
Cluster Load Balancing for Fine-grain Network Services

Kai Shen
Dept. of Computer Science

University of California
Santa Barbara, CA 93106

kshen@cs.ucsb.edu

Tao Yang
Dept. of Computer Science

UC Santa Barbara
and Teoma/Ask Jeeves

tyang@cs.ucsb.edu

Lingkun Chu
Dept. of Computer Science

University of California
Santa Barbara, CA 93106

lkchu@cs.ucsb.edu

Abstract

This paper studies cluster load balancing policies and
system support for fine-grain network services. Load bal-
ancing on a cluster of machines has been studied exten-
sively in the literature, mainly focusing on coarse-grain dis-
tributed computation. Fine-grain services introduce addi-
tional challenges because system states fluctuate rapidly for
those services and system performance is highly sensitive
to various overhead. The main contribution of our work is
to identify effective load balancing schemes for fine-grain
services through simulations and empirical evaluations on
synthetic workload and real traces. Another contribution is
the design and implementation of a load balancing system
in a Linux cluster that strikes a balance between acquiring
enough load information and minimizing system overhead.
Our study concludes that: 1) Random polling based load-
balancing policies are well-suited for fine-grain network
services; 2) A small poll size provides sufficient information
for load balancing, while an excessively large poll size may
in fact degrade the performance due to polling overhead; 3)
Discarding slow-responding polls can further improve sys-
tem performance.

1. Introduction

Large-scale cluster-based network services are increas-
ingly emerging to deliver highly scalable, available, and
feature-rich user experiences. Inside those service clusters,
a node can elect to provide services and it can also access
services provided by other nodes. It serves as an internal
server or client in each context respectively. Services are
usually partitioned, replicated, aggregated, and then deliv-
ered to external clients through protocol gateways. Figure 1
illustrates the architecture of such a service cluster. In this
example, the service cluster delivers a discussion group and
a photo album service to wide-area browsers and wireless
clients through web servers and WAP gateways. The dis-

cussion group service is delivered independently while the
photo album service relies on an internal image store ser-
vice. All the components (including protocol gateways) are
replicated. In addition, the image store service is partitioned
into two partition groups.

Wide-area
Network

Wireless
Network

High-throughput
low-latency

network

Service cluster

Photo
Album

Partition
0 - 19

Photo
Album

Partition
0 - 19

Photo
Album

Partition
0 - 19

Photo
Album

Partition
0 - 19

Image
Store

Partition
0 - 9

Image
Store

Partition
0 - 9

Image
Store

Partition
0 - 9

Image
Store

Partition
10 - 19

Image
Store

Partition
10 - 19

Image
Store

Partition
10 - 19

Discussion
Group

Partition
0 - 19

Discussion
Group

Partition
0 - 19

Discussion
Group

Partition
0 - 19

Discussion
Group

Partition
0 - 19

Web
Server

Web
Server

Web
Server WAP

Gateway

WAP
Gateway

WAP
Gateway

Figure 1. Architecture of a service cluster.

While previous research has addressed the issues of scal-
ability, availability, extensibility, and service replication
support in building large-scale network service infrastruc-
tures [2, 13, 15, 23], there is still a lack of comprehensive
study on load balancing support in this context. This pa-
per studies the issue of providing efficient load balancing
support for accessing replicated services inside the service
cluster. The request distribution between wide-area external
clients and geographically distributed service clusters is out
of the scope of this paper.

A large amount of work has been done by the industry
and research community to optimize HTTP request distri-
bution among a cluster of Web servers [1, 3, 6, 8, 17, 21].



Most load balancing policies proposed in such a context
rely on the premise that all network packets go through
a single front-end dispatcher or a TCP-aware (layer 4 or
above) switch so that TCP level connection-based statis-
tics can be accurately maintained. In contrast, clients and
servers inside the service cluster are often connected by
high-throughput, low-latency Ethernet (layer 2) or IP (layer
3) switches, which do not provide any TCP level traffic
statistics. This constraint calls for more complex load in-
formation dissemination schemes.

