and less capacity at a later time). The timeslice

scheduling that focuses on the equal allocation of device

timemay not provide fair shares of time-varying resource

capacities to concurrent tasks. In contrast, the fair queue-

ing scheduling targets equal progress of completed work

and therefore it can achieve fairness even for resources

with time-varying capacities.

Restricted Parallelism Flash-based SSDs have some

built-in parallelism through the use of multiple channels.

Within each channel, the Flash package may have mul-

tiple planes which are also parallel. We run experiments

to understand such parallelism. We utilize the following

Flash-based storage devices—



1 2 4 8 16 32 64
0

2

4

6

8

Number of concurrent I/O operations

S
p

e
e

d
u

p
 o

v
e

r 
s
e

ri
a

l 
I/

O
4KB reads

 

 
Intel 311 SSD

Intel X25−M SSD

OCZ Vertex 3 SSD

1 2 4 8 16 32 64
0

2

4

6

8

Number of concurrent I/O operations

S
p

e
e

d
u

p
 o

v
e

r 
s
e

ri
a

l 
I/

O

4KB writes

1 2 4 8 16 32 64
0

2

4

6

8

Number of concurrent I/O operations

S
p

e
e

d
u

p
 o

v
e

r 
s
e

ri
a

l 
I/

O

128KB reads

Figure 2: Efficiency of I/O parallelism (throughput speedup over serial I/O) for 4KB reads, 4KB writes, and 128KB

reads on three Flash-based SSDs.

Task 1

Task 2

(B) Timeslice scheduling that allows request interleaving

An epoch

Task 1

Task 2

(A) Timeslice scheduling

Task 1

Task 2

(D) Fine-grained fair queueing

Unresponsiveness

Unresponsiveness

Task 1 timeslice Task 2 timeslice

An epoch

Task 1

Task 2

(C) Timeslice scheduling with short timeslices

T 2

slice

Task 1

Task 2

(E) Fine-grained fair queueing on parallel I/O device

T 1

slice

T 2

slice

T 1

slice

T 2

slice

T 1

slice

Figure 1: Fairness and responsiveness of timeslice

scheduling and fine-grained fair queueing.

• An Intel 311 Flash-based SSD, released in 2011, us-

ing single-level cells (SLC) in which a particular cell

stores a single bit of information.

• An Intel X25-M Flash-based SSD, released in 2009,

using multi-level cells (MLC).

• AnOCZVertex 3 Flash-based SSD, released in 2011,

using MLC.

To acquire the native device properties, we bypass the

memory buffer (through direct I/O) and operating sys-

tem I/O scheduler (configuring Linux noop scheduler)

in these measurements. We also disable the device

write cache so that all writes reach the durable storage

medium.

Figure 2 shows the efficiency of Flash I/O parallelism

for 4KB reads, 4KB writes, and 128KB reads on our

SSDs. We observe that the parallel dispatch of multiple

4KB reads to an SSD lead to substantial throughput en-

hancement (up to 4-fold, 6-fold, and 7-fold for the three

SSDs respectively). However, the parallelism-induced

speedup is diminished by writes and large reads. We ob-

serve significant write parallelism only on the Vertex 3

SSD. Large reads suppress the parallel efficiency be-

cause a large read already uses the multiple channels in

a Flash device.

Such restricted parallelism leads to new challenges for

a fair queueing I/O scheduler. On one hand, the sched-

uler should allow the simultaneous dispatch of multiple

I/O requests to exploit the Flash parallel efficiency when

available. On the other hand, it must recognize the un-

fairness resulting from the interference of concurrently

dispatched I/O requests and mitigate it when necessary.

Diminished Benefits of Spatial Proximity One draw-

back for fine-grained fair queueing on mechanical disks

is that frequent task switches lead to poor spatial proxim-

ity and consequently high seek and rotation costs. For-

tunately, at the absence of such mechanical overhead,

Flash I/O performance is not as dependent on the I/O

spatial proximity. This is particularly the case for mod-

ern SSDs with write-order-based block mapping where

randomwrites become spatially contiguous on Flash due

to block remapping.

We run experiments to demonstrate such diminished

benefits of spatial proximity. Besides the three Flash-

based SSDs, we also include a conventional mechanical

disk (a 10KRPM Fujitsu SCSI drive) for the purpose of

comparison. Figure 3 shows the performance discrepan-

cies between random and sequential I/O on the storage

devices. The random I/O performance is measured when

each I/O operation is applied to a randomized offset ad-

dress in a 256MB file.

We observe that the sequential I/O for small (4KB)



0

1

2

4

6

8

10
R

a
n
d
o
m

/S
e
q
u
e
n
ti
a
l 
I/
O

 l
a
te

n
c
y
 r

a
ti
o

 

 
39

Read 4KB

Write 4KB

Read 128KB

Write 128KB

Intel 311 SSD

Intel X−25M SSD

OCZ Vertex 3 SSD

Fujitsu mechanical disk

Figure 3: The ratios of random I/O latency over sequen-

tial I/O latency for reads / writes at two I/O request gran-

ularities (4KB and 128KB) on three Flash-based SSDs.

reads are still beneficial for some SSDs (3-fold speedup

for the two Intel SSDs). However, such benefits are

much diminished compared to the 39-fold sequential

read speedup on the mechanical disk. The performance

difference between random and sequential I/O is further

diminished for writes and large-grained (128KB) I/O re-

quests on SSDs. These results also match the findings

in Chen et al.’s 2009 paper [4] for mid- and high-end

SSDs at the time. The diminished benefits of I/O spa-

tial proximity mitigates a critical drawback for adopting

fine-grained fair queueing on Flash-based SSDs. Particu-

larly in the case of small reads, while the fine-grained fair

queueing loses some sequential I/O efficiency, it gains

the much larger benefit of I/O parallelism on small reads.

