
OrderMergeDedup: Efficient, Failure-Consistent Deduplication on Flash

Zhuan Chen and Kai Shen
Department of Computer Science, University of Rochester

Abstract

Flash storage is commonplace on mobile devices,
sensors, and cloud servers. I/O deduplication is ben-
eficial for saving the storage space and reducing ex-
pensive Flash writes. This paper presents a new ap-
proach, called OrderMergeDedup, that deduplicates stor-
age writes while realizing failure-consistency, efficiency,
and persistence at the same time. We devise a soft
updates-style metadata write ordering that maintains
storage data consistency without consistency-induced
additional I/O. We further explore opportunities of I/O
delay and merging to reduce the metadata I/O writes. We
evaluate our Linux device mapper-based implementation
using several mobile and server workloads—package in-
stallation and update, BBench web browsing, vehicle
counting, Hadoop, and Yahoo Cloud Serving Bench-
mark. Results show that OrderMergeDedup can realize
18–63% write reduction on workloads that exhibit 23–
73% write content duplication. It has significantly less
metadata write overhead than alternative I/O shadowing-
based deduplication. Our approach has a slight impact on
the application latency and may even improve the perfor-
mance due to reduced I/O load.

1 Introduction

I/O deduplication [4, 7, 17, 20, 21, 23] has been widely
employed to save storage space and I/O load. I/O dedu-
plication is beneficial for storage servers in data centers,
as well as for personal devices and field-deployed sens-
ing systems. Flash writes on smartphones and tablets
may occur during package installation or through the
frequent use of SQLite transactions [11, 19]. In cyber-
physical systems, high volumes of data may be captured
by field-deployed cameras and stored / processed for ap-
plications like intelligent transportation [22].

A deduplication system maintains metadata such as
logical to physical block mapping, physical block ref-
erence counters, block fingerprints, etc. Such metadata
and data structures must remain consistent on storage af-
ter system failures. It is further essential to persist writes
in a prompt manner to satisfy the storage durability se-
mantics. On Flash storage, I/O deduplication must also
minimize the expensive Flash writes resulted from meta-
data management. This paper presents a new I/O dedu-

plication mechanism that meets these goals.
Specifically, we order the deduplication metadata and

data writes carefully so that any fail-stop failure produces
no other data inconsistency (on durable storage) than un-
collected garbage. This approach is, in concept, simi-
lar to soft updates-based file system design [6]. It is ef-
ficient by not requiring additional I/O traffic for main-
taining consistency (in contrast to logging / journaling or
shadowing-based I/O atomicity). While the original file
system soft updates suffer from dependency cycles and
rollbacks [18], the relatively simple structure of dedupli-
cated storage allows us to recognize and remove all pos-
sible dependency cycles with no impact on performance.

The metadata I/O overhead can be further reduced
by merging multiple logical writes that share common
deduplication metadata blocks. In particular, we some-
times delay I/O operations in anticipation for metadata
I/O merging opportunities in the near future. Anticipa-
tory I/O delay and merging may prolong responses to the
user if the delayed I/O is waited on due to the data persis-
tence semantics. We show that the performance impact
is slight when the delay is limited to a short duration. It
may even improve the application latency due to reduced
I/O load. With failure-consistent I/O ordering and an-
ticipatory merging, we name our deduplication approach
OrderMergeDedup.

We have implemented our OrderMergeDedup ap-
proach in Linux 3.14.29 kernel as a custom device map-
per target. Our prototype system runs on an Intel Atom-
based tablet computer and an Intel Xeon server machine.
We have experimentally evaluated our system using a
range of mobile and server workloads.

Data consistency over failures was not ignored in prior
deduplication systems. iDedup [20] relied on a non-
volatile RAM to stage writes (in a log-structured fashion)
that can survive system failures. Other systems [4,7] uti-
lized supercapacitors or batteries to allow continued data
maintenance after power failures. Our deduplication ap-
proach does not assume the availability of such hardware
aids. Venti [17] provided consistency checking and re-
pair tools that can recover from failures at a significant
cost in time. dedupv1 [13] maintained a redo log to re-
cover from failures but redo logging incurs the cost of
additional writes (even at the absence of failures). Most
recently, Dmdedup [21] supported data consistency after
failures through I/O shadowing, which incurs the cost of

1

additional index block writes. It achieved efficiency by
delaying and batch-flushing a large number of metadata
updates but such delayed batching is hindered by syn-
chronous writes in some applications and databases.