Previous research has proposed and evaluated various
load balancing policies for cluster-based distributed sys-
tems [5, 7, 9, 14, 19, 20, 24, 25]. Load balancing tech-
niques in these studies are valuable in general, but not all
of them can be applied for cluster-based network services.
This is because they focus on coarse-grain computation and
often ignore fine-grain jobs by simply processing them lo-
cally. For example, the job trace used in a previous trace-
driven simulation study has a mean job execution time of
1.492 seconds [25]. In the context of network services, with
the trend towards delivering more feature-rich services in
real time, large number of fine-grain sub-services need to
be aggregated within a short period of time. For example,
a distributed hash table lookup for keyword search usually
only takes a couple of milliseconds. Fine-grain services in-
troduce additional challenges because server workload can
fluctuate rapidly for those services. The results from previ-
ous simulation studies for load balancing may not be valid
because fine-grain services are sensitive to various system
overhead which is hard to accurately capture in simulations.
In recognizing this limitation, we developed a prototype im-
plementation based on a clustering infrastructure and con-
ducted evaluations on a Linux cluster. Overall, our evalua-
tion methodology is based on simulations as well as exper-
iments with a prototype implementation.

The rest of this paper is organized as follows. Section 1.1
describes the service traces and synthetic workloads that are
used in this paper. Section 2 presents our simulation studies
on load balancing policies and the impact of various param-
eters. Section 3 describes a prototype system implementa-
tion in a Linux cluster with a proposed optimization. Sec-
tion 4 evaluates the performance of this prototype system.
Section 5 discusses related work and Section 6 concludes
the paper.

1.1. Evaluation Workload

We collected the traces of two internal service cluster
components from search engine Teoma [4] and their statis-
tics are listed in Table 1. Both traces were collected across
an one-week time span in late July 2001. One of the services
provides the translation between query words and their in-
ternal representations. The other service supports a sim-

ilar translation for Web page descriptions. Both services
allow multiple translations in one access. The first trace
has a mean service time of 22.2 ms and we call it the Fine-
Grain trace. The second trace has a mean service time of
208.9 ms and we call it the Medium-Grain trace. We use
a peak time portion (early afternoon hours of three con-
secutive weekdays) from each trace in our study. Most
system resources are well under-utilized during non-peak
times, therefore load balancing is less critical during those
times. Note that the arrival intervals of those two traces may
be scaled when necessary to generate workloads at various
demand levels during our evaluation.

In addition to the traces, we also include a synthetic
workload with Poisson process arrivals and exponentially
distributed service times. We call this workload Pois-
son/Exp in the rest of this paper. Several previous studies on
Internet connections and workstation clusters suggested that
both the inter-arrival time distribution and the service time
distribution exhibit high variance, thus are better modeled
by Lognormal, Weibull, or Pareto distributions [10, 16]. We
choose Poisson/Exp workload in our study for the follow-
ing reasons. First, we believe the peak time arrival pro-
cess is less bursty than the arrival process over a long pe-
riod of time. Secondly, the service time distribution tends
to have a low variance for services of the same type. In
fact, Table 1 shows that those distributions in our traces have
even lower variance than an exponentially distributed sam-
ple would have.

2. Simulation Studies

In this section, we present the results of our simulation
studies. We confine our study on fully distributed load bal-
ancing policies that do not contain any single point of fail-
ure because high availability is essential in building large-
scale network service infrastructure. We will first examine
the load information inaccuracy caused by its dissemination
delay. This delay is generally insignificant for coarse-grain
jobs but it can be critical for fine-grain services. We will
then move on to study two distributed load balancing poli-
cies: 1) the broadcast policy in which load information is
propagated through server-initiated pushing; and 2) the ran-
dom polling policy in which load information is propagated
through client-initiated pulling. We choose them because
they represent two broad categories of policies in terms of
how load information is propagated from the servers to the
clients. In addition, they are both shown to be competitive
in a previous trace-driven simulation study [25].

In our simulation model, each server contains a non-
preemptive processing unit and a FIFO service queue. The
network latency of sending a service request and receiving
a service response is set to be half a TCP roundtrip latency
with connection setup and teardown, which is measured at



Number of accesses Arrival interval Service time
Workload Total Peak portion Mean Std-dev Mean Std-dev
Medium-Grain trace 1,055,359 126,518 341.5ms 321.1ms 208.9ms 62.9ms
Fine-Grain trace 1,171,838 98,933 436.7ms 349.4ms 22.2ms 10.0ms

Table 1. Statistics of evaluation traces.