Note that the poor sequential write performance on the

rotating mechanical disk in our measurement results is

due to the disabling of its write cache, in which case all

writes must reach the durable disk. Therefore the disk

head has typically rotated beyond the desired location

when a newwrite request arrives after a small delay (soft-

ware system processing) from the completion of the pre-

vious operation. This effect is particularly pronounced

in our measurement setup where the disk rotation time

dominates the seek time since our random I/O addresses

are limited in a small disk area (a 256MB file).

Deceptive Idleness Fair queueing I/O schedulers like

SFQ(D) [11] are work-conserving—they never idle the

device when there is pending work to do. However,

work-conserving I/O schedulers are susceptible to de-

ceptive idleness [10]—an active task that issues the next

request a short time after receiving the result of the pre-

vious one may temporarily appear to be idle. For fair

queueing schedulers, the deceptive idleness may let an

active task to be mistakenly considered as being “inac-

tive”. This can result in the premature advance of virtual

time for such “inactive tasks” and therefore unfairness.

Consider the simple example of a concurrent run in-

volving two tasks—one continuously issues I/O requests

with heavy resource usage (heavy task) while the other

continuously issues light I/O requests (light task). We

further assume that the I/O scheduler issues one request

to the device at a time (no parallelism). At the moment

when a request from the light task completes, the only

queued request is from the heavy task and therefore a

work-conserving I/O scheduler will dispatch it to the de-

vice. This effectively results in one-request-at-a-time al-

ternation between the two tasks and therefore unfairness

favoring the heavy task.

4 FlashFQ Design

In a concurrent system, many resource principals si-

multaneously compete for a shared I/O resource. The

scheduler should regulate I/O in such a way that accesses

are fair. When the storage device time is the bottleneck

resource in the system, fairness is the case that each re-

source principal acquires an equal amount of device time.

At the same time, responsiveness requires that each user

does not experience prolonged periods with no response

to its I/O requests. We present the design of our FlashFQ

I/O scheduler that achieves fairness and high responsive-

ness for Flash-based SSDs. It enhances the classic fair

queueing approach with new techniques to address the

problems of restricted parallelism and deceptive idleness

described in the last section.

Practical systems may desire fairness and responsive-

ness for different kinds of resource principals. For exam-

ple, a general-purpose operating system desires the sup-

port of fairness and responsiveness for concurrent appli-

cations. A server system wants such support for simulta-

neously running requests from multiple user classes. A

shared hosting platform needs fairness and responsive-

ness for multiple active cloud services (possibly encap-

sulated in virtual machines). Our I/O scheduling design

and much of our implementation can be generally ap-

plied to supporting arbitrary resource principals. When

describing the FlashFQ design, we use the term task to

represent the resource principal that receives the fairness

and responsiveness support in a concurrent system.

4.1 Fair Queueing Preliminaries

As described in Section 2, a considerable number of

fair queueing schedulers have been proposed in the past.

Our FlashFQ design is specifically based on SFQ(D) [11]

for two reasons. First, it inherits the advantage of Start-

time Fair Queueing (SFQ) [8, 9] that the virtual time can

be computed efficiently. Second, it allows the simultane-

ous dispatch of multiple requests which is necessary for

exploiting the internal parallelism on Flash devices.

SFQ(D) maintains a system-wide virtual time v(t). It



uses the virtual time to assign a start and finish tag to each

arriving request. The start tag is the larger of the current

system virtual time (at the request arrival time) and the

finish tag of the last request by the same task. The finish

tag is the start tag plus the expected resource usage of

the request. Request dispatch is ordered by each pending

request’s start tag. Multiple requests (up to the depth D)

can be dispatched to the device at the same time.

A key issue with SFQ(D) is the way the virtual time

v(t) is advanced and the related treatment of lagging

tasks—those that are slower than others in utilizing al-

lotted resources. If v(t) advances too quickly, it could

artificially bring forward the request start tags of lag-

ging tasks such that their unused resources are forfeited

which leads to unfairness. On the other hand, if the vir-

tual time advances too slowly, it could allow a lagging

task to build up its unused resources and utilize them in a

sudden burst of request arrivals that cause prolonged un-

responsiveness to others. Three versions of the scheduler

were proposed [11], with different ways of maintaining

the system virtual time—

• Min-SFQ(D) assigns the virtual time v(t) to be the

minimum start tag of any outstanding request at

time t. A request is outstanding if it has arrived but

not yet completed. A key problem with Min-SFQ(D)

is that its virtual time advances too slowly which

makes it susceptible to unresponsiveness caused by

a sudden burst of requests from a lagging task de-

scribed above.

• Max-SFQ(D)1 assigns the virtual time v(t) to be the
maximum start tag of dispatched requests on or be-

fore time t. A drawback with this approach is that

its virtual time may advance too quickly and result in

unfairness as described above.

• 4-Tag SFQ(D) attempts to combine the above two

approaches to mitigate each’s problem. Specifically,

it maintains two pairs of start / finish tags for each

request according to Min-SFQ(D) and Max-SFQ(D)

respectively. The request dispatch ordering is primar-

ily based on the Max-SFQ(D) start tags while ties are

broken using Min-SFQ(D) start tags.

