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Abstract

Idle CPUs may enter power-saving hardware sleeps
by, for instance, lowering the operating voltage and
flushing the caches. However, wakeup delays that reach
one hundred µSecs or more are disrupting the operations
of fast devices like solid-state disks and tightly integrated
accelerators. On the other hand, maximal power savings
on modern multicores are only realized through continu-
ous, simultaneous CPU sleeps. We argue that strong soft-
ware engagement (at the OS and applications) is needed
to maximize the power saving while maintaining the de-
sired performance. Specifically, we present anticipatory
CPU wakeups for latency-sensitive operations on fast de-
vices. We also explore power-saving sleep shaping op-
portunities through non-work-conserving scheduling on
smartphones and staged bursts on servers.

1 Motivation and Approach

An idle CPU can enter hardware sleep states that
power down various resources to conserve energy. The
wakeup of a sleeping CPU incurs a delay due to the
restoration of the hardware operating condition and state.
For instance, an Intel E5-2620 v3 Haswell socket can
save a few dozen Watts of power by sleeping at the ACPI
C6 state (cycles halted; clocks shut off; L1 / L2 cache
flushed; core voltage removed). On the other hand, its
wakeup causes 106µSecs of extra delay for a simple net-
work ping-pong service.

Emerging hardware and workload trends have high-
lighted the challenges of the CPU sleep management.
From the performance perspective, wakeup delays of
dozens or hundreds of µSecs could cause excessive dis-
ruptions. Commodity solid-state disks are already oper-
ating at 100µSec-level latencies (particularly for reads).
Emerging integrated accelerators like GPUs (exemplified
by Intel IvyBridge and Haswell, AMD Fusion APUs, and
NVIDIA Denver) allow fast CPU / accelerator interac-
tions and facilitate efficient acceleration of fine-grained
tasks. A slow CPU wakeup produces significant slow-
down for these device operations. In a further exam-
ple, latency-sensitive network services (e.g., a memory-

cached hash table) inside a data center may suffer multi-
fold slowdown if a wakeup from a CPU deep sleep is
involved.

From the power perspective, the benefit of CPU sleep-
ing is highly influenced by the sleep pattern. First, it is
desirable for a CPU to sleep continuously to minimize
the energy costs during active / sleeping state transitions.
Second, due to aggressive resource sharing, modern mul-
ticores realize maximal power saving only when all CPU
cores/threads sleep simultaneously. Unfortunately, con-
tinuous, simultaneous CPU sleeps are rare under the con-
ventional work-conserving CPU scheduling when fine-
grained units of work may activate one or a few CPUs in
intermittent fashions.

This paper argues for strong software engagement (at
both OS and application levels) of CPU sleep manage-
ment to maintain high performance when needed and
maximize the energy saving when possible. Specifically
in low-latency operating conditions, the CPU should start
waking up early (before the work-triggering interrupt)
such that the CPU is immediately ready for work when
needed. Such anticipatory wakeups are best requested by
the software layers with knowledge of or ability to model
the time of future work resumption. The OS should
aggregate anticipatory wakeup requests and maintain a
CPU sleep plan with high efficiency and (if desirable)
proper energy accounting.

On the other hand, many system and application con-
texts manifest a high degree of slacks in their quality-of-
service requirements. For example, due to the long op-
eration time of the wide area network and other periph-
eral devices in smartphones, some tasks can be slowed
substantially without compromising the user experience.
Also, requests in a web server application may be de-
layed as long as they are all completed within a speci-
fied latency threshold. Such quality-of-service flexibil-
ity presents opportunities for shaping the CPU idleness
patterns (through delaying, staging, and consolidating
work) toward continuous, simultaneous CPU sleeps with
high power saving.

Much of prior attention on energy-efficient CPU
management has targeted the processor frequency con-
trol [13, 22, 23]. Among the most seminal, Weiser et
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al. [23] proposed fine-grained frequency adjustment and
workload scheduling to conserve energy. Recent work by
Le Sueur and Heiser [20] experimentally demonstrated
the large energy effects of CPU hardware sleeps, but
without proposing an approach for systematic manage-
ment. The network community has explored the use
of “sleep” proxies to keep machines continuously shut-
down [5, 17]. These works target the ACPI S state man-
agement where a “sleeping” machine may take seconds
to wakeup, which is very different from the much finer-
grained CPU hardware sleeps that we study.