516 us in a switched 100 Mb/s Linux cluster.
We choose the mean service response time as the perfor-

mance index to measure and compare the effectiveness of
various policies. We believe this is a better choice than sys-
tem throughput for evaluating load balancing policies be-
cause system throughput is tightly related to the admission
control, which is beyond the scope of this paper.

2.1. Accuracy of Load Information

Almost all load balancing policies use some sort of
load indexes to measure server load levels. Prior studies
have suggested a linear combination of the resource queue
lengths can be an excellent predictor of service response
time [11, 24]. We use the total number of active service
accesses, i.e. the queue length, on each server as the server
load index. In most distributed policies, load indexes are
typically propagated from server side to client side in some
way and then each client uses acquired information to direct
service accesses to lightly loaded servers. Accuracy of the
load index is crucial for clients to make effective load bal-
ancing decision. However, the load index tends to be stale
due to the delay between the moment it is being measured at
the server and the moment it is being used at the client. We
define the load index inaccuracy for a certain delay �t as
the statistical mean of the queue length difference measured
at arbitrary time t and t��t. Figure 2 illustrates the impact
of this delay (normalized to mean service time) on the load
index inaccuracy for a single server through simulations on
all three workloads. We also show the upperbound for Pois-
son/Exp in a straight line. With the assumption that the in-
accuracy monotonically increases with the increase of �t,
the upperbound is the statistical mean of the queue length
difference measured at any two arbitrary time t� and t�. Let
term � be defined as the mean service time divided by the
mean arrival interval, which reflects the level of server load.
For a Poisson/Exp workload, since the limiting probabil-
ity that a single server system has a queue length of k is
��� ���k [18], the upperbound can be calculated as:

�X

i�j��

��� ����i�j ji� jj �
��

�� ��
(1)

The detailed calculation can be found in a technical re-
port [22].

0 20 40 60 80 100
0

2

4

6

8

10

Delay (normalized to mean service time)

Lo
ad

 in
de

x 
in

ac
cu

ra
cy

<A> server 90% busy

Upperbound for Poisson/Exp
Poisson/Exp
Medium−Grain trace
Fine−Grain trace

0 20 40 60 80 100
0

1

2

3

4

5

Delay (normalized to mean service time)

Lo
ad

 in
de

x 
in

ac
cu

ra
cy

<B> server 50% busy

Upperbound for Poisson/Exp
Poisson/Exp
Medium−Grain trace
Fine−Grain trace

Figure 2. Impact of delay on load index inac-
curacy with 1 server (simulation).

When the server is moderately busy (50%), the load in-
dex inaccuracy quickly reaches the upperbound (1.33 for
Poisson/Exp) when delay increases, but the inaccuracy is
moderate even under high delay. This means a random ap-
proach is likely to work well when servers are only moder-
ately busy and fancier policies do not improve much. When
the server is very busy (90%), the load index inaccuracy is
much more significant and it can cause an error of around
3 in the load index when the delay is around 10 times the
mean service time. This analysis reveals that when servers
are busy, fine-grain services require small information dis-
semination delays in order to have accurate load informa-
tion on the client side.



2.2. Broadcast Policy

In the broadcast policy, an agent is deployed at each
server which collects the server load information and an-
nounces it through a broadcast channel at various inter-
vals. It is important to have non-fixed broadcast intervals
to avoid the system self-synchronization [12]. The inter-
vals we use are evenly distributed between 0.5 and 1.5 times
the mean value. Each client listens at this broadcast chan-
nel and maintains the server load information locally. Then
every service request is made to a server with the lightest
workload. Since the server load information maintained at
the client side is acquired through periodical server broad-
casts, this information becomes stale between consecutive
broadcasts and the staleness is in large part determined by
the broadcast frequency. Figure 3 illustrates the impact of
broadcast frequency through simulations. A 50 ms mean
service time is used for Poisson/Exp workload. Sixteen
servers are used in the simulation. The mean response time
shown in Figure 3 is normalized to the mean response time
under an ideal approach, in which all server load indices
can be accurately acquired on the client side free-of-cost
whenever a service request is to be made.