4.2 Min-SFQ(D) with Throttled Dispatch

The characterization in Section 3 shows that Flash-

based SSDs exhibit restricted parallelism—while paral-

lel executions can sometimes produce higher through-

put, simultaneously dispatched requests may also inter-

fere with each other on the Flash device. Utilizing such

restricted parallelism may lead to uncontrolled resource

usage under any version of the SFQ(D) schedulers de-

1This version is called SFQ(D) in the original paper [11]. We use a

different name to avoid the confusion with the general reference to all

three SFQ(D) versions.

scribed above. Consider two tasks running together in

the system and each task issues no more than one request

at a time. If the I/O scheduler depth D≥2, then requests

of both tasks will be dispatched to the device without

delay at the scheduler. Interference at the Flash device

often results in unbalanced resource utilization between

the two tasks.

While such unbalanced resource utilization affects all

three SFQ(D) versions, it is particularly problematic

for Max-SFQ(D) and 4-Tag SFQ(D) who advance the

system virtual time too quickly—any request dispatch

from an aggressive task leads to an advance of the sys-

tem virtual time, and consequently the forfeiture of un-

used resources by the lagging tasks. In comparison,

Min-SFQ(D) properly accounts for the unbalanced re-

source utilization for all active tasks. Therefore we em-

ploy Min-SFQ(D) as the foundation of our scheduler.

Proper resource accounting alone is insufficient for

fairness, we need an additional control to mitigate the im-

balance of resource utilization between concurrent tasks.

Our solution is a new throttled dispatch mechanism.

Specifically, we monitor the relative progresses of con-

currently active tasks and block a request dispatch if the

progress of its issuing task is excessively ahead of the

most lagging task in the system (i.e, the difference be-

tween those tasks’ progress exceeds a threshold). Under

SFQ(D) schedulers, the progress of a task is represented

by its last dispatched start tag—the start tag of its most

recently dispatched request. When requests from aggres-

sive tasks (using more resources relative to their shares)

are blocked, lagging tasks can catch up with less inter-

ference at the device. The blocking is relieved as soon

as the imbalance of resource utilization falls below the

triggering threshold.

4.3 Anticipation for Fairness

A basic principle of fair queueing scheduling is that

when a task becomes inactive (it has no I/O requests to is-

sue), its resource share is not allowed to accumulate. The

rationale is simple—one has no claim to resources when

it has no intention of using them. Even Min-SFQ(D)—

which, among the three SFQ(D) versions, advances the

system virtual time most conservatively—ignores tasks

that do not have any outstanding I/O requests. As ex-

plained in Section 3, this approach may mistakenly con-

sider an active task to be “inactive” due to deceptive idle-

ness in I/O—an active task that issues the next request a

short time after receiving the result of the previous one

may temporarily appear to be idle to the I/O scheduler.

Even during a very short period of deceptive idleness,

the system virtual time may advance with no regard to

the deceptively “inactive” task, leading to the forfeiture

of its unused resources.



The deceptive idleness was first recognized to cause

undesirable task switches on mechanical disks that re-

sult in high seek and rotation delays. It was addressed

by anticipatory I/O [10] which temporarily idles the disk

(despite the existence of pending requests) to hope for a

soon-arriving new request (typically issued by the pro-

cess that is receiving the result of the just completed re-

quest) with better locality. We adopt anticipatory I/O for

a different purpose—ensuring the continuity of a task’s

“active” status when deceptive idleness appears between

its two consecutive requests. Specifically, when a syn-

chronous I/O request completes, the task that will be

receiving the result of the just completed request is al-

lowed to stay “active” for a certain period of time. Dur-

ing this period, we adjust Min-SFQ(D) to consider the

anticipated next request from the task as a hypothetical

outstanding request in its virtual time maintenance. The

start tag for the anticipated request, if arriving before the

anticipation expires, should be the finish tag of the last

request by the task.

The “active” status anticipation ensures that an active

task’s unused resources are not forfeited during deceptive

idleness. It also enables the dispatch-blocking of exces-

sively aggressive tasks (described in Section 4.2) when

the lagging task is deceptively idle for a short amount

of time. While both goals are important, anticipation

for these two cases have different implications. Specif-

ically, the anticipation that blocks the request dispatch

from aggressive tasks is not work-conserving—it may

leave the device idle while there is pending work—and

therefore may waste resources. We distinguish these two

anticipation purposes and allow a shorter timeout for the

non-work-conserving anticipation that blocks aggressive

tasks.

4.4 Knowledge of Request Cost

Recall that the request finish tag assignment requires

knowledge of the resource usage of a request (or its cost).

The determination of a request’s cost is an important

problem for realizing our fair queueing scheduler in prac-

tice and it deserves a careful discussion.

A basic question on this problem is by what time a

request’s cost must be known. This question is relevant

because it may be easier to estimate a request’s cost after

its completion. According to our design, this is when the

request’s finish tag is assigned. In theory, for fair queue-

ing schedulers that schedule requests based on their start

tag ordering [8, 9, 11] (including ours), only the start tag

assignments are directly needed for scheduling. A re-

quest’s finish tag assignment can be delayed to when it

is needed to compute some other request’s start tag. In

particular, one request (r1)’s finish tag is needed to com-

pute the start tag of the next arriving request (r2) by the

same task. Since the two requests may be dispatched in

parallel, r2’s start tag (and consequently r1’s finish tag)

might be needed before r1’s completion.

Given the potential need of knowing request costs

early, our system estimates a request’s cost at the time

of its arrival. Specifically, we model the cost of a Flash

I/O request based on its access type (read / write) and its

data size. For reads and writes respectively, we assume

a linear model (typically with a substantial nonzero off-

set) between the cost and data size of an I/O request.

Our estimation model requires the offline calibration of

the Flash I/O time for only four data access cases—read

4KB, read 128KB, write 4KB, and write 128KB. In

general, such calibration is performed once for each de-

vice. Additional (but infrequent) calibrations can be per-

formed for devices whose gradual wearout affects their

I/O performance characteristics.