2 Latency-Sensitive Anticipatory Wakeup

In a latency-sensitive environment, the wakeup delay
of a sleeping CPU can be a substantial performance con-
cern. If the future work triggering event can be antic-
ipated with a predictable elapsed time, the CPU should
start waking up in advance so that it is immediately ready
for work when needed. Errors of such prediction can be
tolerated by earlier CPU wakeups at the cost of additional
power consumption.

Anticipatory CPU wakeups are particularly beneficial
for operations on fast devices. For example, the I/O com-
pletion time on a Flash-based solid state disk can be mod-
eled on the operation type (read / write) and I/O size. The
operating system device layer can maintain such a model
and initiate an anticipatory CPU wakeup for each syn-
chronous I/O operation so that the waiting application
receives a prompt response. This support can be realized
with full application transparency.

On the other hand, it is generally impossible to pre-
dict the run time of computational kernels on Turing-
complete accelerators like GPUs. Fortunately, many
GPU applications iterate over similar computational ker-
nels in their execution (e.g., in an iterative linear system
solver or an iterative machine learning refinement like
K-means clustering). Such an iterative pattern enables
an application to make history-based runtime prediction
and request for anticipatory CPU wakeups accordingly.

On a network server, the CPU wakeup delay also pro-
longs the response time to client requests. However, it
is difficult for the server to anticipate future client re-
quests, especially if the request arrival follows a memo-
ryless Poisson process (when requests come from a large
number of independent clients). In such cases, anticipa-
tory wakeups may only be possible if they are requested
in advance by remote clients before they issues requests
for real work.

On a multicore machine with a large number of CPUs,
the anticipatory wakeup should only activate the CPU(s)
necessary for latency-sensitive operation to conserve the
power consumption. On the other hand, it must ensure
the readiness for all tasks on the notification path of the

wakeup event. This includes the blocking user process
(e.g., the one blocked on the read system call to the
SSD) as well as the device interrupt handler. Waking up
the interrupt handling CPU is straightforward if the inter-
rupts are handled by a fixed CPU. It requires more coor-
dination if the interrupt handling is load-balanced across
a number of CPUs.

It is easy to foresee a system environment where multi-
ple fast devices and network services are serving latency-
sensitive tasks. Therefore multiple simultaneous antici-
patory wakeups may be requested in the system. The op-
erating system should aggregate such requests and main-
tain a CPU sleep plan with high efficiency. Such multi-
use environments also raise the question on fine-grained
energy resource accounting and attribution between con-
current tasks [19]. In particular, the energy use of a re-
source principal should include that of its anticipatory
CPU wakeups even if the system idles for much of the
wakeup durations.

In terms of resolving the power / latency conflict, our
anticipatory CPU wakeup is related to the Linux Wake-
locks mechanism (developed primarily for Android).
However, the Wakelocks mechanism is not anticipatory
and it currently manages the system suspension but not
CPU sleep states. Our idea is also reminiscent of the
anticipatory I/O work [11] that targets a very different
problem context—anticipating future high-locality I/O
accesses to reduce the seek time on mechanical disks.

SSD Case Study We made a preliminary implementa-
tion of the proposed anticipatory CPU wakeup mecha-
nism in the Linux 3.12.13 kernel. A wakeup request on
a CPU is made with two parameters—the starting time
and duration of the wakeup. The initial wakeup is im-
plemented using a kernel high-resolution timer. In the
wakeup duration, the CPU idle management is prevented
from entering any of the hardware sleep states. The CPU
may return to the normal sleep if the anticipated event
does not occur by the end of the wakeup duration. To
enable fast responses of SSD I/O accesses, we augment
the device layer to initiate an anticipatory CPU wakeup
for each synchronous I/O operation.

We perform an experimental study on a dual-socket
(6-core, 12-hyperthread per socket) Intel E5-2620 v3
Haswell machine with a Samsung 850 PRO SSD. A
device-level 4 KB read to the SSD takes about 100µSecs.
When a 4 KB read is dispatched to the device, the OS
lets the CPU to enter the C1-HSW sleep state. Given ap-
proximately 20µSecs of sleep exit latency, we make an
anticipatory request to wake up the CPU in 80µSecs for
the duration of 20µSecs.