31.25 62.5 125 250 500 1000
0

2

4

6

8

10

12

Mean broadcast interval (in milliseconds)

M
ea

n 
re

sp
on

se
 ti

m
e 

(n
or

m
al

iz
ed

 to
 ID

E
A

L)

<A> server 90% busy

Poisson/Exp 50ms
Medium−Grain trace
Fine−Grain trace
ideal

31.25 62.5 125 250 500 1000
0

1

2

3

4

5

6

Mean broadcast interval (in milliseconds)

M
ea

n 
re

sp
on

se
 ti

m
e 

(n
or

m
al

iz
ed

 to
 ID

E
A

L)

<B> server 50% busy

Poisson/Exp 50ms
Medium−Grain trace
Fine−Grain trace
ideal

Figure 3. Impact of broadcast frequency with
16 servers (simulation).

When servers are 90% busy, we observe that the per-
formance for broadcast policy with 1 second mean broad-
cast interval could be an order of magnitude slower than
the ideal scenario for fine-grain services (Poisson/Exp and
Fine-Grain trace). The degradation is less severe (up to 3
times) when servers are 50% busy, but it is still significant.
This problem is mainly caused by the staleness of load in-
formation due to low broadcast frequency. But we also want
to emphasize that the staleness is severely aggravated by
the flocking effect of the broadcast policy, i.e. all service
requests tend to flock to a single server (the one with the
lowest perceived queue length) between consecutive broad-
casts. The performance under low broadcast interval, e.g.
interval 31.25 ms is close to the ideal scenario. However,
we believe the overhead will be prohibitive under such high
frequency, e.g. a sixteen server system with 31.25 ms mean
broadcast interval will force each client to process a broad-
cast message every 2 ms.

2.3. Random Polling Policy

For every service access, the random polling policy re-
quires a client to randomly poll several servers for load in-
formation and then direct the service access to the most
lightly loaded server according to the polling results. An
important parameter for a random polling policy is the poll
size. Mitzenmacher demonstrated through analytical mod-
els that a poll size of two leads to an exponential improve-
ment over pure random policy, but a poll size larger than two
leads to much less substantial additional improvement [20].
Figure 4 illustrates our simulation results on the impact of
poll size using all three workloads. Policies with the poll
size of 2, 3, 4, and 8 are compared with the random and
ideal approach in a sixteen server system. A 50 ms mean
service time is used for Poisson/Exp workload.

This result basically confirms Mitzenmacher's analytical
results in the sense that a poll size of two performs signifi-
cantly better than a pure random policy while a larger poll
size does not provide much additional benefit. Our simula-
tion also suggests that this result is consistent across all ser-
vice granularity and all server load level, which makes it a
very robust policy. We believe the random polling policy is
well-suited for fine-grain services because the just-in-time
polling always guarantees very little staleness on the load
information.

2.4. Summary of Simulation Studies

First, our simulation study shows that a long delay be-
tween the load index measurement time at the server and
its time of usage at the client can yield significant inaccu-
racy. This load index inaccuracy tends to be more severe
for finer-grain services and busier servers. Then we go on



50% 60% 70% 80% 90%
0

1000

2000

3000

4000

5000

Server load level

M
ea

n 
re

sp
on

se
 ti

m
e 

(in
 m

ill
is

ec
on

ds
)

<A> Medium−Grain trace

random
polling 2
polling 3
polling 4
polling 8
ideal

50% 60% 70% 80% 90%
0

100

200

300

400

500

Server load level

M
ea

n 
re

sp
on

se
 ti

m
e 

(in
 m

ill
is

ec
on

ds
)

<B> Poisson/Exp with mean service time 50ms

random
polling 2
polling 3
polling 4
polling 8
ideal

50% 60% 70% 80% 90%
0

100

200

300

400

500

Server load level

M
ea

n 
re

sp
on

se
 ti

m
e 

(in
 m

ill
is

ec
on

ds
)

<C> Fine−Grain trace

random
polling 2
polling 3
polling 4
polling 8
ideal

Figure 4. Impact of poll size with 16 servers (simulation).

to study two representative policies, broadcast and random
polling. Our results show that random polling based load
balancing policies deliver competitive performance across
all service granularities and all server load levels. In par-
ticular, the policy with a poll size of two already delivers
competitive performance with the ideal scenario. As for
the broadcast policy, we identify the difficulty of choos-
ing a proper broadcast frequency for fine-grain services. A
low broadcast frequency results in severe load index inac-
curacy, and in turn degrades the system performance sig-
nificantly. A high broadcast frequency, on the other hand,
introduces high broadcast overhead. Ideally, the broadcast
frequency should linearly scale with the system load level
to cope with rapid system state fluctuation. This creates a
scalability problem because the number of messages under
a broadcast policy would linearly scale with three factors:
1) the system load level; 2) the number of servers; and 3)
the number of clients. In contrast, the number of messages
under the random polling policy only scale with the server
load level and the number of servers.