5 Implementation Issues

FlashFQ can be implemented in an operating system

to regulate I/O resource usage by concurrent applica-

tions. It can also be implemented in a virtual machine

monitor to allocate I/O resources among active virtual

machines. As a prototype, we have implemented our

FlashFQ scheduler in Linux 2.6.33.4. Below we describe

several notable implementation issues.

Implementation in Linux An important feature of

Linux I/O schedulers is the support of plugging and re-

quest merging—request queue is plugged (blocking re-

quest dispatches) temporarily to allow physically con-

tiguous requests to merge into a larger request before dis-

patch. This is beneficial since serving a single large re-

quest is much more efficient than serving multiple small

requests. Request merging, however, is challenging for

our FlashFQ scheduler due to the need of re-computing

request tags and task virtual time when two requests

merge. For simplicity, we only implemented the most

common case of request back-merging—merging a new

arriving request (r2) to an existing queued request (r1) if

r2 contiguously follows (on the back of) r1.

While the original anticipatory I/O [10] requires a sin-

gle timer, our anticipation support may require multiple

outstanding timers due to the nature of parallelism in

our scheduler. Specifically, we may need to track de-

ceptive idleness of multiple parallel tasks. To minimize

the cost of parallel timer management, our implementa-

tion maintains a list of pending timers ranked by their

fire time (we call them logical timers). Only the first log-

ical timer (with the soonest fire time) is supported by a

physical system timer. Most logical timer manipulations

(add / delete timers) do not involve the physical system

timer unless the first logical timer is changed.



Our prototype implementation runs on the ext4 file

system. We mount the file system with the noatime op-

tion to avoid metadata updates on file reads. Note that the

metadata updates (on modification timestamps) are still

necessary for file writes. The original ext4 file system

uses very fine-grained file timestamps (in nanoseconds)

so that each file write always leads to a new modification

time and thus triggers an additional metadata write. This

is unnecessarily burdensome to many write-intensive ap-

plications. We revert back to file timestamps in the gran-

ularity of seconds (which is the default in Linux file

systems that do not make customized settings). In this

case, at most one timestamp metadata write per second

is needed regardless how often the file is modified.

Parameter Settings We describe important parameter

settings and their tuning guidelines in FlashFQ. The

depth D in SFQ(D) represents the maximum device dis-

patch parallelism. A higher depth allows the exploitation

of more parallel efficiency (if supported on the device)

while large parallel dispatches weaken the scheduler’s

ability to regulate I/O resources in a fine-grained fash-

ion. Our basic principle is to set a minimum depth that

can exploit most of the device-level I/O parallelism. Ac-

cording to the parallel efficiency of the three SSDs in

Figure 2, we set the depth D to 16 for all three SSDs.

For throttled dispatch, we set the task progress dif-

ference threshold that triggers the dispatch-blocking to

be 100millisecs. This threshold represents a tradeoff

between fairness and efficiency—how much temporary

resource utilization imbalance is tolerated to utilize re-

stricted device parallelism?

The “active” status anticipation timeout is set to

20millisecs—a task is considered to be continuously ac-

tive as long as its inter-request thinktime does not exceed

20millisecs. We set a shorter timeout (2millisecs) for

the anticipation that blocks aggressive tasks while leav-

ing the device idle. The latter anticipation timeout is

shorter because it may waste resources (as explained in

Section 4.3).

I/O Context Our FlashFQ design in Section 4 uses a

task to represent a resource principal that receives fair-

ness support. In Linux I/O schedulers, each resource

principal is represented by an I/O context. By default, a

unique I/O context is created for each process or thread.

However, it is sometimes more desirable to group a num-

ber of related processes as a single resource principal—

for instance, all httpd processes in an Apache web

server. In Linux, such grouping is accomplished for a set

of processes created by the fork() / clone() system

call with the CLONE IO flag. We added the CLONE IO

flag to relevant fork() system calls in the Apache

web server so that all httpd processes in a web server

share a unified I/O context. We also fixed a problem in

the original Linux that fails to unify the I/O context if

fork(CLONE IO) is called when the parent process has

not yet initialized its I/O context.

One problem we observed in our Linux/ext4-based

prototyping and experimentation is that the journaling-

related I/O requests are issued from the I/O context of the

JBD2 journaling daemon and they compete for I/O re-

sources as if they represent a separate resource principal.

However, since journaling I/O are by-products of higher-

layer I/O requests originated from applications, ideally

they should be accounted in the I/O contexts of respec-

tive original applications. We have not yet implemented

this accounting in our current prototype. To avoid re-

source mis-management due to the JBD2 I/O context in

Linux, we disabled ext4 journaling in our experimental

evaluation.

6 Experimental Evaluation

We compare FlashFQ against alternative fairness-

oriented I/O schedulers. One alternative is Linux CFQ.

The second alternative (Quanta) is our implementation

of a quanta-based I/O scheduler that follows the basic

principles in Argon [19]. Quanta puts a high priority on

achieving fair resource use (even if some tasks only have

partial I/O load). All tasks take round robin turns of I/O

quanta. Each task has exclusive access to the storage de-

vice within its quantum. Once an I/O quantum begins,

it will last to its end, regardless of how few requests are

issued by the corresponding task. However, a quantum

will not begin, if no request from the corresponding task

is pending. The third alternative is the FIOS I/O sched-

uler developed in our earlier work [17]. FIOS allows si-

multaneous request dispatches from multiple tasks to ex-

ploit Flash I/O parallelism, as long as the per-task times-

lice constraint is maintained. FIOS also prioritizes reads

over writes and it reclaims unused resources by inactive

tasks. The fourth alternative is 4-Tag SFQ(D) [11]. Fi-

nally, we compare against the raw device I/O in which

requests are always dispatched immediately (without de-

lay) to the storage device.