Figure 1 illustrates the performance and power of a
synthetic I/O workload with varying inter-I/O idle time.
Results show that the I/O latency of the original Linux
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Figure 1: Performance (99th percentile I/O latency) and
power of an SSD-based workload that repeatedly reads
4 KB of data at a random file location with varying inter-
I/O idle time.

system doubles when there is 1 mSec or more inter-I/O
idle time due to the CPU wakeup delay. While disabling
all CPU sleeps can achieve the optimal I/O latency, it
would increase the CPU+DRAM power by 2–5×. In
comparison, our anticipatory CPU wakeup mechanism
incurs no visible power cost while it significantly brings
down the I/O latency slowdown (from 101% to 37% at
1 mSec inter-I/O idle time).

The predictability of the SSD I/O time is enabled by
its strong linear correlation with the I/O size. On our
Samsung 850 PRO SSD, the Pearson’s correlation coef-
ficient1 between read latency and I/O size is very close to
1.00. The correlation coefficient between write latency
and I/O size is also quite high at 0.91. However, if the
OS dispatches multiple I/O operations to the SSD (which
is beneficial to exploit SSD I/O parallelism [15, 18]), the
I/O time prediction would be more difficult.

GPU Case Study We also test the idea of anticipatory
CPU wakeup on GPU program executions. A GPU ker-
nel is usually launched by a CPU control thread. CPU
sleeping can delay the control thread from finding out
the completion of a GPU kernel computation.

The problem is particularly pronounced on CPU-GPU
integrated processors, where the tight integration of CPU
and GPU allows the use of GPU to accelerate short
requests—the lengths of which may be comparable to
a sleeping CPU’s wakeup delay. For instance, the
GPU kernel lengths in most benchmarks in AMD SDK
v2.9 [1] range from 100 µSecs to 1000 µSecs on an
AMD A10-6800K processor. A 100 µSecs wakeup de-
lay of CPU can degrade the responsiveness of the request
processing substantially. Meanwhile, because such re-
quests are often repeatedly issued in the programs, they
can together weigh substantially in the overall execution
time of the program. Wakeup delays hence can also sig-
nificantly slow down an entire program.

1The covariance of two variables divided by the product of their
standard deviations. Nearing 1.0 indicates a strong linear correlation.
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Figure 2: The processing time for the sequence of GPU
kernel requests invoked by K-means and StreamCluster.

A main concern for utilizing the anticipatory CPU
wakeup in GPU applications is the challenge of predict-
ing a GPU kernel’s runtime. Fortunately, many GPU ap-
plications iterate over similar computational kernels in
their execution, which makes history-based runtime pre-
diction promising. We experiment with two data cluster-
ing programs, K-means and StreamCluster [3]. In both,
clustering happens through an iterative process. In each
iteration, a GPU kernel is invoked to compute the dis-
tances between all data points and all potential cluster
centers; after that, the potential cluster centers are up-
dated based on the distances, the kernel is invoked again,
and the process continues until centers stop changing.

Figure 2 reports the processing time for the sequence
of GPU kernel requests invoked in the two benchmarks.
On K-means, the kernel lengths are around 540µSecs
with less than ±25µSecs fluctuations (except for the
first invocation). On StreamCluster, the lengths of
most kernel invocations are around 500µSecs with about
±50µSecs except for a few outliers. The stability sug-
gests good predictability of the kernel running time. Our
experiments show that for the two benchmarks, the ker-
nel length can be predicted with about 87% accuracy.
Anticipatory wakeup helps K-means and StreamClus-
ter speed up about 10% over the default interrupt-based
method. Meanwhile, it helps them save about 56%
power, compared to busy-waiting, in which the CPU con-
trol thread keeps polling for the status of GPU.

3 Energy-Conserving Sleep Shaping

Other than causing latency concerns, CPU sleeps on
modern multicores produce disproportionate power us-
age (due to hardware resource sharing on a multicore
socket) and thus present new opportunities for saving en-
ergy. Figure 3(A) shows that on a dual-socket (6-core,
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Figure 3: Disproportionate multicore power on the num-
ber of active CPUs. The CPU package and DRAM power
on the Haswell server (A) was reported by the Intel pro-
cessor’s power MSRs. For the Exynos-based smartphone
(B), we removed its battery, connected it with an external
power source, and intercepted the power line to measure
the phone power using an Agilent U1272A digital multi-
meter. The phone display was dimmed to the minimum
brightness during our power measurement.