2 Design of OrderMergeDedup

I/O deduplication eliminates duplicate writes in the
I/O stream. We capture all write I/O blocks at the de-
vice layer for deduplication. With a fixed-sized chunking
approach, each 4 KB incoming data block is intercepted
and a hashed fingerprint is computed from its content.
This fingerprint is looked up against the fingerprints of
existing storage blocks to identify duplicates.

A deduplication system maintains additional metadata
information. Specifically, a logical-to-physical block
mapping directs a logical block access (with its logical
address) to its physical content on storage. For each
physical block, the associated reference counter records
the number of logical blocks mapped to it, and the finger-
print is computed to facilitate the block content match-
ing. A write request received by a deduplication sys-
tem can result in a series of physical writes to both the
block data and metadata. For deduplication metadata
management, it is challenging to realize (1) failure con-
sistency—data / metadata writes must be carefully per-
formed to enable fast, consistent recovery after failures;
(2) efficiency—the additional I/O cost incurred by meta-
data writes should not significantly diminish deduplica-
tion I/O saving; (3) persistence—the deduplication layer
should not prematurely return an I/O write in violation of
persistence semantics.

2.1 I/O Ordering for Failure-Consistency

File and storage systems [6, 9] have recognized the
importance of atomic I/O to support consistent failure-
recovery. Existing techniques include journaling, shad-
owing [1, 9], and soft updates [6]. In journaling, an
atomic I/O operation is recorded in a redo log before
writing to the file system. A failure after a partial write
can be recovered at system restart by running the redo
log. In shadowing, writes to existing files are handled in a
copy-on-write fashion to temporary shadow blocks. The
final commit is realized through one atomic I/O write to a
file index block that points to updated shadow data/index
blocks. Index blocks (potentially at multiple hierarchy
levels) must be re-written to create a complete shadow.
Both journaling and shadowing require additional write
I/O to achieve failure consistency of durable data.

The soft updates approach [6] carefully orders writes
in file system operations such that any mid-operation
failure always leaves the file system structure in a consis-
tent state (except for possible space leaking on temporar-

ily written blocks). While it requires no I/O overhead
during normal operations, rollbacks may be necessary
to resolve cyclic dependencies in the block commit or-
der. Seltzer et al. [18] showed that such rollbacks some-
times led to poor soft updates performance on the UNIX
Fast File System. Due to relatively simple semantics of
a deduplicated storage (compared to a file system), we
show that a careful design of all deduplication I/O paths
can efficiently resolve possible dependency cycles. We
next present our soft updates-style deduplication design.

A unique aspect of our design is that our physical
block reference counter counts logical block references
as well as a reference from the physical block’s finger-
print. Consequently the reclamation of block fingerprint
does not have to occur together with the removal of the
last logic block referencing the physical block. Separat-
ing them into two failure-consistent transactions makes
each less complex and reduces the probability of cycli-
cally dependent write ordering. It also allows fingerprint
reclamation to be delayed—e.g., performed offline peri-
odically. Lazy fingerprint reclamation may improve per-
formance since the same data rewritten after a period of
non-existence may still be deduplicated. Such scenario
has been shown to happen in certain workloads [16].

Specifically, we maintain the following ordering be-
tween I/O operations during deduplication.

1. The physical data block should always be persisted
before being linked with the logical address or the
computed fingerprint. A failure recovery may leave
some data block inaccessible, but will never lead to
any logical address or fingerprint that points to in-
correct content.

2. For reference counters, we guarantee that when a
sudden failure occurs, the only possibly resulted in-
consistency is higher-than-actual reference counters
for some physical blocks. A higher-than-actual ref-
erence counter may produce garbage (that can be re-
claimed asynchronously) while a lower-than-actual
reference counter could lead to the serious dam-
age of premature block deletion. To achieve this
goal, a new linkage that points to a physical block
from some logical address or fingerprint must be
preceded by the increment of the physical block’s
reference counter, and the corresponding unlinking
operations must precede the decrement of the phys-
ical block’s reference counter.

3. Meanwhile, the update of the logical-to-physical
block mapping and fingerprints can be processed in
parallel since there is no failure-consistent depen-
dency between them.

Figure 1 illustrates our complete soft updates-style write
ordering in different write conditions.

