
Parallel Sparse LU Factorization on

Different Message Passing Platforms

Kai Shen

Department of Computer Science, University of Rochester

Rochester, NY 14627, USA

Abstract

Several message passing-based parallel solvers have been developed for general (non-
symmetric) sparse LU factorization with partial pivoting. Existing solvers were
mostly deployed and evaluated on parallel computing platforms with high message
passing performance (e.g., 1–10 µs in message latency and 100–1000 Mbytes/sec in
message throughput) while little attention has been paid on slower platforms. This
paper investigates techniques that are specifically beneficial for LU factorization on
platforms with slow message passing. In the context of the S+ distributed memory
solver, we find that significant reduction in the application message passing over-
head can be attained at the cost of extra computation and slightly weakened numer-
ical stability. In particular, we propose batch pivoting to make pivot selections in
groups through speculative factorization, and thus substantially decrease the inter-
processor synchronization granularity. We experimented on three different message
passing platforms with different communication speeds. While the proposed tech-
niques provide no performance benefit and even slightly weaken numerical stability
on an IBM Regatta multiprocessor with fast message passing, they improve the
performance of our test matrices by 15–460% on an Ethernet-connected 16-node
PC cluster. Given the different tradeoffs of communication-reduction techniques
on different message passing platforms, we also propose a sampling-based runtime
application adaptation approach that automatically determines whether these tech-
niques should be employed for a given platform and input matrix.

Key words: Applications and performance analysis, Parallel algorithms and
implementations, Sparse LU factorization with partial pivoting, Message passing
performance, Application adaptation

Email address: kshen@cs.rochester.edu (Kai Shen).
URL: www.cs.rochester.edu/u/kshen (Kai Shen).

Preprint submitted to Elsevier Science 27 July 2006

1 Introduction

The solution of sparse linear systems [1] is a computational bottleneck in many
scientific computing problems. Direct methods for solving non-symmetric lin-
ear systems often employ partial pivoting to maintain numerical stability. At
each step of the LU factorization, the pivoting process performs row exchanges
so that the diagonal element has the largest absolute value among all elements
of the corresponding pivot column. Sparse LU factorization has been exten-
sively studied in the past. Solvers like UMFPACK [2] run on serial computing
platforms. Parallel solvers such as SuperLU MT [3,4], WSMP [5], and PAR-
DISO [6] were developed specifically for shared memory machines and inter-
processor communications in them take place through access to the shared
memory. Other solvers like van der Stappen et al. [7], S+ [8,9], SPOOLES [10],
MUMPS [11], and SuperLU DIST [12] employ explicit message passing which
allows them to run on non-cache-coherent distributed memory computing plat-
forms.

Despite the apparent portability of message passing-based parallel code, ex-
isting solvers were mostly deployed and evaluated on tightly-coupled parallel
computing platforms with high message passing performance, e.g., those with
1–10µs in message latency and 100–1000 Mbytes/sec in message throughput.
They may exhibit poor scalability on much slower message passing platforms
that are constrained by the network hardware capabilities (such as Ethernet-
connected PC clusters) or the software overhead (like TCP/IP processing).
One primary reason for slow LU factorization performance on these platforms
is that the application requires fine-grain synchronization and large commu-
nication volume between computing nodes. The key to improve the parallel
application performance on platforms with slow message passing is to reduce
the application inter-processor communications.

This paper studies communication-reduction techniques in the context of the
S+ solver [8,9], which uses static symbolic factorization, supernodal matrix
partitioning, and two-dimensional data mapping. In such a solver, the column-
by-column pivot selection and accompanied row exchanges result in significant
message passing overhead when selected pivots do not reside on the same pro-
cessors as corresponding diagonals. In this paper, we propose a novel tech-
nique called speculative batch pivoting, under which large elements for a group
of columns at all processors are collected at one processor and then the pivot
selections for these columns are made together through speculative factoriza-
tion. These pivot selections are accepted if the chosen pivots pass a numeri-
cal stability test. Otherwise, the scheme would fall back to the conventional
column-by-column pivot selection for this group of columns. Speculative batch
pivoting substantially decreases the inter-processor synchronization granular-
ity compared with the conventional approach. This reduction is made at the

2

cost of increased computation (i.e., the cost of speculative factorization) and
slightly weakened numerical stability.

Communication-reduction techniques such as the speculative batch pivoting
and previously proposed threshold pivoting [1] may not yield much perfor-
mance improvement when running on systems with fast message passing.
Considering their potential side effects (e.g., weakened numerical stability),
it might not be worthwhile to employ these techniques on such platforms.
Therefore it is important to determine the appropriateness of these techniques
according to the underlying message passing speed. Such decision might also
depend on the input matrix whose nonzero patterns and numerical values af-
fect the application communication patterns. In this paper, we propose a run-
time sampling approach to estimate the benefit of communication-reduction
techniques on the underlying message passing platform and input matrix. The
decision on whether to employ these techniques is then made based on the es-
timated performance gain.

We acknowledge that our proposed pivoting techniques would not benefit
solvers that already require no communications for pivoting. In particular, Su-
perLU DIST [12] performs pre-factorization large diagonal permutation and
then pivots down the diagonal entries without any row swapping during factor-
ization. MUMPS [11,13] distributes data in a way that pivoting is within one
processor and thus no message passing is required. Some other communication-
reduction techniques might be needed to improve the performance and scal-
ability of these solvers on platforms with slow message passing. These issues
fall beyond the scope of this paper.

We organize the rest of this paper as follows. Section 2 introduces some back-
ground knowledge on parallel sparse LU factorization. Section 3 assesses the
existing application performance on parallel computing platforms with dif-
ferent message passing performance. Section 4 describes techniques that can
improve the application performance on platforms with slow message passing.
Section 5 evaluates the performance and numerical stability of communication-
reduction techniques on several different message passing platforms. We also
provide a direct comparison of the new S+ with the latest SuperLU DIST and
MUMPS solvers. Section 6 presents the design and evaluation of a sampling-
based application adaptation scheme. Section 7 discusses related work and
Section 8 concludes the paper.

2 Background on Parallel Sparse LU Factorization

LU factorization with partial pivoting decomposes a non-symmetric sparse
matrix A into two matrices L and U , such that PAQ = LU , where L is a unit

3

lower triangular matrix and U is an upper triangular matrix. P and Q are
permutation matrices containing the pivoting and column reordering informa-
tion respectively. Combined with the forward and backward substitution, the
result of LU factorization can be used to solve linear system Ax = b. In this
section, we describe some key components in parallel sparse LU factorization
and the S+ solver in particular.

Static symbolic factorization In sparse LU factorization, some zero el-
ements may become nonzeros at runtime due to factorization and pivoting.
Predicting these elements (called fill-ins) can help avoid costly data structure
variations during the factorization. The static symbolic factorization [14] can
identify the worst case fill-ins without knowing numerical values of elements.
The basic idea is to statically consider all possible pivoting choices at each
step of the LU factorization and space is allocated for all possible nonzero
entries. In addition to providing space requirement prediction, static symbolic
factorization can also help identify dense components in the sparse matrix for
further optimizations.

Since static symbolic factorization considers all possible pivoting choices at
each factorization step, it might overestimate the fill-ins which leads to unnec-
essary space consumption and extra computation on zero elements. As a result,
S+ with static symbolic factorization has relatively slow uni-processor perfor-
mance. On the other hand, it exhibits competitive parallel performance [8,9]
due to the exploitation of dense data structures and the absence of runtime
data structure variation.

L/U supernode partitioning After the fill-in pattern of a matrix is pre-
dicted, the matrix can be partitioned using a supernodal approach to identify
dense components for better caching performance. In [4], a non-symmetric
supernode is defined as a group of consecutive columns, in which the cor-
responding L part has a dense lower triangular block on the diagonal and
the same nonzero pattern below the diagonal. Based on this definition, the L
part of each column block only contains dense subrows. Here by “subrow”, we
mean the contiguous part of a row within a supernode. After an L supernode
partitioning has been performed on a sparse matrix A, the same partitioning
is applied to the rows of A to further break each supernode into submatrices.
Since coarse-grain partitioning can produce large submatrices which do not fit
into the cache, an upper bound on the supernode size is usually enforced in
the partitioning.

After the L/U supernode partitioning, each diagonal submatrix is dense, and
each nonzero off-diagonal submatrix in the L part contains only dense sub-
rows, and furthermore each nonzero submatrix in the U part of A contains

4

4 5 6 7 8

1

2

8

21 3

3

4

5

7

6

Fig. 1. Example of a partitioned sparse matrix.

only dense subcolumns. This is the key to maximize the use of BLAS-3 sub-
routines [15], which is known to provide high caching performance. Figure 1
illustrates an example of a partitioned sparse matrix and the black areas depict
dense submatrices, subrows, and subcolumns.