Three of the alternative schedulers (Linux CFQ,

Quanta, and FIOS) are timeslice-based. Timeslice pa-

rameters for these schedulers follow the default settings

for synchronous I/O operations in Linux. Specifically,

Linux tries to limit the epoch size and the maximum un-

responsiveness at 300millisecs. Therefore when multi-

ple (n) tasks compete for I/O simultaneously, the per-

task timeslice is set at 300

n
millisecs. This setting is sub-

ject to the lower bound of 16millisecs and the upper

bound of 100millisecs in Linux. To assess the effect

of timeslice scheduling with short timeslices, we include

a new setting that configures the per-task timeslice at
60

n
millisecs when n tasks compete for I/O simultane-



ously (with the goal of limiting the maximum unrespon-

siveness at 60millisecs). We also shorten the timeslice

lower bound to 1millisec. We include FIOS with such

short timeslice setting in our evaluation and we call it

FIOS-ShortTS.

Our experiments utilize the three Flash-based stor-

age devices (Intel 311, Intel X25-M, and OCZ Vertex 3

SSDs) that were described earlier in Section 3. On both

Intel SSDs, writes are substantially slower than reads (by

about 4-fold and 6-fold on Intel 311 and Intel X25-M

respectively). The Vertex drive employs a SandForce

controller which supports new write acceleration tech-

niques such as online compression. The Vertex write

performance only moderately lags behind the read per-

formance. For instance, a 4KB read and a 4KB write

take 0.18 and 0.22millisec respectively on the drive.

6.1 Evaluation on Task Fairness

Fairness is defined as the case that each task gains its

share of resources in concurrent execution. When n tasks

compete for I/O simultaneously, equal resource sharing

suggests that each task should experience a factor of n

slowdown compared to running-alone, or proportional

slowdown. This is our first fairness measure. We fur-

ther note that better performance for some tasks may be

achieved when others do not utilize all of their allotted

resource shares. Some tasks may also gain better I/O ef-

ficiency during concurrent runs by exploiting the device-

level I/O parallelism. When all tasks experience better

performance than the proportional slowdown, we further

measure fairness according to the slowdown of the slow-

est task. Specifically, scheduler S1 achieves better fair-

ness than scheduler S2 if the slowest task underS1 makes

more progress than the slowest task does under S2.

We use a variety of synthetic I/O benchmarks to eval-

uate the scheduling fairness in different resource compe-

tition scenarios. Each benchmark contains a number of

tasks issuing I/O requests of different types and sizes—

• a concurrent run with a reader continuously issuing

4KB reads and a writer continuously issuing 4KB

writes;

• a concurrent run with sixteen 4KB readers and six-

teen 4KB writers;

• a concurrent run with sixteen 4KB readers and six-

teen 128KB readers;

• a concurrent run with sixteen 4KB writers and six-

teen 128KB writers.

In order for these I/O patterns to reach the I/O scheduler

at the block device layer, we perform direct I/O to bypass

the memory buffer in these tests.

Figure 4 shows the fairness and performance under

different schedulers. The raw device I/O, Linux CFQ,

and 4-Tag SFQ(D) fail to achieve fairness by substan-

tially missing the proportional slowdown in many cases.

Specifically, lighter tasks (issuing reads instead of writes,

issuing smaller I/O operations instead of larger ones) ex-

perience many times the proportional slowdown while

heavy tasks experience much less slowdown in concur-

rent runs. Because raw device I/O makes no scheduling

attempt, I/O operations are interleaved as they are issued

by applications, severely affecting the response of light

requests. The Linux CFQ does not perform much bet-

ter because it disables I/O anticipation for non-rotating

storage devices like Flash. For instance, without antic-

ipation, two-task executions degenerate to one-request-

at-a-time alternation between the two tasks and therefore

poor fairness. 4-Tag SFQ(D) also suffers from poor fair-

ness since its unthrottled parallel dispatches make it be-

have like the raw device I/O in many cases.

Under the Quanta scheduler, tasks generally experi-

ence similar slowdown in most cases. But such “fair-

ness” is attained at substantial degradation of I/O ef-

ficiency due to its aggressive maintenance of per-task

quantum. Specifically, its strict quanta enforcement

throws away unused resources by some tasks. It also

fails to exploit device I/O parallelism, as demonstrated

by its poor performance in cases with large numbers of

concurrent tasks.

Both FIOS and FlashFQ maintain fairness (approx-

imately at or below proportional slowdown) in all the

evaluation cases. Furthermore, both FIOS and FlashFQ

can exploit the device I/O parallelism when available and

achieve the best performance in all evaluation cases.

FIOS-ShortTS achieves good fairness for the single

reader, single writer case (first row in Figure 4). How-

ever, it exhibits degraded fairness (compared to the orig-

inal FIOS and FlashFQ) in cases with large numbers of

concurrent tasks due to very short timeslices. In partic-

ular, it fails to maintain proportional slowdown for 16

4KB-writers, 16 128KB-writers on the two Intel SSDs

(substantially so on Intel X25-M). It also produces rela-

tively poor worst-task-slowdown compared to the origi-

nal FIOS and FlashFQ in some other cases (particularly

tests with 16 4KB-readers, 16 128KB-readers).

6.2 Evaluation on Responsiveness

The fairness evaluation shows that only FIOS and

FlashFQ consistently achieve fairness for a variety of

workload scenarios on the three SSDs. As a timeslice

scheduler, however, FIOS achieves fairness at the cost

of poor responsiveness. Even though FIOS allows si-

multaneous request dispatches from multiple tasks, the

timeslice constraint at the end of each epoch still leads to

long unresponsiveness for light tasks who complete their

timeslices early.