2

1. Write new block L; duplicating existing physical block P

inc. P’s ref.ctr. map L to P

2. Write new block L; no duplicate

3. Overwrite block L mapped to physical block Pold; duplicating physical block Pdup

4. Overwrite block L mapped to physical block Pold; no duplicate

completion to client

set P’s ref.ctr. to 2

map L to P completion to clientwrite to new physical block P

inc. Pdup’s
ref. ctr.

map L to Pdup

dec. Pold’s ref. ctr.

completion to client

write to physical block Pnew

set Pnew’s ref. ctr. to 2

map L to Pnew

dec. Pold’s ref. ctr.

completion to client

add P’s fingerprint

add Pnew’s fingerprint

Figure 1: Failure-consistent deduplication write order-
ing at different write conditions (new write / overwrite,
duplicate identified or not, etc.). Solid arrows indicate
ordering of writes. The dashed arrow in each case shows
when a completion signal is sent to client. Note that a
new physical block’ reference counter begins at two—
one reference from the first logical block and the other
from the fingerprint.

A block metadata entry is much smaller than the block
itself (e.g., we use the 64-bit address for physical block
indexing and the 8-bit reference counter 1). The I/O cost
can be reduced when multiple metadata writes that fall
into the same metadata block are merged into one I/O op-
eration. Merging opportunities arise for metadata writes
as long as they are not subject to any ordering constraint.

While the metadata write merging presents apparent
benefit for I/O reduction, the merging may create addi-
tional write ordering constraints and lead to cyclic de-
pendencies or deadlocks. For example, for cases 3 and
4 in Figure 1, if the reference counters for new block
Pdup /Pnew and old block Pold are on the same meta-
data block, then the merging of their reference counter
updates would cause a deadlock. No metadata write
merging is allowed for such situation.

Cyclic dependencies prevent metadata write merging
for cost saving and also complicate the implementation.
We resolve this issue by delaying the non-critical meta-
data updates involved in the cyclic dependencies. A non-
critical update is the write operation that the client com-
pletion signal does not depend on, particularly for the
same example above, the decrement of Pold’s reference
counter and the follow-up work in cases 3 and 4 of Fig-
ure 1. A delay of those operations until their associated
dependencies are cleared simply eliminates the cyclic de-

1A reference counter overflow will lead to the allocation of another
new physical block to hold the same block content. Later writes with
such content will be mapped to the new block.

pendencies. Since the delayed action is not on the critical
path of I/O completion, client I/O response will not be af-
fected. Fortunately, under our soft updates-style dedupli-
cation metadata management, all the potential deadlocks
can be resolved in this way.

2.2 Metadata I/O Merging for Efficiency

As mentioned, substantial I/O cost reduction may re-
sult from the merging of multiple metadata writes that
fall into the same metadata block. We may enhance the
opportunities of metadata I/O merging by delaying meta-
data update I/O operations so their chances of merging
with future metadata writes increase. We explore several
opportunities of such I/O delay.

Weak persistence Our deduplication system supports
two persistence models with varying performance trade-
offs. Specifically, a strong persistence model faith-
fully preserves the persistence support of the underlying
device—an I/O operation is returned by the deduplica-
tion layer only after all corresponding physical I/O oper-
ations are returned from the device. On the other hand, a
weak persistence model performs writes asynchronously
under which a write is returned early while the corre-
sponding physical I/O operations can be delayed to the
next flush or Force Unit Access (FUA)-flagged request.

Under weak persistence, I/O operations can be de-
layed aggressively to present metadata I/O merging op-
portunities. Such delays, however, may be hindered by
synchronous writes in some applications and databases.

Non-critical I/O delay and merging The example in
Section 2.1 shows the removal of cyclic dependencies
through the delay of some non-critical metadata updates.
In fact, those updates can be free if the delay lasts long
enough to merge with future metadata writes that reside
on the same metadata block. Moreover, this applies to all
the non-critical metadata writes. Specifically, besides the
example mentioned in Section 2.1, we also aggressively
delay the operations of fingerprint insertion for P /Pnew
in cases 2 and 4 of Figure 1. A sudden system failure
may leave some of the reference counters to be higher
than actual values, resulting in unreclaimed garbage, or
lose some fingerprints for the physical block deduplica-
tion chances, but no other serious inconsistency occurs.

Anticipatory I/O delay and merging Two metadata
writes to the same physical block will generally re-
sult in separate device commits if the interval between
their executions is longer than the typical cycle upon
which a deduplication system writes to the physical de-
vice. If such interval is small, it may be beneficial
to impose a short idle time to the physical device (by

3

stop issuing writes to it) to generate more opportuni-
ties of metadata write merging. This is reminiscent of
the I/O anticipation scheduling which was proposed as
a performance-enhancing seek-reduction technique for
mechanical disks [10]. In our case, we temporarily idle
the physical device in anticipation of soon-arriving desir-
able requests for metadata update merging with the exist-
ing one.