3. Prototype Design and Implementation

We have developed a prototype implementation of the
random polling policy on top of a cluster-based service in-
frastructure. The simulation results in Section 2 favor ran-
dom polling policy so strongly that we do not consider the
broadcast policy in the prototype system.

3.1. System Architecture

This implementation is a continuation of our previous
work on Neptune, a cluster-based infrastructure for aggre-
gating and replicating partitionable network services [23].
Neptune allows services ranging from read-only to fre-
quently updated be replicated and aggregated in a clus-
ter environment. Neptune encapsulates an application-level

network service through a service access interface which
contains several RPC-like access methods. Each service ac-
cess through one of these methods can be fulfilled exclu-
sively on one data partition. We employ a flat architecture
in constructing the service network infrastructure. A node
can elect to provide services and it can also access services
provided by other nodes. It serves as an internal server or
client in each context respectively. Each node, when elects
to provide services, maintains a service queue and a worker
thread pool. The size of the thread pool is chosen to strike
the best balance between concurrency and efficiency.

Conceptually, for each service access, the client first ac-
quires the set of available server nodes through a service
availability subsystem. Then it chooses one node from the
available set through a load balancing subsystem before
sending the service request. Our service availability sub-
system is based on a well-known publish/subscribe channel,
which can be implemented using IP multicast or a highly
available well-known central directory. Each cluster node
can elect to provide services through repeatedly publishing
the service type, the data partitions it hosts, and the access
interface. Published information is kept as soft state in the
channel such that it has to be refreshed frequently to stay
alive. Each client node subscribes to this well-known chan-
nel and maintains a service/partition mapping table.

We implemented a random polling policy for the load
balancing subsystem. On the server side, we augmented
each node to respond to load inquiry requests. For each ser-
vice access, the client randomly chooses a certain number
of servers out of the available set returned from the service
availability subsystem. Then it sends out load inquiry re-
quests to those servers through connected UDP sockets and
asynchronously collects the responses using select sys-
tem call.

Figure 5 illustrates the client/server architecture in our
service infrastructure. Overall, both subsystems employ
a loosely-connected and flat architecture which allows the



Server node

Client node

Service
mapping

table
Polling agent

Service
access point

Service
publishing

Load index
server

Request
queue,

thread pool

P
ublish/subscribe

channel

Load
inquiries

S
ervice

access

Service availability
subsystem

Load balancing
subsystem

Figure 5. The client/server architecture in our
service infrastructure.

service infrastructure to operate smoothly in the presence
of transient failures and service evolution.

3.2. Discarding Slow-responding Polls

On top of the basic random polling implementation, we
also made an enhancement by discarding slow-responding
polls. Through a ping-pong test on two idle machines in
our Linux cluster, we measured that a UDP roundtrip cost
is around 290 us. However, it may take much longer than
that for a busy server to respond a UDP request. We profiled
a typical run under a poll size of 3, a server load index of
90%, and 16 server nodes. The profiling shows that 8.1%
of the polls are not completed within 10 ms and 5.6% of
them are not completed within 20 ms. With this in mind,
we enhanced the basic polling policy by discarding polls
not responded within 10 ms. Intuitively, this results in a
tradeoff between consuming less polling time and acquiring
more load information. However, we also realize that long
polls result in inaccurate load information due to long delay.
Discarding those long polls can avoid using stale load infor-
mation, which is an additional advantage. And this tends to
be more substantial for fine-grain services.

4. Experimental Evaluations

All the evaluations in this section were conducted on a
rack-mounted Linux cluster with around 30 dual 400 Mhz
Pentium II nodes, each of which contains either 512 MB
or 1 GB memory. Each node runs Linux 2.2.15 and has
two 100 Mb/s Ethernet interfaces. The cluster is connected
by a Lucent P550 Ethernet switch with 22 Gb/s backplane
bandwidth. All the experiments presented in this section
use 16 server nodes and up to 6 client nodes.