0

2

4

6

8

proportional
slowdown

←

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

I/
O

 s
lo

w
d
o
w

n
 r

a
ti
o

1 4KB−reader, 1 4KB−writer on Intel 311

0

2

4

6

8

I/
O

 s
lo

w
d
o
w

n
 r

a
ti
o

1 4KB−reader, 1 4KB−writer on Intel X25−M

 

 

proportional
slowdown

←

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

4KB−reader I/O latency 4KB−writer I/O latency

0

2

4

6

8

proportional
slowdown

←

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

I/
O

 s
lo

w
d
o
w

n
 r

a
ti
o

1 4KB−reader, 1 4KB−writer on Vertex

0

32

64

96

128

proportional
slowdown

←

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

I/
O

 s
lo

w
d
o
w

n
 r

a
ti
o

16 4KB−readers, 16 4KB−writers on Intel 311

0

32

64

96

128

I/
O

 s
lo

w
d
o
w

n
 r

a
ti
o

16 4KB−readers, 16 4KB−writers on Intel X25−M

 

 

proportional
slowdown

←

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

4KB−reader I/O latency 4KB−writer I/O latency

0

32

64

96

128

proportional
slowdown

←

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

I/
O

 s
lo

w
d
o
w

n
 r

a
ti
o

16 4KB−readers, 16 4KB−writers on Vertex

0

32

64

96

128

proportional
slowdown

←

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

I/
O

 s
lo

w
d
o
w

n
 r

a
ti
o

16 4KB−readers, 16 128KB−readers on Intel 311

0

32

64

96

128

I/
O

 s
lo

w
d
o
w

n
 r

a
ti
o

16 4KB−readers, 16 128KB−readers on Intel X25−M

 

 

proportional
slowdown

←

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

4KB−reader I/O latency 128KB−reader I/O latency

0

32

64

96

128

proportional
slowdown

←

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

I/
O

 s
lo

w
d
o
w

n
 r

a
ti
o

16 4KB−readrs, 16 128KB−readers on Vertex

0

32

64

96

128

proportional
slowdown

←

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

I/
O

 s
lo

w
d
o
w

n
 r

a
ti
o

16 4KB−writers, 16 128KB−writers on Intel 311

0

32

64

96

128

I/
O

 s
lo

w
d
o
w

n
 r

a
ti
o

16 4KB−writers, 16 128KB−writers on Intel X25−M

 

 

proportional
slowdown

←

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

4KB−writer I/O latency 128KB−writer I/O latency

0

32

64

96

128

proportional
slowdown

←

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

I/
O

 s
lo

w
d
o
w

n
 r

a
ti
o

16 4KB−writers, 16 128KB−writers on Vertex

Figure 4: Fairness and performance of synthetic benchmarks under different I/O schedulers. The I/O slowdown ratio

for a task is its average I/O latency normalized to that when running alone. For a run with multiple tasks per class

(e.g., 16 readers and 16 writers), we only show the performance of the slowest task per class (e.g., the slowest reader

and slowest writer). Results cover four workload scenarios (corresponding to the four rows) and three Flash-based

SSDs (corresponding to the three columns). For each case, we mark the slowdown ratio that is proportional to the total

number of tasks in the system.



0

20

40

60

80

100

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

9
9
.9

%
−

ti
le

 r
e
s
p
o
n
s
e
 t

im
e
 (

m
s
e
c
s
) 1 4KB−reader, 1 4KB−writer on Intel 311

0

20

40

60

80

100

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

9
9
.9

%
−

ti
le

 r
e
s
p
o
n
s
e
 t

im
e
 (

m
s
e
c
s
) 1 4KB−reader, 1 4KB−writer on Intel X25−M

0

20

40

60

80

100

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

9
9
.9

%
−

ti
le

 r
e
s
p
o
n
s
e
 t

im
e
 (

m
s
e
c
s
) 1 4KB−reader, 1 4KB−writer on Vertex

0

100

200

300

400

500

600

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

9
9

.9
%

−
ti
le

 r
e
s
p
o
n
s
e
 t

im
e
 (

m
s
e
c
s
) 16 4KB−readers, 16 4KB−writers on Intel 311

0

100

200

300

400

500

600

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

9
9

.9
%

−
ti
le

 r
e
s
p
o
n
s
e
 t

im
e
 (

m
s
e
c
s
) 16 4KB−readers, 16 4KB−writers on Intel X25−M

0

100

200

300

400

500

600

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

9
9

.9
%

−
ti
le

 r
e
s
p
o
n
s
e
 t

im
e
 (

m
s
e
c
s
) 16 4KB−readers, 16 4KB−writers on Vertex

0

100

200

300

400

500

600

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

9
9

.9
%

−
ti
le

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
s
e

c
s
) 16 4KB−readers, 16 128KB−readers on Intel 311

0

100

200

300

400

500

600

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

9
9

.9
%

−
ti
le

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
s
e

c
s
) 16 4KB−readers, 16 128KB−readers on Intel X25−M

0

100

200

300

400

500

600

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

9
9

.9
%

−
ti
le

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
s
e

c
s
) 16 4KB−readers, 16 128KB−readers on Vertex

0

200

400

600

800

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

9
9

.9
%

−
ti
le

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
s
e

c
s
) 16 4KB−writers, 16 128KB−writers on Intel 311

0

200

400

600

800

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

9
9

.9
%

−
ti
le

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
s
e

c
s
) 16 4KB−writers, 16 128KB−writers on Intel X25−M

0

100

200

300

400

500

600

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

9
9

.9
%

−
ti
le

 r
e

s
p

o
n

s
e

 t
im

e
 (

m
s
e

c
s
) 16 4KB−writers, 16 128KB−writers on Vertex

Figure 5: Worst-case (99.9-percentile) response time for four workload scenarios (rows) on three SSDs (columns)

under different I/O schedulers.