Data mapping After symbolic factorization and matrix partitioning, a par-
titioned sparse matrix A has N×N submatrix blocks. For example, the matrix
in Figure 1 has 8×8 submatrices. For notational differentiation, we use capital
letter symbols to represent block-level entities while we use lowercase letter
symbols for element-level entities. For example, we use ai,j to represent A’s
element in row i and column j while AI,J denotes the submatrix in A with
row block index I and column block index J . We also let LI,J and UI,J denote
a submatrix in the lower and upper triangular part of matrix A respectively.

For block-oriented matrix computation, one-dimensional (1D) column block
cyclic mapping and two-dimensional (2D) block cyclic mapping are commonly
used. In 1D column block cyclic mapping, a column block of A is assigned to
one processor. In 2D mapping, processors are viewed as a 2D grid, and a
column block is assigned to a column of processors. Our investigation in this
paper focuses on 2D data mapping because it has been shown that 2D sparse
LU factorization is substantially more scalable than 1D data mapping [16].
In this scheme, p available processors are viewed as a two dimensional grid:
p = pr × pc. Then block AI,J is assigned to processor PI mod pr, J mod pc

. Note
that each matrix column is scattered across multiple processors in 2D data
mapping and therefore pivoting and row exchanges may involve significant
inter-processor synchronization and communication.

Program partitioning The factorization of supernode partitioned sparse
matrix proceeds in steps. Step K (1 ≤ K ≤ N) contains three types of tasks:
Factor(K), SwapScale(K), and Update(K).

5

for K = 1 to N

Perform task Factor(K) if this processor owns a portion of column block K;

Perform task SwapScale(K);

Perform task Update(K);

endfor

Fig. 2. Partitioned sparse LU factorization with partial pivoting at each participat-
ing processor.

�������� 	
��	����� �������

�������������

�����������

�������������

�����������

���
�����

Fig. 3. Illustration of data areas involved in each step of the LU factorization.

• Task Factor(K) factorizes all the columns in the Kth column block and
its function includes finding the pivoting sequence associated with those
columns and updating the lower triangular portion (the L part) of column
block K. Note that the pivoting sequence is not applied to the rest of the
matrix until later.

• Task SwapScale(K) does “row exchanges” which applies the pivoting se-
quence derived by Factor(K) to submatrices AK:N, K+1:N . It also uses the
factorized diagonal submatrix LK,K to scale row block K (UK,K+1:N).

• Task Update(K) uses factorized off-diagonal column block K (LK+1:N,K)
and row block K (UK,K+1:N) to modify submatrices AK+1:N, K+1:N .

Figure 2 outlines the partitioned LU factorization algorithm with partial piv-
oting at each participating processor. We also provide an illustration of the
data areas involved in each step of Factor(), SwapScale(), and Update() tasks
(Figure 3).

3 Performance on Different Message Passing Platforms

We assess the existing parallel sparse LU solver performance on three different
message passing platforms supporting MPI:

• PC cluster: A cluster of PCs connected by 1 Gbps Ethernet. Each machine
in the cluster has a 2.8 Ghz Pentium-4 processor, whose double-precision
BLAS-3 GEMM performance peaks at 4465.6 MFLOFS. The BLAS/LAPACK
package on PC is built from ATLAS [17] 3.6.0 using the GNU C/Fortran

6

0 200 400 600 800 1000
0

50

100

150

200

250

300

Message size (byte)

S
in

gl
e

tr
ip

 ti
m

e
(u

s)

(A) Short message performance (latency)

Regatta /shmem
Regatta /MPICH
PC cluster

0 20 40 60 80 100
0

200

400

600

800

1000

Message size (Kbyte)

D
at

a
tr

an
sf

er
 r

at
e

(M
by

te
/s

ec
)

(B) Long message performance (throughput)

Regatta /shmem
Regatta /MPICH
PC cluster

Fig. 4. Message passing performance of three parallel computing platforms using an
MPI-based ping-pong microbenchmark. Note that we use different metrics for short
messages (latency) and long messages (throughput).

compilers. The PC cluster runs MPICH [18] with the TCP/IP-based p4
communication device.

• Regatta/MPICH: An IBM p690 “Regatta” multiprocessor with 32 1.3 Ghz
Power-4 processor, whose peak double-precision BLAS-3 GEMM perfor-
mance is 3232.3 MFLOPS. The BLAS/LAPACK package on Regatta is built
from ATLAS 3.6.0 using the IBM C/Fortran compilers. This platform also
runs MPICH with the p4 communication device.

• Regatta/shmem: The IBM Regatta using shared memory-based message
passing. Although MPICH provides a shared memory-based communication
device, it does not yet support the IBM multiprocessor running AIX. For
the purpose of our experimentation, we use a modified version of MPICH
that uses a shared memory region to pass messages between MPI processes.

Figure 4 depicts the message passing performance of the three parallel plat-
forms using an MPI-based ping-pong microbenchmark. We use the single-
trip latency to measure the short message performance and data transfer
rate to measure the long message performance. Results in Figure 4 show
that the short message latency for the three platforms are around 250µs,
35µs, and 4µs respectively while the long message throughputs are around
67 Mbytes/sec, 190 Mbytes/sec, and 980 Mbytes/sec respectively. Compared
with Regatta/shmem, the relatively poor performance of Regatta/MPICH is
mainly the result of extra software overhead such as the TCP/IP processing.
The message passing performance of the PC cluster is further slowed down by
the hardware capability of the Ethernet.

We use the S+ solver [8,9] to demonstrate the performance of parallel sparse
LU factorization on platforms with different message passing performance. S+

uses static symbolic factorization, L/U supernode partitioning, and 2D data
mapping described in Section 2. The comparison of S+ with some other solvers
was provided in [19,9]. Figure 5 illustrates the S+ performance for solving two

7

1 2 4 8 12 16
0

0.2

0.4

0.6

0.8

1

Number of processors

G
F

LO
P

S
 r

at
e

av41092

Regatta /shmem
Regatta /MPICH
PC cluster

1 2 4 8 12 16
0

1

2

3

4

5

Number of processors

G
F

LO
P

S
 r

at
e

wang3

Regatta /shmem
Regatta /MPICH
PC cluster

Fig. 5. The performance of S+ for solving two matrices (av41092 and wang3) on
three message passing platforms.

matrices on the three message passing platforms. Detailed statistics about
these two matrices and others in our test collection are provided later in Sec-
tion 5.1. Results in Figure 5 show significant impact of the platform message
passing speed on the application performance and such impact grows more
substantial at larger scales (i.e., with more processors). Despite the better
BLAS performance of the PC processor, the performance on Regatta/shmem
is more than five times that on the PC cluster at 16 processors.

4 Communication-reduction Techniques

The key to support efficient parallel sparse LU factorization on platforms with
slow message passing is to reduce the inter-processor communications. At each
step of the S+ solver with 2D data mapping (e.g., step K in Figure 2), there
are primarily three types of message passing between processors:

1. Within Factor(K), the pivot selection for each column requires the gath-
ering of local maximums from participating processors at a designated pro-
cessor (called PE) and the broadcast of final selection back to them. Row
swaps within the column block K is then performed if necessary. Note that
such communication occurs in a column-by-column fashion because the col-
umn block needs to be updated between the pivoting of any two consecutive
columns. Figure 6 illustrates the key steps in Factor(K).

2. Within SwapScale(K), “row exchanges” are performed to apply the pivot-
ing sequence derived by Factor(K) to submatrices AK:N, K+1:N .

3. Before Update(K) can be performed, the factorized off-diagonal column
block K (LK+1:N,K) and row block K (UK,K+1:N) must be broadcast to
participating processors.

It is difficult to reduce the column and row block broadcast for Update()
(type 3 communication) without changing the semantics of the LU factor-
ization. However, the other two types of communications can be reduced by

8

for each column k in column block K

Find largest local element ai,k (i ≥ k) in the column as local pivot candidate;

Gather all local pivot candidate rows at PE;

if (I am PE) then

Select the pivot as the globally largest;

endif

Broadcast the pivot row from PE to all processors;

Swap row if the chosen pivot is local;

Use the pivot row to update the local portion of the column block K;

endfor

Fig. 6. Illustration of key steps in Factor(K). PE can be any designated processor,
such as the one owning the diagonal submatrix.

using different pivoting schemes. In Section 4.1, we describe the previously
proposed threshold pivoting that decreases the number of “row exchanges”
in SwapScale(). Sections 4.2 and 4.3 present techniques that can lower the
synchronization granularity in Factor() through batch pivoting.

4.1 Threshold Pivoting

Threshold pivoting was originally proposed for reducing fill-ins in sparse matrix
factorization [1]. It allows the pivot choice to be other than the largest element
in the pivot column, as long as it is within a certain fraction (u ≤ 1) of the
largest element. In other words, after the pivoting at column k, the following
inequality holds:

|ak,k| ≥ u · max
i>k

{|ai,k|}. (1)

A smaller u would allow more freedom in the pivot selection, however it might
also lead to weakened numerical stability. Several prior studies have empiri-
cally examined the appropriate choice for the threshold parameter such that
numerical stability is still acceptable [20–22]. In particular, Duff recommends
to use u = 0.1 after analyzing results from these studies [1].