Due to various system overhead, we notice that the server
load level cannot simply be the mean service time divided
by the mean arrival interval. For each workload on a single-
server setting, we consider the server reach full load (100%)
when around 98% of client requests were successfully com-
pleted within two seconds. Then we use this as the basis to
calculate the client request rate for various server load lev-
els. The service processing on the server side is emulated
using a CPU-spinning microbenchmark that consumes the
same amount of CPU time as the intended service time. The
ideal scenario in our simulation study is achieved when all
server load indices can be accurately acquired on the client
side free-of-cost whenever a service request is to be made.
For the purpose of comparison, we emulate a correspond-
ing ideal scenario in the evaluations of our prototype im-
plementation. This is achieved through a centralized load
index manager which keeps track of all server load indices.
Each client contacts the load index manager whenever a ser-
vice access is to be made. The load index manager returns
the server with the shortest service queue and increments
that queue length by one. Upon finishing one service ac-
cess, each client is required to contact the load index man-
ager again so that the corresponding server queue length can
be properly decremented. This approach closely emulates
the actual ideal scenario with a delay of around one TCP
roundtrip without connection setup and teardown (around
339 us in our Linux cluster).

4.1. Evaluation on Poll Size

Figure 6 shows our experimental results on the impact
of poll size using all three workloads. We observe that the
results for Medium-Grain trace and Poisson/Exp workload
largely confirm the simulation results in Section 2. How-
ever, for the Fine-Grain trace with very fine-grain service
accesses, we notice that a poll size of 8 exhibits far worse
performance than policies with smaller poll sizes and it
is even slightly worse than the pure random policy. This
is caused by excessive polling overhead coming from two
sources: 1) longer polling delays resulted from larger poll
size; 2) less accurate server load index due to longer polling
delay. And those overheads are more severe for fine-grain
services. Our conclusion is that a small poll size (e.g. 2 or
3) provides sufficient information for load balancing. And
an excessively large poll size may even degrade the per-
formance due to polling overhead, especially for fine-grain
services.

4.2. Improvement of Discarding Slow-responding
Polls

Table 2 shows the overall improvement and the improve-
ment excluding polling time for discarding slow-responding



50% 60% 70% 80% 90%
0

100

200

300

400

500

600

Server load level

M
ea

n 
re

sp
on

se
 ti

m
e 

(in
 m

ill
is

ec
on

ds
)

<A> Medium−Grain trace

random
polling 2
polling 3
polling 4
polling 8
ideal

50% 60% 70% 80% 90%
0

50

100

150

200

Server load level

M
ea

n 
re

sp
on

se
 ti

m
e 

(in
 m

ill
is

ec
on

ds
)

<B> Poisson/Exp with mean service time 50ms

random
polling 2
polling 3
polling 4
polling 8
ideal

50% 60% 70% 80% 90%
0

10

20

30

40

50

60

70

80

Server load level

M
ea

n 
re

sp
on

se
 ti

m
e 

(in
 m

ill
is

ec
on

ds
)

<C> Fine−Grain trace

random
polling 2
polling 3
polling 4
polling 8
ideal

Figure 6. Impact of poll size based on a prototype implementation with 16 servers.

Mean response time Improvement
Workload (mean polling time) (Excl.

Original Optimized polling time)
Medium-Grain 282.1ms 283.1ms -0.4%
trace (2.6ms) (1.0ms) (-0.9%)
Poisson/Exp 81.8ms 79.2ms 3.2%

(2.7ms) (1.1ms) (1.2%)
Fine-Grain 51.6ms 47.3ms 8.3%
trace (2.7ms) (1.1ms) (5.2%)

Table 2. Performance improvement of dis-
carding slow-responding polls with poll size
3 and server 90% busy.

polls. The experiments are conducted with a poll size of
3 and a server load index of 90%. The experiment on
Medium-Grain trace shows a slight performance degrada-
tion due to the loss of load information. However, the re-
sults on both Fine-Grain trace and Poisson/Exp workload
exhibit sizable improvement in addition to the reduction of
polling time and this additional improvement is a result of
avoiding the use of stale load information. Overall, the
enhancement of discarding slow-responding polls can im-
prove the load balancing performance by up to 8.3%. Note
that the performance results shown in Figure 6 are not with
discarding slow-responding polls.