Anticipatory I/O delay and merging may gain high
benefits under a high density of write requests because a
short anticipatory device idle period would produce high
degree of merging. On the other hand, a light load af-
fords little merging opportunity so that anticipatory de-
vice idling only prolongs the I/O response latency. To
maximize the benefit of anticipatory I/O delay and merg-
ing, we apply a simple heuristic hint as the guidance—
the frequency of incoming write requests received by the
deduplication system. Intuitively, if the idling period can
cover more than one incoming write request, a metadata
write merging is likely to happen. We only enable the
anticipatory I/O delay and merging under this situation.

3 Implementation

We have implemented our deduplication mechanism at
the generic operating system block device layer to enable
transparent full-device deduplication for software appli-
cations. Specifically, our mechanism is implemented in
Linux 3.14.29 kernel as a custom device mapper target.
Our implementation follows the basic block read / write
interfaces for deduplication checks in the open-source
Dmdedup [21] framework.

Duplicates of 4 KB I/O blocks are identified through
their hashed fingerprints. We use the widely adopted
SHA-1 cryptographic hash algorithm to produce 160-bit
(20-byte) block fingerprints. The SHA-1 hashes are col-
lision resistant [14] and we deem two blocks as dupli-
cates if they have matching fingerprints without perform-
ing a full block comparison. This is a widely-accepted
practice in data deduplication [4, 15, 17, 23] since the
chance of hash collision between two different blocks is
negligible—less than the error rate of memory and net-
work transfer. A hash table is maintained to organize fin-
gerprints in memory. We partition the fingerprint value
space into N segments according to the total number of
physical data blocks, and for each fingerprint f , map it
to the corresponding segment (f mod N).

For simplicity, we organize metadata blocks on stor-
age as linear tables. A possible future enhancement is
to use a radix-tree structure. The radix tree hierarchical
writes could be incorporated into our failure-consistent
write ordering without introducing cyclic dependencies.

File systems maintain redundant durable copies of
critical information such as the superblock for reliability.

For Ext4 file systems, multiple copies of the superblock
and block group descriptors are kept across the file sys-
tem while the main copy resides at the first a few blocks.
Deduplicating these blocks could harm such reliability-
oriented redundancy measure. We adopt a simple ap-
proach to prevent the deduplication of the main copy
of the critical file system information (with recognizable
block addresses). Specifically, we do not keep their fin-
gerprints in the cache for deduplication; we do not at-
tempt to deduplicate a write to such a block either. A
possible future enhancement is to assist such decisions
based on hints directly passed from the file system [12].

In our implementation, we delay the non-critical meta-
data writes for 30 seconds after their failure-consistent
dependencies are cleared (during this period they may
be merged with other incoming metadata updates resid-
ing on the same metadata block). We choose the 1-
millisecond idling period for the anticipatory I/O delay
and merging which is at the same magnitude as the Flash
write latency of our experimental platforms. Our dedu-
plication system is configured with the weak persistence
model by default. For better balance between perfor-
mance and persistence, we periodically commit the de-
layed metadata writes (besides the synchronous flush or
FUA-flagged requests and non-critical metadata writes)
to the physical device every 1 second. This is the same
setup supported by other device mapper targets in Linux
(e.g., dm-cache). When data durability is critical, our
deduplication system also supports the strong persistence
model described in Section 2.2. Our evaluation will
cover both models.

4 Evaluation

We evaluate the effectiveness of our proposed dedu-
plication systems on mobile and server workloads. We
will compare I/O saving and impact on application per-
formance under several deduplication approaches. We
will also assess the deduplication-resulted storage space
saving and impact on mobile energy usage.

4.1 Evaluation Setup

Mobile system evaluation setup Our mobile exper-
iments run on an Asus Transformer Book T100 tablet.
It contains a 1.33 GHz quad-core Atom (x86) Z3740
processor and 2 GB memory. We deploy the Ubuntu
12.04 Linux distribution with 3.14.29 kernel. The tablet
has an internal 64 GB Flash storage with the following
random read / write latency (in mSecs)—

4KB 8KB 16KB 32KB 64KB 128KB
Read 0.27 0.32 0.40 0.63 0.89 1.45
Write 2.91 2.86 4.33 4.96 7.64 11.60

We use the following mobile application workloads—

4

Advanced Packaging Tool (APT) is a software pack-
age installation and maintenance tool on Linux. We
study two common package management scenarios via
the apt-get command: 1) the global package index up-
date (sudo apt-get update) and 2) the installation
of Firefox (sudo apt-get install firefox). We
evaluate these workloads under a Ubuntu 12.04 chroot

environment to facilitate the capture of I/O through-
out the root directory. To minimize the noises such
as network latencies, we set up the complete Ubuntu
12.04 software repository and pre-download the neces-
sary packages outside the chroot jail. The package in-
dex update and installation workloads exhibit 23% and
30% write content duplication respectively.