With more freedom in the pivot selection, there is more likelihood that we are
able to choose a pivot element residing on the same processor that contains
the original diagonal element, and consequently the row exchange for this
pivoting step can be performed locally. In this way threshold pivoting can
reduce the inter-processor communication volume on row exchanges. This idea
was proposed previously for dense LU factorization by Malard [23].

9

4.2 Large Diagonal Batch Pivoting

Among the three types of message passing (listed in the beginning of this sec-
tion) for 2D parallel sparse LU factorization, the pivoting in Factor(k) incurs
less communication volume compared with the other two types. However, it
requires much more frequent inter-processor synchronization since pivot selec-
tion is performed in a column-by-column fashion while the other types of mes-
sage passing occur on a once-per-block (or once-per-supernode) basis. In this
section and the next, we investigate techniques that allow pivot selection to
be performed together for groups of columns (ahead of the numerical updates)
such that each group requires only a single round of message passing. Lowering
the synchronization frequency would produce significant performance benefit
on platforms with long message latency.

Duff and Koster investigated row and column permutations such that entries
with large absolute values are moved to the diagonal of sparse matrices [24,25].
They suggest that putting large entries in diagonal ahead of the numerical
factorization allows pivoting down the diagonal to be more stable. The large
diagonal permutation was adopted in SuperLU DIST [12] by Li and Demmel.
It allows a priori determination of data structures and communication patterns
in parallel execution.

Motivated by these results, we employ large diagonal row permutations for the
purpose of pivoting in groups, and thus reducing the inter-processor synchro-
nization frequency in Factor(). The objective is to select pivots for a group
of columns (e.g., those belonging to one column block or supernode) ahead of
the numerical updates, such that for each column k in the group:

|ak,k| ≥ max
i>k

{|ai,k|}. (2)

Below we describe an approach (we call large diagonal batch pivoting) that
follows this idea. First each participating processor determines the local pivot
candidates for all columns in a column block. Then the pivot candidate sets
from all pr participants are gathered at a designated processor (called PE)
and the globally largest element for each column is selected as its pivot.
Subsequently the pivots for all columns in the column block are broadcast
to participating processors in one message. Batch pivoting requires a single
gather-broadcast synchronization for the whole column block. In comparison,
the conventional approach requires one gather-broadcast per column.

Except in the case of diagonal dominance, having large elements in the diago-
nal cannot guarantee numerical stability of LU factorization. For example, the
factorization of the following 4-by-4 block with large elements on the diagonal
is numerically unstable without additional row swaps. More specifically, its
third pivot becomes numerically zero after two steps of the LU factorization.

10

12 0 8 0

0 12 8 0

9 9 12 1

0 0 1 12

The reason for this is that a large diagonal element may become very small
or even zero due to updates as the LU factorization proceeds. To address this
problem, we conduct a test on the stability of the large diagonal batch pivoting
before accepting pivots produced by it. Our approach is to assemble the new
diagonal submatrix with large diagonal pivots and perform factorization on
the submatrix without any additional row swaps. We then check whether
the absolute value of each factorized diagonal element is larger than an error
threshold, specified as a small constant (ε) times the largest element in the
corresponding column before the factorization (which also happens to be the
diagonal element). If there is one or more columns for which this inequality
does not hold, we consider the large diagonal batch pivoting as unstable and we
will fall back to the original column-by-column pivoting to maintain numerical
stability.

Note that the large diagonal batch pivoting can be combined with threshold
pivoting, in which case we add a threshold parameter u into the right hand
side of the inequality (2). This change allows more freedom in pivot selections
and consequently we can choose more pivots such that inter-processor row
swaps are not required.

4.3 Speculative Batch Pivoting

When the large diagonal batch pivoting can maintain the desired numerical
stability for most or all column blocks, the approach can significantly reduce
the application synchronization overhead. If it often fails the stability test,
however, it must fall back to the original column-by-column pivoting and
therefore it merely adds overhead for the application. In order for any batch
pivoting scheme to be successful, there must be a high likelihood that its pivot
selections would result in numerically stable factorization.

We attempt to achieve a high level of numerical stability by determining the
pivots for a group of columns through speculative factorization. The first part
of this approach is the same as that of the large diagonal batch pivoting. Each
participating processor determines the local pivot candidates for the group
of columns and then the pivot candidate sets from all pr participants are
gathered at a designated processor (called PE). If there are cK columns in the
column block K, then each participating processor would send cK rows (one

11

for a candidate pivot at each column) and altogether the candidate pivot rows
would form a submatrix with cK · pr rows and cK columns at PE. We then
perform full numerical factorization on such a submatrix and determine the
pivots for each of the cK columns one by one. For each column, the element
with the largest absolute value is chosen as the pivot. This approach is different
from the large diagonal batch pivoting because elements in subsequent columns
may be updated as the numerical factorization proceeds column-by-column.
We call this approach batch pivoting through speculative factorization, or
speculative batch pivoting.

The submatrix factorization at PE (for pivot selection) is performed with
only the data that has already been gathered at PE. Therefore no additional
message passing is required for the pivot selections. The factorization incurs
some extra computation. However, such cost is negligible compared with the
saving on the communication overhead when running on platforms with slow
message passing.

The pivot sequence chosen by the speculative batch pivoting is likely to be
numerically more stable than that of the large diagonal batch pivoting because
it considers numerical updates during the course of LU factorization. However,
it still cannot guarantee numerical stability because some rows are excluded
in the factorization at PE (only local pivot candidates are gathered at PE).
This limitation is hard to avoid since gathering all rows at PE would be too
expensive in terms of communication volume and the computation cost. To
address the potential numerical instability, we examine the produced pivots
before accepting them. During the pivot selection factorization at PE, we check
whether the absolute value of each factorized diagonal element is larger than
a specified error threshold. The threshold is specified as a small constant (ε)
times the largest element in the corresponding column before the factorization.
If there is one or more columns for which this inequality does not hold, we
consider the speculative batch pivoting as unstable and we will fall back to
the original column-by-column pivoting to maintain numerical stability.

5 Experimental Evaluation of Communication-reduction Techniques

We have implemented the techniques described in the previous section using
MPI. The implementation was made on top of our original S+ solver. The
main objective of our evaluation is to demonstrate the effectiveness of these
techniques on parallel computing platforms with different message passing
performance. Section 5.1 describes the evaluation setting in terms of the ap-
plication parameters, platform specifications, and properties of test matrices.
Sections 5.2 and 5.3 present the LU factorization performance and numerical
stability of the implemented code respectively. Section 5.4 provides a direct

12

comparison of the new S+ with latest versions of SuperLU DIST [12] and
MUMPS [11].

5.1 Evaluation Setting

Application parameters The parallel sparse LU factorization code in our
evaluation uses 2D data mapping. We view p available processors as a two
dimensional grid p = pr × pc such that pr ≤ pc and they are as close as pos-
sible. For example, 16 processors are organized into a 4-row 4-column grid
while 8 processors are arranged into a 2-row 4-column grid. We preprocess
all matrices using the column approximate minimum degree ordering (CO-
LAMD) [26]. In our code, we set the threshold pivoting parameter u at 0.1.
For the two batch pivoting schemes, we set the numerical test error threshold
parameter ε at 0.001. We specify that a supernode can contain at most 28
columns. Note that many supernodes cannot reach this size limit since only
consecutive columns/rows with the same (or similar) nonzero patterns can
be merged into a supernode. The above parameters were chosen empirically.
Our experiments have shown that slightly different parameter settings do not
change our evaluation results significantly. All our experiments use double
precision numerical computation.

We assess the effectiveness of individual techniques by comparing the perfor-
mance of several different versions of the application:

#1. ORI: the original S+ [8,9] using 2D data mapping. This version does not
contain any techniques described in Section 4.

#2. TP: the original version with threshold pivoting.
#3. TP+LD: the original version with threshold pivoting and large diagonal

batch pivoting.
#4. TP+SBP: the original version with threshold pivoting and speculative

batching pivoting.

Platform specifications The evaluations are performed on three MPI plat-
forms: a PC cluster, an IBM Regatta running MPICH p4 device, and the IBM
Regatta using shared memory message passing. Most specifications of these
platforms were given earlier in Section 3. Each machine in the PC cluster has
one Gigabyte main memory. The IBM Regatta has 32 Gigabyte memory.