In a system with high responsiveness, no task should

experience prolonged periods of no response to its

outstanding requests. We use the worst-case (99.9-

percentile) I/O request response time during the execu-

tion as a measure of the system responsiveness. Figure 5

shows the responsiveness for our four workload scenar-

ios on the three SSDs. Results clearly show poor respon-

siveness for the three timeslice schedulers (Linux CFQ,

Quanta, and FIOS) in many of the test scenarios. In par-

ticular, they exhibit worst-case response time at half a

second or more in some highly concurrent executions.

In comparison, FlashFQ shows much better respon-

siveness than these approaches (reaching an order of

magnitude response time reduction in many cases). At

the same time, we observe that FlashFQ’s worst-case re-

sponse time is quite long for the case of 16 4KB-writers

and 16 128KB-writers on the two Intel drives (left two

plots in the bottom row). This is due to the long write



0 1 2 3 4 5
0

50

100

150

200

Execution timeline (secs)

R
e
s
p
o
n
s
 t
im

e
 (

m
s
e
c
s
)

Quanta I/O scheduler

0 1 2 3 4 5
0

50

100

150

200

Execution timeline (secs)

R
e
s
p
o
n
s
 t
im

e
 (

m
s
e
c
s
)

FIOS I/O scheduler

0 1 2 3 4 5
0

50

100

150

200

Execution timeline (secs)

R
e
s
p
o
n
s
 t
im

e
 (

m
s
e
c
s
)

FIOS with short timeslices

0 1 2 3 4 5
0

50

100

150

200

Execution timeline (secs)

R
e
s
p
o
n
s
 t
im

e
 (

m
s
e
c
s
)

FlashFQ I/O scheduler

Figure 7: Time of Apache request responses under Quanta, FIOS, FIOS-ShortTS, and FlashFQ I/O schedulers. Each

dot represents a request, whose X-coordinate indicates its timestamp in the execution while its Y-coordinate indicates

its response time.

0

2

10

20

R
e
q
u
e
s
t 
s
lo

w
d
o
w

n
 r

a
ti
o

Apache web server and Kyoto Cabinet on Intel 311

 

 
29 24

proportional
slowdown

←

Raw device I/O

Linux CFQ

Quanta

FIOS
FIOS−ShortTS

4−Tag SFQ(D)

FlashFQ

Apache

Kyoto Cabinet

Figure 6: Fairness and performance of the read-only

Apache web server workload running with a write-

mostly Kyoto Cabinet key-value workload. The slow-

down ratio for an application is its average request re-

sponse time normalized to that when running alone.

time on these drives and the sheer amount of time to sim-

ply iterate through all 32 tasks while processing at least

one request from each. This is evidenced by the long

response time even under raw device I/O.

FIOS-ShortTS indeed exhibits much better respon-

siveness than the original FIOS. But this comes at the

cost of degraded fairness (as shown in Section 6.1). Fur-

thermore, FlashFQ still achieves better responsiveness

than FIOS-ShortTS as any timeslice maintenance (even

for very short timeslices) adds some scheduling con-

straint that impedes the system responsiveness.

6.3 Evaluation with the Apache Web Server
and Kyoto Cabinet

Beyond the synthetic benchmarks, we evaluate the ef-

fect of I/O schedulers using realistic data-intensive ap-

plications. We run the Apache 2.2.3 web server over a

set of HTTP objects according to the size distribution

in the SPECweb99 specification. The total data size is

15GB and the workload is I/O-intensive on a machine

with 2GB memory. As explained in Section 5, we at-

tached the CLONE IO flag to relevant fork() system

calls in the Apache web server so that all httpd pro-

cesses in the web server share a unified I/O context. Our

web server is driven by a client that issues requests back-

to-back (i.e., issuing a new request as soon as the previ-

ous one returns). The client runs on a different machine

in a low-latency local area network.

Together with the read-only web server, we run a

write-intensive workload on the Kyoto Cabinet 1.2.76

key-value store. In our workload, the value field of

each key-value record is 128KB. We pre-populate 1000

records in a database and our test workload issues “re-

place” requests each of which updates the value of a

randomly chosen existing record. Each record replace

is performed in a synchronous transaction supported

by Kyoto Cabinet. In our workload, eight back-to-

back clients operate on eight separate Kyoto Cabinet

databases. All databases belong to a single I/O context

that competes with the Apache I/O context.

Figure 6 illustrates the fairness under different I/O

schedulers on the Intel 311 SSD. Since the Kyoto Cab-

inet workload consists of large write requests at high

concurrency, it tends to be an aggressive I/O resource

consumer and the Apache workload is naturally suscep-

tible to more slowdown. Among the seven schedul-

ing approaches, only FlashFQ can approximately meet

the fairness goal of proportional slowdown for both ap-

plications. Among the alternatives, Quanta, FIOS and

FIOS-ShortTS exhibit better fairness than others. Specif-

ically, the Apache slowdown under Quanta, FIOS and

FIOS-ShortTS are 4.1×, 3.6×, and 4.6× respectively.

Among the four schedulers with best fairness (Quanta,

FIOS, FIOS-ShortTS, and FlashFQ), we illustrate the

timeline of Apache request responses in Figure 7. Un-

der Quanta, we observe periodic long responses (up to

200millisecs) due to its timeslice management. The

worst-case responses are around 100millisecs under

FIOS and FIOS-ShortTS. In comparison, FlashFQ

achieves the best responsiveness with all requests re-

sponded within 50millisecs.