BBench [8] is a smartphone benchmarking tool to as-
sess a web-browser’s performance. We run BBench un-
der Firefox 40.0.3 with its provided workloads which in-
clude some of the most popular and complex sites on
the web. The same setup of Ubuntu 12.04 chroot en-
vironment (as above) is used along with the BBench web
sites workloads located outside the jail. The workload
exhibits 73% write duplication.

A field sensor-based vehicle counting application that
monitors the number and frequency of passing vehicles
can help detect the traffic volume, congestion level, and
abnormal traffic patterns. Our application leverages the
Canny edge detector algorithm [3] from the OpenCV
computer vision library. It observes the moving vehi-
cles and records the frames at the time when those vehi-
cles enter the monitored zones. Nearby images in a data
stream are often substantially similar, and exhibit block-
level redundancy under JPEG/JFIF-style image formats
that split an image into multiple sub-regions and en-
code each separately. We use the pre-collected California
highway video streams (at 10 frames per second) from
the publicly accessible Caltrans live traffic data [2]. The
workload exhibits 27% write duplication.

Server system evaluation setup Our server experi-
ments run on a dual-socket machine where each socket
contains an Intel Xeon E5-2620 v3 “Haswell” processor.
We deploy the Fedora 20 Linux distribution with 3.14.29
kernel. We perform I/O on a Samsung 850 Pro SSD
(256GB) with the following I/O latency (in mSecs)—

4KB 8KB 16KB 32KB 64KB 128KB
Read 0.12 0.13 0.15 0.18 0.28 0.45
Write 4.70 4.96 5.45 6.13 7.18 7.35

We use the following server / cloud workloads—
Hadoop software library is a framework to use sim-

ple programming models for large data sets process-
ing across computers, each offering local computa-
tion and storage. We apply the regular expression
match of “dedup[a-z]*” via Hadoop to all files in the
Documentation directory of Linux 3.14.29 kernel re-

lease. The workload exhibits 55% write duplication on
Hadoop’s temporary files.

Yahoo Cloud Serving Benchmark (YCSB) [5] is a
benchmarking framework for could evaluation. It par-
ticularly focuses on the online read / write access-based
web serving systems. We perform the YCSB-0.5.0 client
under MongoDB-3.2 database. Server load is generated
based on the provided workloada of YCSB. We tune
the parameters of recordcount and operationcount

to 100 and 20,000 respectively, and set fieldlength to
8 KB. The workload exhibits 24% write duplication.

4.2 Evaluation on Deduplication Performance

We compare the total volume of Flash I/O writes (in-
cluding the original application write data and our dedu-
plication metadata, in the 4 KB unit) and application per-
formance (execution latency) between the following sys-
tem setups—1) the original system that does not sup-
port I/O deduplication; 2) I/O shadowing-based Dmd-
edup [21]; 3) our deduplication system with failure-
consistent I/O ordering; our further optimizations of 4)
non-critical I/O delay and merging and 5) anticipatory
I/O delay and merging. Traces are acquired at the stor-
age device layer to compare the write volumes sent to the
storage device under different system setups.

This section evaluates the deduplication performance
under a weak persistence model—device writes are per-
formed asynchronously in batches for high efficiency; a
write batch is issued at the arrival of a flush or FUA-
flagged request, or issued every second at the absence of
any flush or FUA-flagged request. We also adapt Dmd-
edup to follow this pattern. The performance of support-
ing strong persistence is reported in the next section.

Figure 2 (A) illustrates the results of normalized Flash
I/O write volumes under different system conditions.
The blue line in the figure indicates the ideal-case dedu-
plication ratio that can only be realized without any dedu-
plication metadata writes. We use the original execution
without deduplication as the basis. Dmdedup achieves
7–33% I/O savings for package update / installation, Ve-
hicle counting, Hadoop, and YCSB, but adds 7% I/O
writes for BBench. In comparison, our deduplication
system with failure-consistent I/O ordering reduces the
Flash writes by 17–59% for all the workload cases.
The optimization of non-critical I/O delay and merging
brings slight benefits (up to 2%) except for the BBench
case where 8% additional saving on Flash I/O writes
is reached. The optimization of anticipatory I/O de-
lay and merging further increases the I/O saving up to
another 6% for all the workloads. Overall, we save
18–63% Flash I/O writes compared to the original non-
deduplicated case. These results are very close to the
ideal-case deduplication ratios for these workloads.