Statistics of test matrices Table 1 shows the statistics of the test matrices
used in our experimentation. All matrices can be found at Davis’ UF sparse
matrix collection [27]. Column 2 in the table lists the number of columns/rows

13

factor entries
|A|

Floating point op counts

Matrix Order |A| SuperLU S+ SuperLU S+ Application domain

heart1 3557 1387773 2.22 5.76 1554 million 8611 million Bioengineering problem

olafu 16146 1015156 6.06 11.06 2184 million 3778 million Structure engineering

raefsky3 21200 1488768 5.46 12.65 2684 million 9682 million Structure engineering

af23560 23560 484256 23.70 39.45 5020 million 4893 million Airfoil modeling

av41092 41092 1683902 6.52 28.42 5600 million 84828 million Partial differential equation

ex11 16614 1096948 10.52 18.44 6003 million 10412 million Finite element modeling

raefsky4 19779 1328611 9.90 38.26 7772 million 13508 million Structure engineering

mark3jac100sc 45769 285215 47.26 160.21 9401 million 88678 million MULTIMOD Mark3 modeling

wang3 26064 177168 63.15 379.33 9865 million 41488 million Semiconductor device simulation

mark3jac140sc 64089 399735 52.44 209.76 16186 million 213640 million MULTIMOD Mark3 modeling

ns3Da 20414 1679599 11.34 29.87 16933 million 69334 million Finite element modeling

torso1 116158 8516500 3.26 6.46 22595 million 48276 million Bioengineering problem

g7jac160sc 47430 656616 42.39 75.47 37834 million 81879 million Social security system modeling

sinc18 16428 973826 29.74 120.56 46499 million 220441 million Material science problem

g7jac200sc 59310 837936 44.50 77.85 53548 million 108443 million Social security system modeling

ecl32 51993 380415 109.75 277.61 60713 million 212253 million Semiconductor device simulation

Table 1
Test matrices and their statistics.

for each matrix and column 3 shows the number of nonzeros in the origi-
nal matrices. In columns 4 and 5 of the table, we list the total number of
nonzero factor entries divided by |A| for dynamic factorization (reported by
SuperLU DIST [12]) and static symbolic factorization (reported by S+). These
numbers were reported when SuperLU DIST runs with the minimum degree
matrix ordering [28] of AT + A and S+ runs with the column approximate
minimum degree matrix ordering (COLAMD) [26]. Static symbolic factor-
ization produces more factor entries due to over-estimation of fill-in entries.
In columns 6 and 7, we show the number of factorization floating point op-
erations, reported by SuperLU DIST and S+ respectively. We use the Su-
perLU DIST floating point operation counts to calculate FLOPS rates re-
ported later in this paper. Therefore the FLOPS rates in this paper do not
include the over-estimations caused by static symbolic factorization in solvers
like S+.

5.2 LU Factorization Performance

We examine the the LU factorization performance of all test matrices for
up to 16 processors. Figures 7, 8, and 9 illustrate such performance on Re-
gatta/shmem, Regatta/MPICH, and the PC cluster respectively.

Due to the high message passing performance on Regatta/shmem, results in
Figure 7 show very little benefit for any of the communication-reduction tech-

14

1 2 4 8 12 16
0

0.6

1.2

1.8

2.4

3

G
F

LO
P

S
 r

at
e

heart1

1 2 4 8 12 16
0

1

2

3

4

5

G
F

LO
P

S
 r

at
e

olafu

1 2 4 8 12 16
0

0.6

1.2

1.8

2.4

3

G
F

LO
P

S
 r

at
e

raefsky3

1 2 4 8 12 16
0

1

2

3

4

5

G
F

LO
P

S
 r

at
e

af23560

1 2 4 8 12 16
0

0.2

0.4

0.6

0.8

1

G
F

LO
P

S
 r

at
e

av41092

1 2 4 8 12 16
0

1

2

3

4

5
G

F
LO

P
S

 r
at

e

ex11

1 2 4 8 12 16
0

0.8

1.6

2.4

3.2

4

G
F

LO
P

S
 r

at
e

raefsky4

1 2 4 8 12 16
0

0.4

0.8

1.2

1.6

2

G
F

LO
P

S
 r

at
e

mark3jac100sc

1 2 4 8 12 16
0

1

2

3

4

5

G
F

LO
P

S
 r

at
e

wang3

1 2 4 8 12 16
0

0.2

0.4

0.6

0.8

1

G
F

LO
P

S
 r

at
e

mark3jac140sc

1 2 4 8 12 16
0

0.6

1.2

1.8

2.4

3

G
F

LO
P

S
 r

at
e

ns3Da

1 2 4 8 12 16
0

1

2

3

4

5

G
F

LO
P

S
 r

at
e

torso1

1 2 4 8 12 16
0

1.2

2.4

3.6

4.8

6

Number of processors

G
F

LO
P

S
 r

at
e

g7jac160sc

1 2 4 8 12 16
0

0.6

1.2

1.8

2.4

3

Number of processors

G
F

LO
P

S
 r

at
e

sinc18

1 2 4 8 12 16
0

1.2

2.4

3.6

4.8

6

Number of processors

G
F

LO
P

S
 r

at
e

g7jac200sc

1 2 4 8 12 16
0

0.8

1.6

2.4

3.2

4

Number of processors

G
F

LO
P

S
 r

at
e

ecl32

ORI
TP
TP+LD
TP+SBP

ORI
TP
TP+LD
TP+SBP

ORI
TP
TP+LD
TP+SBP

ORI
TP
TP+LD
TP+SBP

ORI
TP
TP+LD
TP+SBP

ORI
TP
TP+LD
TP+SBP

ORI
TP
TP+LD
TP+SBP

ORI
TP
TP+LD
TP+SBP

ORI
TP
TP+LD
TP+SBP

ORI
TP
TP+LD
TP+SBP

ORI
TP
TP+LD
TP+SBP

ORI
TP
TP+LD
TP+SBP

ORI
TP
TP+LD
TP+SBP

ORI
TP
TP+LD
TP+SBP

ORI
TP
TP+LD
TP+SBP

ORI
TP
TP+LD
TP+SBP

Fig. 7. LU factorization performance on the IBM Regatta using a shared mem-
ory-based MPI runtime system.

niques (threshold pivoting, large diagonal batch pivoting, or speculative batch
pivoting). Moreover, we even found slight performance degradation of thresh-
old pivoting for matrix sinc18. Such degradation is attributed to different
amount of computation required for different pivoting schemes. More specif-
ically, pivoting schemes that produce more nonzeros in the pivot rows would
require more computation in subsequent updates. Although it is possible to
control the number of nonzeros in the pivot rows with threshold pivoting, such
control would require additional inter-processor communications.

Figure 8 illustrates the application GFLOPS performance on Regatta/MPICH.
The results show very little benefit of threshold pivoting. At the same time,
we find the effectiveness of speculative batch pivoting is quite significant for
many of the test matrices. Particularly for olafu, raefsky3, af23560, raefsky4,
and wang3 at 16 processors, the speculative batch pivoting improves the ap-
plication performance by 186%, 96%, 61%, 52%, and 99% respectively. In
contrast, the large diagonal batch pivoting is not very effective in enhancing

15

1 2 4 8 12 16
0

0.4

0.8

1.2

1.6

2

G
F

LO
P

S
 r

at
e

heart1

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

0.8

1.6

2.4

3.2

4

G
F

LO
P

S
 r

at
e

olafu

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

0.4

0.8

1.2

1.6

2

G
F

LO
P

S
 r

at
e

raefsky3

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

0.6

1.2

1.8

2.4

3

G
F

LO
P

S
 r

at
e

af23560

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

0.2

0.4

0.6

0.8

1

G
F

LO
P

S
 r

at
e

av41092

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

0.6

1.2

1.8

2.4

3
G

F
LO

P
S

 r
at

e
ex11

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

0.6

1.2

1.8

2.4

3

G
F

LO
P

S
 r

at
e

raefsky4

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

0.2

0.4

0.6

0.8

1

G
F

LO
P

S
 r

at
e

mark3jac100sc

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

0.8

1.6

2.4

3.2

4

G
F

LO
P

S
 r

at
e

wang3

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

0.2

0.4

0.6

0.8

1

G
F

LO
P

S
 r

at
e

mark3jac140sc

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

0.6

1.2

1.8

2.4

3

G
F

LO
P

S
 r

at
e

ns3Da

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

0.4

0.8

1.2

1.6

2

G
F

LO
P

S
 r

at
e

torso1

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

0.6

1.2

1.8

2.4

3

Number of processors

G
F

LO
P

S
 r

at
e

g7jac160sc

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

0.6

1.2

1.8

2.4

3

Number of processors

G
F

LO
P

S
 r

at
e

sinc18

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

0.6

1.2

1.8

2.4

3

Number of processors

G
F

LO
P

S
 r

at
e

g7jac200sc

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

0.6

1.2

1.8

2.4

3

Number of processors

G
F

LO
P

S
 r

at
e

ecl32

ORI
TP
TP+LD
TP+SBP

Fig. 8. LU factorization performance on the IBM Regatta using MPICH with the
p4 communication device.

the performance. This is because many batch pivotings under LD do not pass
numeric stability test and must fall back to column-by-column pivoting.