12-hyperthread per socket) Intel E5-2620 v3 Haswell
machine, activating the first CPU consumes 37 Watts
of power beyond idling while activating each additional
CPU consumes 8 Watts or less. In another example, Fig-
ure 3(B) shows the power of an Exynos 5422-based Sam-
sung Galaxy S5 smartphone. The Exynos system-on-
chip adopts the ARM big.LITTLE architecture [9] with
two heterogenous clusters of four cores each—the small
cluster contains four Cortex-A7 cores that run up to 1.3
GHz, and the big cluster contains four Cortex-A15 cores
that run up to 1.9 GHz. We observe a disproportionate
power jump when activating the big cluster (starting at
the fifth core).

Through two case examinations, we argue that flexi-
ble quality-of-service requirements in a broad range of
system / application scenarios allow for the shaping of
CPU sleep patterns toward energy conservation. Our
work is related to earlier efforts of shaping a device’s
sleep / idle pattern for energy saving (e.g., page allo-
cation that consolidates the memory uses on specific
DRAM chips [12] and prefetching / caching to enable
bursty disk accesses [14]), but we face new challenges
due to different problem contexts.

Slack Enabled Quiescence Today’s smartphones are
equipped with powerful multicore processors. However,
our experiments found that typical mobile applications
do not exhibit sufficient parallelism to fully utilize them.
This provides opportunities to apply aggressive energy
saving techniques. On the other hand, high-quality user
interactions discourage any resource-saving mechanisms
that would negatively affect the user experience. We ar-
gue that strong software management of CPU sleep states
can achieve energy savings on smartphones without com-
promising the quality-of-service.

Putting CPUs to sleep with no performance penalty is

possible if all CPU tasks over a time period are not on
the critical path leading to the user response. Such slack
of non-critical CPU tasks are most common during syn-
chronous network or I/O operations that block the user
response. The slack allows a period of quiescence—
simultaneous sleeps of all CPUs or CPUs on the high-
power cluster of a heterogeneous platform. We note that
not every I/O operation presents opportunities for CPU
sleeps without performance penalty. In particular, dur-
ing a background I/O operation (e.g., GPS beacon pro-
cessing), concurrent CPU tasks may still be on the user
response critical path and therefore present no slack for
CPU quiescence. Delaying or slowing them may lead to
longer user responses.

We discuss how to identify I/O operations on the crit-
ical user response path. A user interaction is generally
triggered by a touch event and ends with a screen up-
date. The OS may track events that signify causal depen-
dencies [16, 25] between execution segments in a user
interaction. They include kernel events such as pro-
cess / thread forking and inter-process signals, pipes, and
sockets, and application activities like Android Binder
messages and looper thread work queue operations. The
online dependency information can tell whether a syn-
chronous I/O operation is causally dependent on the user
input event. However, analysis of the entire critical
path generally requires the offline construction of the
full causal dependency graph leading to the final user re-
sponse. We can leverage the unified UI framework of
the modern mobile operating systems, in which interac-
tion with a UI component generally triggers a determin-
istic series of operations that follow the same causal de-
pendencies. Thus we can memorize the offline behavior
characterization for each UI component to help identify
the performance-critical execution path online.

We assess the feasibility of this idea on the Exynos
5422 based Samsung Galaxy S5 smartphone. Its CPU
power characteristics were presented in Figure 3. We
use Bbench [10], an automatic browser test script that
repeatedly loads locally cached websites. We emulate
the wide area network delay by injecting a 100 mSecs
wait when the browser loads a web page. During this pe-
riod, our system delays all the tasks on the four CPUs of
the big cluster and lets them enter deep sleeps. Our ex-
periments show that such CPU quiescence produces no
observable performance impact while it reduces the total
energy consumption by 6%.

Such slack enabled quiescence can be more effective
in energy saving if there are substantial co-run back-
ground tasks. For example, the user may browse the web
while the phone is performing software updates. The sys-
tem can delay non-critical background tasks (software
updates) while synchronous I/O operations (e.g., fetch-
ing web pages) are blocking the user response. Their
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executions are piggybacked while the high-power CPU
cluster is activated for critical operations leading to the
user response. Such co-execution does not impact per-
formance as long as the critical tasks do not fully utilize
the multicore CPUs.