5

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 I/
O

 v
ol

um
e

(A) I/O write volume

Package index update

Package install

BBench web browsing

Vehicle counting

Hadoop

YCSB/MongoDB

Deduplicated physical block writes

Original Dmdedup

Failure−consistent
write ordering

+ Non−critical I/O
 delay/merging

+ Anticipatory I/O
 delay/merging

0

0.5

1

1.5

Package index update

Package install

BBench web browsing

Vehicle counting

Hadoop

YCSB/MongoDB

N
or

m
al

iz
ed

 la
te

nc
y

(B) Application latency

Figure 2: Flash I/O write volume and application performance of different I/O deduplication approaches. The perfor-
mance in each case is normalized to that under the original (non-deduplicated) execution.

0

0.5

1

1.5

2

N
or

m
al

iz
ed

 I/
O

 v
ol

um
e

(A) I/O write volume (strong persistence)

Package index update

Package install

BBench web browsing

Vehicle counting

Hadoop

YCSB/MongoDB

12× 12× 5× 10× 11× 11×

Deduplicated physical block writes

Original Dmdedup

Failure−consistent
write ordering

+ Non−critical I/O
 delay/merging

+ Anticipatory I/O
 delay/merging

0

0.5

1

1.5

Package index update

Package install

BBench web browsing

Vehicle counting

Hadoop

YCSB/MongoDB

19× 24× 4×

N
or

m
al

iz
ed

 la
te

nc
y

(B) Application latency (strong persistence)

Figure 3: Flash I/O write volume and application performance when supporting strong I/O persistence. The perfor-
mance in each case is normalized to that under the original (non-deduplicated) execution.

We also evaluate the application performance impact
due to deduplication. Figure 2 (B) shows application
execution latencies under the same system setups as
above. We use the original execution without dedupli-
cation as the basis. While Dmdedup has small impact
(less than 5% of performance overhead) to the workloads
of BBench, Vehicle counting, Hadoop, and YCSB, it in-
creases the costs to 1.2× and 1.8× for package update
and installation respectively. In comparison, our dedu-
plication system, either with or without optimizations,
only imposes moderate overhead to the package installa-
tion case (around 11–15%). The impacts to other work-
loads’ performance are small (less than 5%) and in some
cases we actually achieve slight performance improve-
ment (around 1–6%).

4.3 Evaluation under Strong Persistence

We evaluate the performance of our deduplication sys-
tem between the similar system setups as Section 4.2,
but with the support of strong persistence model—an
I/O operation is returned by the deduplication layer only
after all corresponding physical I/O operations are re-
turned from the device. Dmdedup is configured accord-
ingly with the single-write transaction size—the corre-
sponding data / metadata updates are committed after ev-
ery write operation [21].

Figure 3 (A) illustrates the results of normalized Flash
I/O write volumes under different system conditions. We
use the original execution without deduplication as the
basis. Dmdedup adds large overhead for all the work-

6

loads from 5× to 12×. In comparison, our deduplication
system with failure-consistent I/O ordering reduces the
Flash writes by 5–18% for package update / installation
and vehicle counting. Meanwhile, it adds 5% I/O vol-
umes for BBench while such overhead becomes large for
Hadoop and YCSB (around 41–71%). The optimization
of non-critical I/O delay and merging brings slight ben-
efits (up to 3%) except for the BBench case where 11%
additional saving on Flash I/O writes is reached. The op-
timization of anticipatory I/O delay and merging exhibits
significant benefit for all the workloads under the strong
persistence model. Specifically, enabling it brings up to
63% additional saving on Flash I/O writes. Overall, we
save 15–51% Flash I/O writes compared to the original
non-deduplicated case.

Figure 3 (B) shows application execution latencies un-
der the same system setups as above. We use the original
execution without deduplication as the basis. Dmdedup
adds large overhead for package update / installation and
YCSB from 4× to 24× while the performance impact is
small for other workloads (less than 4%). In compari-
son, our deduplication system, either with or without op-
timizations, only imposes large overhead to the package
installation case (around 37–42%). The impacts to other
workloads’ performance are small (less than 4%).