Results in Figure 9 illustrate the application performance on the PC clus-
ter, which has much worse message passing performance compared with Re-
gatta/shmem (up to 60 times longer message latency and around 1/15 of its
message throughout). By comparing TP+SBP and TP, the speculative batch
pivoting show substantial performance benefit for all test matrices — ranging
from 15% for sinc18 to 460% for olafu. In comparison, the improvement for
LD is relatively small, again due to its inferior numerical stability and more
frequent employment of the column-by-column pivoting. We observe certain
performance benefit of threshold pivoting for some matrices (up to 18%).
We also notice poor scalability (with 8 or more processors) for the several
small matrices: olafu, raefsky3, af23560, and ex11. However, the other (mostly
larger) matrices exhibit scalable performance for up to 16 processors.

16

1 2 4 8 12 16
0

0.4

0.8

1.2

1.6

2

G
F

LO
P

S
 r

at
e

heart1

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

0.6

1.2

1.8

2.4

3

G
F

LO
P

S
 r

at
e

olafu

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

0.4

0.8

1.2

1.6

2

G
F

LO
P

S
 r

at
e

raefsky3

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

0.4

0.8

1.2

1.6

2

G
F

LO
P

S
 r

at
e

af23560

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

0.1

0.2

0.3

0.4

0.5

G
F

LO
P

S
 r

at
e

av41092

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

0.2

0.4

0.6

0.8

1
G

F
LO

P
S

 r
at

e
ex11

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

0.4

0.8

1.2

1.6

2

G
F

LO
P

S
 r

at
e

raefsky4

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

0.1

0.2

0.3

0.4

0.5

G
F

LO
P

S
 r

at
e

mark3jac100sc

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

0.6

1.2

1.8

2.4

3

G
F

LO
P

S
 r

at
e

wang3

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

0.1

0.2

0.3

0.4

0.5

G
F

LO
P

S
 r

at
e

mark3jac140sc

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

0.4

0.8

1.2

1.6

2

G
F

LO
P

S
 r

at
e

ns3Da

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

0.4

0.8

1.2

1.6

2

G
F

LO
P

S
 r

at
e

torso1

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

0.4

0.8

1.2

1.6

2

Number of processors

G
F

LO
P

S
 r

at
e

g7jac160sc

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

0.4

0.8

1.2

1.6

2

Number of processors

G
F

LO
P

S
 r

at
e

sinc18

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

0.4

0.8

1.2

1.6

2

Number of processors

G
F

LO
P

S
 r

at
e

g7jac200sc

ORI
TP
TP+LD
TP+SBP

1 2 4 8 12 16
0

0.4

0.8

1.2

1.6

2

Number of processors

G
F

LO
P

S
 r

at
e

ecl32

ORI
TP
TP+LD
TP+SBP

Fig. 9. LU factorization performance on the PC cluster.

To better illustrate the benefits of LD and SBP, we measure the number of
gather-broadcast synchronizations during pivot selection for different solvers
(shown in Figure 10). Both ORI and TP require one synchronization for each
column in the matrix. TP+LD and TP+SBP may reduce the number of syn-
chronizations by performing batch pivoting. However, they must fall back to
column-by-column pivoting when the batch pivoting cannot produce desired
numerical stability. Results in Figure 10 show significant message reduction
for TP+LD (19–96%) and for TP+SBP (41–96%).

5.3 Numerical Stability

We examine numerical errors of our communication-reduction techniques. We
calculate numerical errors in the following fashion. After the LU factorization
for A, one can derive the solution x̃ of linear system Ax = b for any right-
hand side b using the forward and backward substitution. We then define the

17

0

2

4

6

8

10

12

x 10
4

N
um

be
r

of
 p

iv
ot

in
g

sy
nc

hr
on

iz
at

io
ns

heart1

olafu
raefsky3

af23560

av41092

ex11
raefsky4

m
ark3jac100sc

wang3

m
ark3jac140sc

ns3Da

torso1

g7jac160sc

sinc18

g7jac200sc

ecl32

ORI
TP
TP+LD
TP+SBP

Fig. 10. The number of gather-broadcast synchronizations at 16 processors.

Matrix ORI TP TP+LD TP+SBP

heart1 8.9 E-12 3.1 E-11 3.3 E-09 2.8 E-11

olafu 7.9 E-12 1.4 E-11 9.6 E-12 7.0 E-12

raefsky3 2.0 E-10 1.8 E-09 6.0 E-06 5.8 E-09

af23560 1.7 E-14 5.5 E-14 1.7 E-09 4.0 E-14

av41092 2.6 E-11 3.0 E-08 1.5 E-05 1.1 E-06

ex11 2.6 E-13 1.8 E-11 5.4 E-11 2.1 E-11

raefsky4 4.7 E-11 9.0 E-09 2.3 E-07 3.8 E-09

mark3jac100sc 5.9 E-10 3.9 E-08 5.7 E-06 5.9 E-08

wang3 3.1 E-15 3.1 E-15 3.0 E-15 3.1 E-15

mark3jac140sc 8.4 E-10 3.4 E-08 3.7 E-06 5.4 E-08

ns3Da 1.6 E-14 1.0 E-11 3.7 E-09 2.4 E-11

torso1 5.0 E-14 3.8 E-12 1.2 E-10 1.7 E-12

g7jac160sc 5.5 E-13 1.6 E-10 1.5 E-07 5.4 E-11

sinc18 2.4 E-11 1.8 E-09 5.4 E-07 1.4 E-09

g7jac200sc 8.0 E-13 5.5 E-11 2.9 E-07 6.4 E-10

ecl32 1.5 E-07 5.5 E-06 3.7 E-04 3.7 E-06

Table 2
Numerical errors at 16 processors.

numerical error of the solution as:

max
1≤i≤n

|(Ax̃)i − bi|
∑

1≤j≤n |Ai,j · x̃j| + |bi|
.

where ·i indicates the ith element in the vector. This is also the “backward
error” used in SuperLU [29]. We choose all unit unknowns in our error calcu-
lation, or b = A · (1.0 1.0 · · · 1.0)T .

Table 2 lists numerical errors of ORI, TP, TP+LD, and TP+SBP for our test
matrices at 16 processors. Results show various levels of increases on numer-

18

ical errors by each communication-reduction scheme. Among them, TP+LD
incurs the most amount of error increase for our test matrices. Particularly for
matrices av41092 and ecl32, the absolute errors are 1.5E-05 and 3.7E-04 re-
spectively for TP+LD. In comparison, TP+SBP still maintains a high degree
of numerical stability and no matrix exhibits an error larger than 3.7E-06.
More importantly, the speculative batch pivoting incurs no obvious additional
error over threshold pivoting.

5.4 Comparison with SuperLU DIST and MUMPS

To assess the absolute performance of the TP+SBP version of S+ on platforms
with slow message passing, we compare it with solvers SuperLU DIST [12]
(version 2.0) and MUMPS [11] (version 4.5.0) on the Linux cluster. SuperLU DIST
permutes large elements to the diagonal before the numerical factorization.
These diagonal elements are also pre-determined pivots and no further pivot
selections will be performed during the factorization (called static pivoting).
Static pivoting allows fast factorization because it permits the accurate predic-
tion of fill-ins ahead of the factorization and it eliminates the need for pivoting-
related inter-processor communications during the factorization. However, static
pivoting cannot guarantee numerical stability of the LU factorization. There-
fore, SuperLU DIST employs post-solve iterative refinement to improve the
stability of the results. The MUMPS solver uses a multifrontal method and its
pivoting does not require any additional inter-processor communication mes-
sages (although it might increase the size of messages during factorization due
to fill-ins). In our experiments, all solvers use their default “fill-in”-reduction
ordering schemes. Both S+ and MUMPS use the column approximate mini-
mum degree ordering (COLAMD) [26] while SuperLU DIST employs the min-
imum degree ordering [28] of AT + A.

Table 3 shows the factorization time of the three solvers and the post-solve
refinement time of SuperLU DIST on the PC cluster. Since different solvers
may achieve peak performance at different numbers of processors, we show the
best factorization time among 1, 2, 4, 8, 16, 20, and 24-processor results for
each solver. Comparing S+ with SuperLU DIST, we find that SuperLU DIST
has slightly better factorization time. However, it incurs additional iterative
refinement time in order to maintain numerical stability. Note that the re-
finement has to be performed for solving each linear system problem while
problem sets with the same coefficient matrix A but different right-hand side
b only require a single factorization. This is also one fundamental performance
tradeoff between direct solvers and iterative solvers.