5. Related Work

This work is a continuation of our previous research on
Neptune: a cluster-based infrastructure for aggregating and
replicating partitionable network services [23]. Closely re-
lated to a group of work on building large-scale network
services in cluster environments [13, 15], Neptune provides

a scalable, available, and extensible service infrastructure
through service partitioning, replication, and aggregation.
The load balancing study in this paper complements these
service infrastructure work by providing efficient load bal-
ancing support suitable for all service granularities.

A large body of work has been done to optimize HTTP
request distribution among a cluster of Web servers [1, 3,
6, 8, 17, 21]. Most load balancing policies proposed in
such a context rely on the premise that all network pack-
ets go through a single front-end dispatcher or a TCP-aware
(layer 4 or above) switch so that TCP level connection-
based statistics can be accurately maintained. However,
clients and servers inside the service cluster are often con-
nected by high-throughput, low-latency Ethernet (layer 2)
or IP (layer 3) switches, which do not provide any TCP level
traffic statistics. Our study in this paper shows that an opti-
mized random polling policy that does not require central-
ized statistics can deliver competitive performance based on
a prototype implementation on a Linux cluster.

Previous research has proposed and evaluated various
load balancing policies for cluster-based distributed sys-
tems [7, 9, 14, 19, 20, 24, 25]. Those studies mostly deal
with coarse-grain distributed computation and often ignore
fine-grain jobs by simply processing them locally. We put
our focus on fine-grain network services by examining the
sensitivity of the load information dissemination delay and
its overhead. Both are minor issues for coarse-grain jobs
but they are critical for fine-grain services.

A recent study shows that network servers based on
Virtual Interface (VI) Architecture provide significant per-
formance benefits over standard server networking inter-
faces [8]. Generally the advance in network performance
improves the effectiveness of all load balancing policies. In
particular, such an advance has certain impact on our re-
sults. First, a high-performance network layer may allow
efficient and high frequency server broadcasts, which im-
proves the feasibility of the broadcast policy. Secondly, a



reduction in network overhead might change some quanti-
tative results of our experimental evaluations. For instance,
the overhead of the random polling policy with a large poll
size might not be as severe as those shown in our experi-
ments. Those issues should be addressed when advanced
network standards become more widespread.

6. Concluding Remarks

In this paper, we study load balancing policies for
cluster-based network services with the emphases on fine-
grain services. Our evaluation is based on a synthetic work-
load and two traces we acquired from an online search en-
gine. In addition to simulations, we also developed a pro-
totype implementation on a Linux cluster and conducted
experimental evaluations with it. Our study and evalua-
tions identify techniques that are effective for fine-grain
services and lead us to make several conclusions: 1) Ran-
dom polling based load-balancing policies are well-suited
for fine-grain network services; 2) A small poll size pro-
vides sufficient information for load balancing, while an ex-
cessively large poll size may even degrade the performance
due to polling overhead; 3) An optimization of discarding
slow-responding polls can further improve the performance
by up to 8.3%.

Acknowledgment. This work was supported in part
by NSF CCR-9702640, ACIR-0082666 and 0086061. We
would like to thank Ricardo Bianchini, Apostolos Gera-
soulis, Rich Martin, Hong Tang, and the anonymous ref-
erees for their valuable comments and help.

References

[1] ArrowPoint Communications. Web Switching White Papers.
http://www.arrowpoint.com/solu-tions/white papers/.

[2] BEA Systems. WebLogic and Tuxedo Trans-
action Application Server White Papers.
http://www.bea.com/products/tuxedo/papers.html.

[3] Foundry Networks. White Paper: Cutting Through Layer 4
Hype. http://www.foundrynet .com/whitepaper layer4.html.

[4] Teoma search. http://www.teoma.com.
[5] D. Andresen, T. Yang, V. Holmedahl, and O. Ibarra. SWEB:

Towards a Scalable WWW Server on MultiComputers. In
Proc. of the IEEE Intl. Symposium on Parallel Processing,
pages 850–856, Apr. 1996.