4.4 Evaluation on Storage Space Saving

We compare the space usage between the non-
deduplicated system and our deduplication system. Un-
der the non-deduplicated execution, we directly calcu-
late the occupied blocks during the workload running.
For our deduplication system, the space usage is ob-
tained by putting together the following items— 1) the
space for physical blocks written along with the cor-
responding physical block metadata (reference counters
and fingerprints); 2) the space for logical block meta-
data (logical-to-physical block mapping) for the occu-
pied logical blocks. The table below shows that the
workload executions exhibit strong deduplication space
saving—

Workload Space usage Saving
Original Dedup

Update 168.8 MB 131.5 MB 22%
Install 137.9 MB 98.9 MB 28%
BBench 11.0 MB 4.8 MB 56%
Vehicle 12.8 MB 9.4 MB 27%
Hadoop 80.0 MB 39.8 MB 50%
YCSB 800.6 MB 618.5 MB 23%

4.5 Evaluation on Mobile Energy Usage

We assess the energy impact of our deduplication
system on mobile platforms. The energy usage of a
workload is the product of its power consumption and

runtime. The runtime is normally the application la-
tency, except in the case of our vehicle counting work-
load where the application operates at a fixed frame-per-
second rate and therefore its runtime is not affected by
the frame processing latency. We compare the power us-
age, runtime difference, and energy usage between the
original (non-deduplicated) system and our deduplica-
tion system—

Workload Power (Watts) Runtime Energy
Orig. Dedup impact impact

Update 6.35 6.41 -3.6% -3%
Install 6.03 6.06 +10.5% +11%
BBench 6.10 6.15 +1.1% +2%
Vehicle 6.70 6.70 0.0% 0%

Results show that our deduplication mechanism adds
11% energy usage for package installation, mostly due
to the increase of runtime. The energy impact is no more
than 2% in the other three workloads. The energy usage
even decreases by 3% for package index update primarily
due to a reduction in runtime.

5 Conclusion

This paper presents a new I/O mechanism, called
OrderMergeDedup, that deduplicates writes to the pri-
mary Flash storage with failure-consistency and high ef-
ficiency. We devise a soft updates-style metadata write
ordering that maintains data / metadata consistency over
failures (without consistency-induced additional I/O) on
the storage. We further use anticipatory I/O delay and
merging to reduce the metadata I/O writes. We have
made a prototype implementation at the Linux device
mapper layer and experimented with a range of mobile
and server workloads.

Results show that OrderMergeDedup is highly
effective—realizing 18–63% write reduction on work-
loads that exhibit 23–73% write content duplication. We
also save up to 56% in space usage. The anticipatory
I/O delay optimization is particularly effective to in-
crease metadata merging opportunities when supporting
the strong I/O persistence model. OrderMergeDedup has
a slight impact on the application latency and mobile en-
ergy. It may even improve the application performance
due to reduced I/O load.

Acknowledgments This work was supported in part
by the National Science Foundation grants CNS-
1217372, CNS-1239423, and CCF-1255729, and by a
Google Research Award. We also thank the anonymous
FAST reviewers, our shepherd Hakim Weatherspoon,
and Vasily Tarasov for comments that helped improve
this paper.

7

References

[1] M. M. Astrahan, M. W. Blasgen, D. D. Chamber-
lin, K. P. Eswaran, J. N. Gray, P. P. Griffiths, W. F.
King, R. A. Lorie, P. R. McJones, J. W. Mehl, et al.
System R: Relational approach to database man-
agement. ACM Transactions on Database Systems
(TODS), 1(2):97–137, 1976.

[2] Live traffic cameras, california department of trans-
portation. video.dot.ca.gov.

[3] J. Canny. A computational approach to edge detec-
tion. IEEE Transactions on Pattern Analysis and
Machine Intelligence, (6):679–698, 1986.

[4] F. Chen, T. Luo, and X. Zhang. CAFTL: A content-
aware flash translation layer enhancing the lifespan
of Flash memory based solid state drives. In the
9th USENIX Conf. on File and Storage Technolo-
gies (FAST), San Jose, CA, Feb. 2011.

[5] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakr-
ishnan, and R. Sears. Benchmarking cloud serv-
ing systems with YCSB. In the First ACM Symp.
on Cloud Computing (SOCC), pages 143–154, In-
dianapolis, IN, June 2010.

[6] G. R. Ganger, M. K. McKusick, C. A. N. Soules,
and Y. N. Patt. Soft updates: A solution to the meta-
data update problem in file systems. ACM Trans. on
Computer Systems, 18(2):127–153, May 2000.