Results in Table 3 show that MUMPS is faster than S+ and SuperLU DIST for
most matrices. This is partially attributed to its highly optimized computation

19

Matrix Best factorization time Refinement time

S+ (TP+SBP) SuperLU DIST MUMPS SuperLU DIST

heart1 1.10 sec (16 procs) 0.61 sec (8 procs) 1.58 sec (2 procs) 0.18 sec

olafu 1.41 sec (8 procs) 1.56 sec (8 procs) 0.50 sec (4 procs) 0.13 sec

raefsky3 2.42 sec (8 procs) 1.86 sec (2 procs) 0.95 sec (2 procs) 0.26 sec

af23560 2.45 sec (8 procs) 4.10 sec (2 procs) 1.24 sec (2 procs) 0.42 sec

av41092 15.25 sec (16 procs) 5.65 sec (2 procs) 2.90 sec (2 procs) 0.35 sec

ex11 7.14 sec (8 procs) 3.06 sec (4 procs) 1.17 sec (2 procs) 0.28 sec

raefsky4 2.98 sec (16 procs) 3.47 sec (4 procs) 2.97 sec (2 procs) 0.19 sec

mark3jac100sc 20.19 sec (16 procs) 15.40 sec (2 procs) 12.24 sec (1 procs) 1.28 sec

wang3 4.52 sec (16 procs) 5.75 sec (2 procs) 3.13 sec (2 procs) 0.35 sec

mark3jac140sc 40.54 sec (16 procs) 23.10 sec (8 procs) 26.24 sec (1 procs) 1.84 sec

ns3Da 8.98 sec (16 procs) 4.51 sec (16 procs) 4.64 sec (2 procs) 0.50 sec

torso1 19.22 sec (16 procs) 14.98 sec (2 procs) 11.87 sec (2 procs) 5.10 sec

g7jac160sc 24.15 sec (16 procs) 23.64 sec (8 procs) 12.24 sec (1 procs) 1.58 sec

sinc18 27.11 sec (16 procs) 13.70 sec (16 procs) 24.26 sec (2 procs) 5.50 sec

g7jac200sc 29.52 sec (16 procs) 31.61 sec (8 procs) 18.81 sec (1 procs) 2.03 sec

ecl32 40.54 sec (16 procs) 17.76 sec (8 procs) 10.79 sec (2 procs) 1.00 sec

Table 3
Performance comparison with SuperLU DIST and MUMPS. Factorization time re-
sults are the best of 1, 2, 4, 8, 12, 16, 20, 24-processor results on the PC cluster. We
also indicate the number of processors at which the peak performance is achieved.
Note that MUMPS 4.5.0 runs out of memory at 1, 2, and 4 processors for torso1.
We used the latest MUMPS 4.6.1 to produce results for torso1.

routines (written in Fortran). We find that MUMPS achieves its peak perfor-
mance mostly at one or two processors. In fact, the MUMPS performance at 4
or more processors is much worse than its uni-processor performance. At one
hand, this provides one evidence that existing solvers often do not scale well on
slow message passing platforms such as Ethernet-connected PC clusters. On
the other hand, since MUMPS achieves very high performance at one or two
processors (in many cases better than other solvers at any processor count),
there is not much scope to exploit parallelism.

Table 4 shows the numerical stability of the three solvers. MUMPS’s numeri-
cal stability is somehow better than S+’s (particularly for matrices raefsky3,
raefsky4, and ecl32). Overall, both solvers can achieve acceptable numerical
stability for all test matrices. We find that SuperLU DIST’s post-solve it-
erative refinement can achieve a high level of numerical stability for most
matrices. However, the numerical error is substantial for av41092. After relax-
ing the default stop condition of the iterative refinement in SuperLU DIST,
the numerical error of av41092 arrives at 1.9E-11 after 7 steps of iterative
refinement. However, the refinement time also increases to 2.45 seconds at this
setting.

20

Matrix S+ (TP+SBP) SuperLU DIST MUMPS

heart1 2.8 E-11 4.0 E-16 (2 IR steps) 1.4 E-14

olafu 7.0 E-12 7.2 E-08 (1 IR step) 2.3 E-13

raefsky3 5.8 E-09 4.9 E-16 (1 IR step) 7.2 E-15

af23560 4.0 E-14 2.5 E-16 (2 IR steps) 1.8 E-15

av41092 1.1 E-06 7.8E-01 (1 IR step) 2.0 E-09

ex11 2.1 E-11 7.8 E-08 (2 IR steps) 1.3 E-14

raefsky4 3.8 E-09 2.5 E-07 (1 IR step) 1.3 E-14

mark3jac100sc 5.9 E-08 2.7 E-16 (3 IR steps) 1.3 E-10

wang3 3.1 E-15 1.2 E-16 (2 IR steps) 1.3 E-15

mark3jac140sc 5.4 E-08 3.3 E-16 (3 IR steps) 7.6 E-12

ns3Da 2.4 E-11 2.7 E-16 (2 IR steps) 2.5 E-15

torso1 1.7 E-12 1.5 E-14 (8 IR steps) 9.6 E-14

g7jac160sc 5.4 E-11 9.7 E-16 (3 IR steps) 2.7 E-11

sinc18 1.4 E-09 2.3 E-16 (11 IR steps) 1.9 E-10

g7jac200sc 6.4 E-10 1.2 E-15 (3 IR steps) 3.4 E-10

ecl32 3.7 E-06 2.2 E-16 (2 IR steps) 1.8 E-12

Table 4
Comparison with SuperLU DIST and MUMPS on numerical stability. We also in-
dicate the number of iterative refinement steps for SuperLU DIST.

6 Runtime Application Adaptation

An efficient application design would naturally attempt to minimize its com-
munication overhead. However, communication-reduction design choices are
not straightforward when compromises on other aspects of the application
have to be made. For parallel sparse LU factorization, the speculative batch
pivoting can decrease the inter-processor synchronization frequency for the
pivot selections while the threshold pivoting can reduce the inter-processor
row exchanges. At the same time, these techniques may incur additional com-
putation overhead and weaken the solver’s numerical stability. The worthiness
of these techniques would depend on the platform properties and application
characteristics. Specifically, the overall communication overhead is affected by
the message passing performance on the underlying computing platforms, in-
cluding the inter-processor link latency and bandwidth. In addition, it is also
influenced by the application communication needs such as the synchroniza-
tion frequency and message sizes.

Our goal is to construct an adaptive application that can automatically de-
termine whether the communication-reduction techniques should be employed
according to the characteristics of the underlying computing platform and the
input matrix. This can be achieved by building a performance model that
predicts the effectiveness of communication-reduction techniques under given
platform properties and application characteristics. Such performance models

21

have been constructed for other high-performance computing applications in
the past, both on the application computation performance [30,31] and on the
message passing performance [32,33]. However, it is challenging to build accu-
rate performance models for irregular applications such as the parallel sparse
LU factorization because their data structures and execution behaviors are
hard to predict. For instance, the computation and communication patterns
for dense matrix operations usually depend only on the input matrix size while
the complete matrix nonzero pattern and numerical values can significantly
affect the application behaviors for parallel sparse LU factorization.

6.1 Sampling-based Application Adaptation

Our approach in this paper is to employ runtime sampling to estimate the
benefit of communication-reduction techniques under the current setting and
then determine whether these techniques should be employed. At the high
level, we divide each application execution into two phrases. The sampling
phase includes the first α · N (0 < α < 1) steps of the LU factorization
shown in Figure 2. During this phase, we first execute the TP+SBP version
of Factor(K) (described in Section 4.3) but we always abort it (as if the nu-
merical stability test always fails) and then perform the original Factor(K)
without any communication-reduction techniques. This allows us to assess the
potential effectiveness of TP+SBP without actually employing it and thus free
of its side effects (e.g., weakened numerical stability) in the sampling phase. We
keep track of potential communication reductions (both in the blocking syn-
chronization count and in the communication volume) of speculative batching
pivoting and threshold pivoting. We count a blocking synchronization when
one MPI process must wait for a message from another MPI process to pro-
ceed. Some communications are inherently concurrent (e.g., the gathering of
local pivot candidates from all processors to a designated processor) and we
count them only once.

At the end of the sampling phase, we accumulate the estimated reductions
in the blocking synchronization count and in the communication volume (de-
noted as Sreduction and Vreduction respectively). Also let Lmsg and Bmsg denote
the message passing latency and bandwidth of the underlying platform, which
can be measured using simple microbenchmarks. We then calculate the po-
tential saving of the communication-reduction techniques in proportion to the
sampling phase elapsed time (Tsampling) as:

psaving =
Sreduction · Lmsg + Vreduction

Bmsg

Tsampling

We subsequently use the sampling phase potential saving to guide the rest of
the application execution. Specifically, we would employ the TP+SBP version

22

−5%
0%

10%

20%

30%

40%

50%

60%

70%

80%

S
av

in
g

of
 c

om
m

.−
re

du
ct

io
n

te
ch

ni
qu

es

heart1

olafu
raefsky3

af23560

av41092

ex11
raefsky4

m
ark3jac100sc

wang3

m
ark3jac140sc

ns3Da

torso1

g7jac160sc

sinc18

g7jac200sc

ecl32

α=0.05 estimated saving
α=0.1 estimated saving
α=0.2 estimated saving
α=0.4 estimated saving
actual saving

Fig. 11. Our adaptation approach’s sensitivity to the α parameter. Results are at
16 processors for the IBM Regatta using MPICH with the p4 device.

of Factor(K) for the rest of the LU factorization if psaving exceeds a specified
threshold β (0 < β < 1). We use the original Factor(K) otherwise.