Staged Bursts The response time to client requests is
an important quality-of-service metric for web applica-
tions. In many situations, rather than completing every
request as soon as possible, a request may be delayed
as long as it is responded within a certain time thresh-
old (e.g., the latency of pleasant human perception). At
the same time, we recognize the potential of high par-
allelism in server applications—many independent re-
quests, while running simultaneously, produce high en-
ergy efficiency on multicores. These motivate a non-
work-conserving workload management approach, we
call staged bursts, where the server operation alternates
between two phases—a staging phase that buffers re-
quests without running them, and a burst phase that runs
the buffered requests at a high degree of parallelism.

We use a simple experiment to demonstrate the po-
tential effectiveness of server staged bursts. We set
the response time threshold at 0.5 second. On our 24-
CPU Haswell machine running Linux 3.12.13, we set
up the Apache Lucene / Solr [2] search engine as an
Apache Tomcat Servlet container. We constructed a
search workload of 1,414,444 indexed documents from
the Wikipedia data dumps [4]. Queries in our test work-
load are generated by randomly selecting and sequencing
article titles in the Wikipedia data dump.

When serving the workload at 100 requests/sec, the
machine’s processor package and DRAM consumes
about 68 Watts of power under the conventional sys-
tem setup while the 999th permille response time is
284 mSecs. We then add a staging proxy (running on
another machine) which buffers requests and releases all
buffered requests once every 250 mSecs. Under such
staged bursts, the processor package and DRAM con-
sumes only 53 Watts of power (22% reduction) while the
999th permille response time is still below 500 mSecs.

A robust support of staged burst processing faces im-
portant challenges that require strong engagement from
all system layers. Specifically, the maintenance of tail
latency service objectives [8] requires application-level
performance feedbacks [13] as well as kernel-level re-
source control. For instance, resource containers [6]-
style mechanisms can encapsulate activities belonging to
individual client requests, and dynamically trigger burst
processing when some staged requests are in danger of
missing their latency deadlines.

During the burst phase, energy efficiency favors simul-
taneous utilization of all CPUs. However, a conventional
OS sometimes hesitates in migrating tasks for CPU load

balancing, due to the concern of losing the cache locality
(and DRAM locality in the case of NUMA). In the above
experiment, to achieve more simultaneous burst process-
ing, we removed Linux’s restriction that tasks are not mi-
grated to idle CPUs with short idle periods in the recent
past. Balancing the energy efficiency and cache locality
goals may require the modeling of power [19] and lo-
cality effects [7, 21] from collectible processor hardware
event counters and statistics.

To enforce simultaneous CPU sleeps, it is important
to idle all CPUs on the main socket during the staging
phase. Therefore the request receipt and buffering must
be done elsewhere which still incurs an energy cost. To
minimize such costs, one idea is to run the staging prox-
ies for a large pool of servers on a single staging ma-
chine. Another is to use a companion low-power proces-
sor (such as the KnightShift architecture [24]) to stage
and buffer requests. Our experience suggests that the
latter idea can be accomplished by today’s smartphone
processors (using only one Watt of power while adding a
few mSecs of additional latency).

4 Conclusion

This paper recognizes the significant power and per-
formance implications of hardware sleeps on modern
multicores. We thus argue for strong software engage-
ment to realize the performance and energy saving po-
tentials. Specifically, in latency-sensitive environments,
anticipatory wakeups can maintain high performance de-
spite the significant sleep wakeup delays. On the other
hand, if the system quality-of-service requirements al-
low certain flexibility of delayed work, workload staging
and parallel burst processing can enable high energy ef-
ficiency on multicores.

We conclude with a series of open questions. Antic-
ipatory CPU wakeups require predicting the time of fu-
ture work triggering events that can be challenging, par-
ticularly for network servers responding to external client
requests. Identifying quality-of-service slacks and op-
portunities for simultaneous CPU sleeps requires online
tracking of execution dependencies and identification of
performance-critical task segments. Finally, work con-
solidation for energy-efficient parallel multicores execu-
tion must balance the need for cache affinity and recon-
cile with the limitation of application / system scalability.
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