[6] M. Aron, D. Sanders, P. Druschel, and W. Zwaenepoel. Scal-
able Content-aware Request Distribution in Cluster-based
Network Services. In Proc. of the 2000 USENIX Annual
Technical Conf., San Diego, CA, June 2000.

[7] A. Barak, S. Guday, and R. G. Wheeler. The MOSIX Dis-
tributed Operating System: Load Balancing for UNIX, vol-
ume 672 of Lecture Notes in Computer Science. Springer-
Verlag, 1993.

[8] E. V. Carrera and R. Bianchini. Efficiency vs. Portability
in Cluster-based Network Servers. In Proc. of the 8th ACM

SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 113–122, Snowbird, UT, June 2001.

[9] D. L. Eager, E. D. Lazowska, and J. Zahorjan. Adaptive Load
Sharing in Homogeneous Distributed Systems. IEEE Trans.
on Software Engineering, 12(5):662–675, May 1986.

[10] A. Feldmann. Characteristics of TCP Connection Arrivals.
Technical report, AT&T Labs Research, 1998.

[11] D. Ferrari. A Study of Load Indices for Load Balancing
Schemes. Technical Report CSD-85-262, EECS Depart-
ment, UC Berkeley, Oct. 1985.

[12] S. Floyd and V. Jacobson. The Synchronization of Periodic
Routing Messages. In Proc. of ACM SIGCOMM'93, pages
33–44, San Francisco, CA, Sept. 1993.

[13] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and
P. Gauthier. Cluster-Based Scalable Network Services. In
Proc. of the 16th ACM Symposium on Operating System
Principles, pages 78–91, Saint Malo, Oct. 1997.

[14] K. K. Goswami, M. Devarakonda, and R. K. Iyer. Prediction-
Based Dynamic Load-Sharing Heuristics. IEEE Trans. on
Parallel and Distributed Systems, 4(6):638–648, June 1993.

[15] S. D. Gribble, M. Welsh, E. A. Brewer, and D. Culler. The
MultiSpace: An Evolutionary Platform for Infrastructural
Services. In Proc. of the USENIX Annual Technical Conf.
Monterey, CA, 1999.

[16] M. Harchol-Balter and A. B. Downey. Exploiting Process
Lifetime Distributions for Dynamic Load Balancing. ACM
Transactions on Computer Systems, 15(3):253–285, 1997.

[17] G. D. H. Hunt, G. S. Goldszmidt, R. P. King, and R. Mukher-
jee. Network Dispatcher: A Connection Router for Scalable
Internet Services. In Proc. of the 7th Intl. World Wide Web
Conf., Brisbane, Australia, Apr. 1998.

[18] L. Kleinrock. Queueing Systems, volume I: Theory. Wiley,
New York, 1975.

[19] T. Kunz. The influence of Different Workload Descriptions
on a Heuristic Load Balancing Scheme. IEEE Trans. on Soft-
ware Engineering, 17(7):725–730, July 1991.

[20] M. Mitzenmacher. On the Analysis of Randomized Load
Balancing Schemes. In Proc. of the 9th ACM Symposium
on Parallel Algorithms and Architectures (SPAA'97), pages
292–301, Newport, RI, June 1997.

[21] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, and E. Nahum. Locality-Aware Request
Distribution in Cluster-based Network Servers. In Proc.
of the ACM 8th Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-
VIII), pages 205–216, San Jose, CA, Oct. 1998.

[22] K. Shen, T. Yang, and L. Chu. Cluster Load Balancing for
Fine-Grain Network Services. Technical Report TRCS2002-
02, Dept. of Computer Science, UC Santa Barbara, 2002.

[23] K. Shen, T. Yang, L. Chu, J. L. Holliday, D. A. Kuschner,
and H. Zhu. Neptune: Scalable Replication Management
and Programming Support for Cluster-based Network Ser-
vices. In Proc. of the 3rd USENIX Symposium on Internet
Technologies and Systems, pages 197–208, San Francisco,
CA, Mar. 2001.

[24] S. Zhou. An Experimental Assessment of Resource Queue
Lengths as Load Indices. In Proc. of the Winter USENIX
Technical Conf., pages 73–82, Washington, DC, Jan. 1987.

[25] S. Zhou. A Trace-Driven Simulation Study of Dynamic
Load Balancing. IEEE Trans. on Software Engineering,
14(9):1327–1341, Sept. 1988.