We examine the parameter setting for our sampling-based application adap-
tation. The sampling length parameter α should provide a balance between
the sampling accuracy and its overhead. The longer the sampling phase is,
the more accurately the communication-reduction statistics collected over the
sampling phase would reflect those of the whole application execution. How-
ever, a longer sampling phase incurs more runtime overhead. Further, since no
communication-reduction techniques are applied during the sampling phase,
a longer sampling phase also reduces the potential benefit of these techniques.
We perform experiments to learn our approach’s sensitivity to the α parame-
ter in practice. In the experiments, we compare the sampling-phase estimated
saving of communication reduction techniques at different α settings (0.05, 0.1,
0.2, and 0.4) with the actual saving. We only show results on Regatta/MPICH
(Figure 11) because it is a more interesting case for runtime adaptation than
PC cluster and Regatta/shmem (in the latter two cases the choices on whether
to employ the communication-reduction techniques are quite obvious). Results
suggest that the sampling-phase estimation is not very sensitive to the choice of
α in practice. We also find that for some matrices (raefsky3, av41092, raefsky4,
mark3jac100sc, mark3jac140sc, and sinc18), the sampling-phase estimations
at all tested α settings are larger than the actual saving. This indicates differ-
ent execution patterns between the front portion and the later portion of LU
factorization. However, such estimation inaccuracies are quite small (within
20% in all cases). We choose α = 0.2 for the experiments described later in
this paper.

The setting of the performance saving threshold β can control the tradeoff
between performance and numerical stability. More specifically, it represents
how much performance benefit is worth the risk of slightly weakened numerical
stability. This parameter setting is largely a user decision and we choose β =

23

0

1.2

2.4

3.6

4.8

6

wang3

m
ark3jac140sc

ns3Da

torso1

g7jac160sc

sinc18

g7jac200sc

ecl32

G
F

LO
P

S
 r

at
e

(A) Performance at 16 processors

e−16

e−15

e−14

e−13

e−12

e−11

e−10

e−09

e−08

e−07

e−06

e−05

N
um

er
ic

al
 e

rr
or

(B) Numerical errors at 16 processors

wang3

m
ark3jac140sc

ns3Da

torso1

g7jac160sc

sinc18

g7jac200sc

ecl32

ORI
TP+SBP
ADAPT

ORI
TP+SBP
ADAPT

Fig. 12. Performance and numerical errors of static and adaptive approaches on the
IBM Regatta using a shared memory-based MPI runtime system. Results are at 16
processors. Note that the Y-axis for figure (B) is in logarithmic scale.

0.2 for the experiments described next.

6.2 Experimental Evaluation on Runtime Application Adaptation

We evaluate the effectiveness of our sampling-based runtime application adap-
tation with different message passing platforms and input matrices. The eval-
uations are performed on three MPI platforms specified in Section 3: a PC
cluster, an IBM Regatta running MPICH p4 device, and the IBM Regatta us-
ing shared memory message passing. To save space, here we only show results
for the eight largest matrices (in terms of floating point operation counts) in
our test collection. We compare our adaptive approach (denoted as ADAPT)
with two static approaches: ORI and TP+SBP.

Figures 12, 13, and 14 illustrate the performance and numerical errors of static
and adaptive approaches on Regatta/shmem, Regatta/MPICH, and the PC
cluster respectively. Results in Figure 12(A) show that the communication
reduction techniques (TP+SBP) provide little or no performance benefit on
Regatta/shmem. ADAPT automatically disables these techniques for all test
matrices and thus able to achieve similar numerical stability as ORI (shown
in Figure 12(B)).

Figure 13(A) shows that the performance benefit of TP+SBP is quite pro-
nounced for many input matrices on Regatta/MPICH. ADAPT discovers this
through sampling and employs the communication-reduction pivoting tech-
niques for all matrices except sinc18 and ecl32. We notice that the ADAPT
performance is slightly inferior to TP+SBP even when the communication-
reduction techniques are employed. This is due to the sampling overhead and
that these techniques are not applied during the sampling phase.

24

0

0.8

1.6

2.4

3.2

4

G
F

LO
P

S
 r

at
e

(A) Performance at 16 processors

wang3

m
ark3jac140sc

ns3Da

torso1

g7jac160sc

sinc18

g7jac200sc

ecl32

ORI
TP+SBP
ADAPT

e−16

e−15

e−14

e−13

e−12

e−11

e−10

e−09

e−08

e−07

e−06

e−05

N
um

er
ic

al
 e

rr
or

(B) Numerical errors at 16 processors

wang3

m
ark3jac140sc

ns3Da

torso1

g7jac160sc

sinc18

g7jac200sc

ecl32

ORI
TP+SBP
ADAPT

Fig. 13. Performance and numerical errors of static and adaptive approaches on the
IBM Regatta using MPICH with the p4 device. Results are at 16 processors.

0

0.5

1

1.5

2

2.5

wang3

m
ark3jac140sc

ns3Da

torso1

g7jac160sc

sinc18

g7jac200sc

ecl32

G
F

LO
P

S
 r

at
e

(A) Performance at 16 processors

ORI
TP+SBP
ADAPT

e−16

e−15

e−14

e−13

e−12

e−11

e−10

e−09

e−08

e−07

e−06

e−05

N
um

er
ic

al
 e

rr
or

(B) Numerical errors at 16 processors

wang3

m
ark3jac140sc

ns3Da

torso1

g7jac160sc

sinc18

g7jac200sc

ecl32

ORI
TP+SBP
ADAPT

Fig. 14. Performance and numerical errors of static and adaptive approaches on the
PC cluster. Results are at 16 processors.

Figure 14 (A) shows that the performance benefit of TP+SBP is substan-
tial for all input matrices except sinc18 (15%) on the PC cluster. ADAPT
correctly employs communication-reduction pivoting techniques for these ma-
trices. The ADAPT performance is slightly inferior to TP+SBP, again due to
the sampling overhead and that the communication-reduction techniques are
not applied during the sampling phase.

In summary, our experiments find that the sampling-based application adapta-
tion can estimate the potential performance saving of communication-reduction
pivoting techniques and make appropriate decisions on whether to employ
them for our test scenarios.

25

7 Related Work

Parallel sparse LU factorization has been extensively studied in the past [7,3,10,9,11,5,12,6].
Most existing solvers are deployed and evaluated on tightly coupled parallel
computers with high message passing performance. Little attention has been
paid on application performance on much slower message passing platforms.

Malard employed threshold pivoting to reduce inter-processor row interchanges
for dense LU factorization [23]. Duff and Koster [24,25] and Li and Demmel [12]
have explored permuting large entries to the diagonal as a way to reduce the
need of pivoting during numerical factorization. Built on these results, our
work is the first to quantitatively assess the effectiveness of these techniques
on platforms with different message passing performance.

Gallivan et al. proposed a novel matrix reordering technique to exploit large-
grain parallelism in solving parallel sparse linear systems [34]. Although larger-
grain parallelism typically results in less frequent inter-processor communica-
tions, their work only targets work-stealing style solvers on shared memory
multiprocessors. It is not clear whether their technique can be useful for mes-
sage passing-based solvers. Previous studies explored broadcasting/multicasting
strategies (often tree-based) for distributing pivot columns or rows while achiev-
ing load balance [35,23]. In comparison, our work focuses on the performance
on platforms with slow message passing where reducing the communication
overhead is more critical than maintaining computational load balance.

Many earlier studies examined application-level techniques to address perfor-
mance issues in underlying computing platforms. For instance, Amestoy et al.
studied the impact of the MPI buffering implementation on the performance
of sparse matrix solvers [36]. Hunold et al. proposed multilevel hierarchical
matrix multiplication to improve the application performance on the PC clus-
ter [37]. A recent work by Amestoy et al. considers hybrid scheduling with
mixed (memory usage and FLOPS speed) equilibration objectives [13]. Our
work in this paper addresses a different platform-related problem — adaptive
parallel sparse LU factorization on platforms with different message passing
performance.

8 Conclusion

Functional portability of MPI-based message passing applications does not
guarantee their performance portability. In other words, applications optimized
to run on a particular platform may not perform well on other MPI platforms.
This paper investigates techniques that can improve the performance of par-

26

allel sparse LU factorization on systems with relatively poor message passing
performance. In particular, we propose speculative batch pivoting which can
enhance the performance of our test matrices by 15–460% on an Ethernet-
connected 16-node PC cluster. Communication-reduction techniques may in-
cur extra computation overhead and they may also slightly weaken numerical
stability. Considering different tradeoffs of these techniques on different mes-
sage passing platforms, this paper also proposes a sampling-based runtime
application adaptation approach that automatically determines whether the
communication-reduction techniques should be employed for given message
passing platform and input matrix.