[7] A. Gupta, R. Pisolkar, B. Urgaonkar, and A. Siva-
subramaniam. Leveraging value locality in op-
timizing NAND flash-based SSDs. In the 9th
USENIX Conf. on File and Storage Technologies
(FAST), San Jose, CA, Feb. 2011.

[8] A. Gutierrez, R. Dreslinski, T. Wenisch, T. Mudge,
A. Saidi, C. Emmons, and N. Paver. Full-system
analysis and characterization of interactive smart-
phone applications. In the IEEE Intl. Symp. on
Workload Characterization (IISWC), pages 81–90,
Austin, TX, Nov. 2011.

[9] D. Hitz, J. Lau, and M. A. Malcolm. File system de-
sign for an NFS file server appliance. In USENIX
Winter Technical Conf., San Francisco, CA, Jan.
1994.

[10] S. Iyer and P. Druschel. Anticipatory scheduling:
A disk scheduling framework to overcome decep-
tive idleness in synchronous I/O. In the 8th ACM
Symp. on Operating Systems Principles (SOSP),
pages 117–130, Banff, Alberta, Canada, Oct. 2001.

[11] H. Kim, N. Agrawal, and C. Ungureanu. Revisiting
storage for smartphones. In the 10th USENIX Conf.
on File and Storage Technologies (FAST), San Jose,
CA, Feb. 2012.

[12] S. Mandal, G. Kuenning, D. Ok, V. Shastry, P. Shi-
lane, S. Zhen, V. Tarasov, and E. Zadok. Using hints
to improve inline block-layer deduplication. In the
14th USENIX Conf. on File and Storage Technolo-
gies (FAST), Santa Clara, CA, Feb. 2016.

[13] D. Meister and A. Brinkmann. dedupv1: Improving
deduplication throughput using solid state drives
(SSD). In IEEE 26th Symp. on Mass Storage Sys-
tems and Technologies (MSST), pages 1–6, May
2010.

[14] A. J. Menezes, P. C. van Oorschot, and S. A. Van-
stone. Handbook of Applied Cryptography. CRC
Press, 1996.

[15] A. Muthitacharoen, B. Chen, and D. Mazières. A
low-bandwidth network file system. In the 8th ACM
Symp. on Operating Systems Principles (SOSP),
pages 174–187, Banff, Alberta, Canada, Oct. 2001.

[16] P. Nath, M. A. Kozuch, D. R. O’Hallaron,
J. Harkes, M. Satyanarayanan, N. Tolia, and
M. Toups. Design tradeoffs in applying content ad-
dressable storage to enterprise-scale systems based
on virtual machines. In USENIX Annual Technical
Conf., pages 71–84, Boston, MA, June 2006.

[17] S. Quinlan and S. Dorward. Venti: A new approach
to archival storage. In the First USENIX Conf. on
File and Storage Technologies (FAST), Monterey,
CA, Jan. 2002.

[18] M. I. Seltzer, G. R. Granger, M. K. McKusick,
K. A. Smith, C. A. N. Soules, and C. A. Stein. Jour-
naling versus soft updates: Asynchronous meta-
data protection in file systems. In USENIX Annual
Technical Conf., San Deigo, CA, June 2000.

[19] K. Shen, S. Park, and M. Zhu. Journaling of journal
is (almost) free. In the 12th USENIX Conf. on File
and Storage Technologies (FAST), pages 287–293,
Santa Clara, CA, Feb. 2014.

[20] K. Srinivasan, T. Bisson, G. Goodson, and K. Voru-
ganti. iDedup: Latency-aware, inline data dedupli-
cation for primary storage. In the 10th USENIX
Conf. on File and Storage Technologies (FAST),
San Jose, CA, Feb. 2012.

[21] V. Tarasov, D. Jain, G. Kuenning, S. Mandal,
K. Palanisami, P. Shilane, S. Trehan, and E. Zadok.

8

Dmdedup: Device mapper target for data dedupli-
cation. In Ottawa Linux Symp., Ottawa, Canada,
July 2014.

[22] P. F. Williams. Street smarts: How intelligent trans-
portation systems save money, lives and the envi-
ronment. Technical report, ACS Transportation So-
lutions Group, Xerox, Feb. 2009.

[23] B. Zhu, K. Li, and H. Patterson. Avoiding the
disk bottleneck in the data domain deduplication
file system. In the 6th USENIX Conf. on File and
Storage Technologies (FAST), pages 269–282, San
Jose, CA, Feb. 2008.

9