7 Conclusion

This paper presents FlashFQ—a new Flash I/O sched-

uler that attains fairness and high responsiveness at

the same time. The design of FlashFQ is motivated

by unique characteristics on Flash-based SSDs—1) re-

stricted parallelism with interference on SSDs presents

a tension between efficiency and fairness, and 2) the di-

minished benefits of I/O spatial proximity on SSDs al-

low fine-grained task interleaving without much loss of

I/O performance. FlashFQ enhances the start-time fair

queueing schedulers with throttled dispatch to exploit re-

stricted Flash I/O parallelism without losing fairness. It

also employs I/O anticipation to minimize fairness viola-

tion due to deceptive idleness. We evaluated FlashFQ’s

fairness and responsiveness and compared against sev-

eral alternative schedulers. Only FIOS [17] achieves fair-

ness as well as FlashFQ does but it exhibits much worse

responsiveness. FIOS with short timeslices can improve

its responsiveness, but it does so at the cost of degraded

fairness.

Acknowledgments This work was supported in part

by the National Science Foundation grants CCF-

0937571, CNS-1217372, and CNS-1239423. Kai Shen

was also supported by a Google Research Award. We

thank Jeff Chase for clarifying the design of the SFQ(D)

scheduler. We also thank the anonymous USENIX ATC

reviewers and our shepherd Prashant Shenoy for com-

ments that helped improve this paper.

References

[1] N. Agrawal, V. Prabhakaran, T. Wobber, J. D. Davis,

M. Manasse, and R. Panigrahy. Design tradeoffs for SSD

performance. In USENIX Annual Technical Conf., pages

57–70, Boston, MA, June 2008.

[2] J. Axboe. Linux block IO — present and future. In Ot-

tawa Linux Symp., pages 51–61, Ottawa, Canada, July

2004.

[3] J. Bruno, J. Brustoloni, E. Gabber, B. Ozden, and A. Sil-

berschatz. Disk scheduling with quality of service quar-

antees. In IEEE Int’l Conf. on Multimedia Computing and

Systems, pages 400–405, Florence , Italy, June 1999.

[4] F. Chen, D. A. Koufaty, and X. Zhang. Understanding

intrinsic characteristics and system implications of Flash

memory based solid state drives. In ACM SIGMETRICS,

pages 181–192, Seattle, WA, June 2009.

[5] H. Dai, M. Neufeld, and R. Han. ELF: An efficient log-

structured Flash file system for micro sensor nodes. In

SenSys’04: Second ACM Conf. on Embedded Networked

Sensor Systems, pages 176–187, Baltimore, MD, Nov.

2004.

[6] A. Demers, S. Keshav, and S. Shenker. Analysis and sim-

ulation of a fair queueing algorithm. In ACM SIGCOMM,

pages 1–12, Austin, TX, Sept. 1989.

[7] M. Dunn and A. L. N. Reddy. A new I/O scheduler for

solid state devices. Technical Report TAMU-ECE-2009-

02, Dept. of Electrical and Computer Engineering, Texas

A&M Univ., Apr. 2009.

[8] P. Goyal, H. M. Vin, and H. Cheng. Start-time fair

queueing: A scheduling algorithm for integrated services

packet switching networks. IEEE/ACM Trans. on Net-

working, 5(5):690–704, Oct. 1997.

[9] A. G. Greenberg and N. Madras. How fair is fair queuing.

Journal of the ACM, 39(3):568–598, July 1992.

[10] S. Iyer and P. Druschel. Anticipatory scheduling: A disk

scheduling framework to overcome deceptive idleness in

synchronous I/O. In SOSP’01: 18th ACM Symp. on Oper-

ating Systems Principles, pages 117–130, Banff, Canada,

Oct. 2001.

[11] W. Jin, J. S. Chase, and J. Kaur. Interposed proportional

sharing for a storage service utility. In ACM SIGMET-

RICS, pages 37–48, New York, NY, June 2004.

[12] J. Kim, Y. Oh, E. Kim, J. Choi, D. Lee, and S. H. Noh.

Disk schedulers for solid state drives. In EMSOFT’09:

7th ACM Conf. on Embedded Software, pages 295–304,

Grenoble, France, Oct. 2009.

[13] J. Kim, S. Seo, D. Jung, J.-S. Kim, and J. Huh. Parameter-

aware I/O management for solid state disks (SSDs). IEEE

Trans. on Computers, Apr. 2011.

[14] R. Konishi, Y. Amagai, K. Sato, H. Hifumi, S. Kihara, and

S. Moriai. The Linux implementation of a log-structured

file system. ACM SIGOPS Operating Systems Review,

40(3):102–107, July 2006.

[15] A. Leventhal. Flash storage memory. Communications of

the ACM, 51(7):47–51, July 2008.

[16] A. K. Parekh. A generalized processor sharing approach

to flow control in integrated services networks. PhD the-

sis, Dept. Elec. Eng. Comput. Sci., MIT, 1992.

[17] S. Park and K. Shen. FIOS: A fair, efficient Flash I/O

scheduler. In FAST’12: 10th USENIX Conf. on File and

Storage Technologies, San Jose, CA, Feb. 2012.

[18] P. J. Shenoy and H. M. Vin. Cello: A disk schedul-

ing framework for next generation operating systems. In

ACM SIGMETRICS, pages 44–55, Madison, WI, June

1998.

[19] M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R.

Ganger. Argon: Performance insulation for shared stor-

age servers. In FAST’07: 5th USENIX Conf. on File and

Storage Technologies, pages 61–76, San Jose, CA, Feb.

2007.

[20] J. Zhang, A. Sivasubramaniam, Q. Wang, A. Riska,

and E. Riedel. Storage performance virtualization via

throughput and latency control. ACM Trans. on Storage,

2(3):283–308, Aug. 2006.