Given the high application porting costs and the increasing diversity of the
available parallel computing platforms, it is desirable to construct self-adaptive
applications that can automatically adjust themselves and perform well on
different computing platforms. This is particularly challenging for irregular
applications due to potential runtime data structure variations and irregular
computation/communication patterns. Our work in this paper makes one step
forward by tackling one such irregular application.

Software Availability

The implemented code that includes the communication-reduction techniques
described in this paper is incorporated into a parallel sparse linear system
solver (S+ version 1.1). S+ can be downloaded from the web [38].

References

[1] I. S. Duff, A. M. Erisman, J. K. Reid, Direct Methods for Sparse Matrices,
Oxford Science Publications, 1986.

[2] T. A. Davis, I. S. Duff, A Combined Unifrontal/multifrontal Method for
Unsymmetric Sparse Matrices, ACM Trans. Math. Software 25 (1) (1999) 1–19.

[3] J. W. Demmel, S. Eisenstat, J. Gilbert, X. S. Li, J. W. H. Liu, A Supernodal
Approach to Sparse Partial Pivoting, SIAM J. Matrix Anal. Appl. 20 (3) (1999)
720–755.

[4] X. S. Li, Sparse Gaussian Elimination on High Performance Computers, Ph.D.
thesis, Computer Science Division, EECS, UC Berkeley (1996).

[5] A. Gupta, WSMP: Watson Sparse Matrix Package (Part-II: Direction Solution
of General Sparse Systems), Tech. Rep. RC 21888 (98472), IBM T. J. Watson
Research Center (2000).

27

[6] O. Schenk, K. Gärtner, Solving Unsymmetric Sparse Systems of Linear
Equations with PARDISO, Future Generation Computer Systems 20 (3) (2004)
475–487.

[7] A. F. van der Stappen, R. H. Bisseling, J. G. G. van de Vorst, Parallel Sparse
LU Decomposition on a Mesh Network of Transputers, SIAM J. Matrix Anal.
Appl. 14 (3) (1993) 853–879.

[8] K. Shen, X. Jiao, T. Yang, Elimination Forest Guided 2D Sparse LU
Factorization, in: Proc. of the 10th ACM Symp. on Parallel Algorithms and
Architectures, Puerto Vallarta, Mexico, 1998, pp. 5–15.

[9] K. Shen, T. Yang, X. Jiao, S+: Efficient 2D Sparse LU Factorization on Parallel
Machines, SIAM J. Matrix Anal. Appl. 22 (1) (2000) 282–305.

[10] C. Ashcraft, R. G. Grimes, SPOOLES: An Object-oriented Sparse Matrix
Library, in: Proc. of the 9th SIAM Conf. on Parallel Processing for Scientific
Computing, San Antonio, Texas, 1999.

[11] P. R. Amestoy, I. S. Duff, J. Koster, J.-Y. L’Excellent, A Fully Asynchronous
Multifrontal Solver Using Distributed Dynamic Scheduling, SIAM J. Matrix
Anal. Appl. 23 (1) (2001) 15–41.

[12] X. S. Li, J. W. Demmel, SuperLU DIST: A Scalable Distributed-Memory Sparse
Direct Solver for Unsymmetric Linear Systems, ACM Trans. Math. Software
29 (2) (2003) 110–140.

[13] P. R. Amestoy, A. Guermouche, J.-Y. L’Excellent, S. Pralet, Hybrid Scheduling
for the Parallel Solution of Linear Systems, Parallel Computing 32 (2) (2006)
136–156.

[14] A. George, E. Ng, Symbolic Factorization for Sparse Gaussian Elimination with
Partial Pivoting, SIAM J. Sci. Stat. Comput. 8 (6) (1987) 877–898.

[15] J. J. Dongarra, J. D. Croz, S. Hammarling, R. Hanson, An Extended Set
of Basic Linear Algebra Subroutines, ACM Trans. Math. Software 14 (1988)
18–32.

[16] C. Fu, X. Jiao, T. Yang, A Comparison of 1-D and 2-D Data Mapping for Sparse
LU Factorization on Distributed Memory Machines, in: Proc. of the 8th SIAM
Conf. on Parallel Processing for Scientific Computing, Minneapolis, MN, 1997.

[17] R. C. Whaley, A. Petitet, J. J. Dongarra, Automated Empirical Optimization
of Software and the ATLAS Project, Parallel Computing 27 (1–2) (2001) 3–35.

[18] MPICH – A Portable Implementation of MPI,
http://www-unix.mcs.anl.gov/mpi/mpich.

[19] M. Cosnard, L. Grigori, Using Postordering and Static Symbolic Factorization
for Parallel Sparse LU, in: Proc. of the Int’l Parallel and Distributed Processing
Symp., Cancun, Mexico, 2000.

28

[20] A. R. Curtis, J. K. Reid, The Solution of Large Sparse Unsymmetric Systems
of Linear Equations, J. Inst. Maths. Applics. 8 (1971) 344–353.

[21] I. Duff, Practical Comparisons of Codes for the Solution of Sparse Linear
Systems, in: Sparse Matrix Proceedings, 1979, pp. 107–134.

[22] J. A. Tomlin, Pivoting for Size and Sparsity in Linear Programming Inversion
Routines, J. Inst. Maths. Applics. 10 (1972) 289–295.

[23] J. Malard, Threshold Pivoting for Dense LU Factorization on Distributed
Memory Multiprocessors, in: Proc. the ACM/IEEE Conf. on Supercomputing,
Albuquerque, NM, 1991, pp. 600–607.

[24] I. S. Duff, J. Koster, The Design and Use of Algorithms for Permuting Large
Entries to the Diagonal of Sparse Matrices, SIAM J. Matrix Anal. Appl. 20 (4)
(1999) 889–901.

[25] I. S. Duff, J. Koster, On Algorithms for Permuting Large Entries to the Diagonal
of A Sparse Matrix, SIAM J. Matrix Anal. Appl. 20 (4) (2001) 973–996.

[26] T. A. Davis, J. R. Gilbert, S. I. Larimore, E. G. Ng, A Column Approximate
Minimum Degree Ordering Algorithm, ACM Trans. Math. Software 30 (3)
(2004) 353–376.

[27] T. A. Davis, University of Florida Sparse Matrix Collection,
http://www.cise.ufl.edu/research/sparse/matrices/.

[28] A. George, J. Liu, The Evolution of the Minimum Degree Ordering Algorithm,
SIAM Review 31 (1989) 1–19.

[29] J. W. Demmel, J. R. Gilbert, X. S. Li, SuperLU Users’ Guide (Oct. 2003).

[30] G. Marin, J. Mellor-Crummey, Cross-Architecture Performance Predictions for
Scientific Applications Using Parameterized Models, in: Proc. of the ACM
SIGMETRICS, New York, NY, 2004, pp. 2–13.

[31] A. Snavely, L. Carrington, N. Wolter, Modeling Application Performance by
Convolving Machine Signatures with Application Profiles, in: Proc. of the 4th
IEEE Workshop on Workload Characterization, Austin, TX, 2001.

[32] D. Culler, R. Karp, D. Patterson, A. Sahay, K. E. Schauser, E. Santos, T. von
Eicken, LogP: Towards A Realistic Model of Parallel Computation, in: Proc.
of the ACM Symp. on Principles and Practice of Parallel Programming, San
Diego, CA, 1993, pp. 1–12.

[33] G. Rodriguez, R. Badia, J. Labarta, Generation of Simple Analytical Models
for Message Passing Applications, in: Proc. of the 10th Euro-Par Parallel
Processing Conf., Pisa, Italy, 2004.

[34] K. A. Gallivan, B. A. Marsolf, H. A. G. Wijshoff, The Parallel Solution
of Nonsymmetric Sparse Linear Systems Using the H* Reordering and An
Associated Factorization, in: Proc. of the 8th ACM Conf. on Supercomputing,
Manchester, UK, 1994, pp. 419–430.

29

[35] G. Geist, C. Romine, Parallel LU Factorization on Message Passing
Architecture, SIAM J. Sci. Stat. Comput. 9 (4) (1988) 639–649.

[36] P. R. Amestoy, I. S. Duff, J.-Y. L’Excellent, X. S. Li, Impact of the
Implementation of MPI Point-to-Point Communications on the Performance
of Two General Sparse Solvers, Parallel Computing 29 (2003) 833–849.

[37] S. Hunold, T. Rauber, G. Rünger, Multilevel Hierarchical Matrix Multiplication
on Clusters, in: Proc. of the 18th ACM Conf. on Supercomputing, Saint-Malo,
France, 2004, pp. 136–145.

[38] The S+ Project Web Site, http://www.cs.rochester.edu/u/kshen/research/s+.

30

