
Managing Prefetch Memory for Data-Intensive Online Servers∗

Chuanpeng Li and Kai Shen
Department of Computer Science, University of Rochester

{cli, kshen}@cs.rochester.edu

Abstract

Data-intensive online servers may contain a signifi-
cant amount of prefetched data in memory due to large-
granularity I/O prefetching and high execution concur-
rency. Using a traditional access recency or frequency-
based page reclamation policy, memory contention can
cause a substantial number of prefetched pages to be
prematurely evicted before being accessed. This pa-
per presents a new memory management framework that
handles prefetched (but not-yet-accessed) pages sepa-
rately from the rest of the memory buffer cache. We ex-
amine three new heuristic policies when a victim page
(among the prefetched pages) needs to be identified for
eviction: 1) evict the last page of the longest prefetch
stream; 2) evict the last page of the least recently ac-
cessed prefetch stream; and 3) evict the last page of the
prefetch stream whose owner process has consumed the
most amount of CPU since it last accessed the prefetch
stream. These policies require no application changes or
hints on their data access patterns.

We have implemented the proposed techniques in the
Linux 2.6.10 kernel and conducted experiments based
on microbenchmarks and two real application workloads
(a trace-driven index searching server and the Apache
Web server hosting media clips). Compared with ac-
cess history-based policies, our memory management
scheme can improve the server throughput of real work-
loads by 11–64% at high concurrency levels. Further, the
proposed approach is 10–32% below an approximated
optimal page reclamation policy that uses application-
provided I/O access hints. The space overhead of our
implementation is about 0.4% of the physical memory
size.

1 Introduction

Emerging data-intensive online services access large
disk-resident datasets while serving many clients simul-
taneously. Examples of such servers include Web-scale
keyword search engines that support interactive search

∗This work was supported in part by NSF grants CCR-0306473,
ITR/IIS-0312925, and an NSF CAREER Award CCF-0448413.

on terabytes of indexed Web pages and Web servers
hosting large multimedia files. For data-intensive online
servers, the disk I/O performance and memory utilization
efficiency dominate the overall system throughput when
the dataset size far exceeds the available server mem-
ory. During concurrent execution, data access of one
request handler can be frequently interrupted by other
active request handlers in the server. Due to the high
storage device seeking overhead, large-granularity I/O
prefetching is often employed to reduce the seek fre-
quency and thus decrease its overhead. At high execution
concurrency, there can be many memory pages contain-
ing prefetched but not-yet-accessed data, which we call
prefetched pages in short.

The prefetched pages are traditionally managed to-
gether with the rest of the memory buffer cache. Ex-
isting memory management methods generally fall into
two categories.

• Application-assisted techniques [6, 16, 22, 23,
29] achieve efficient memory utilization with
application-supplied information or hints on their
I/O access patterns. However, the reliance on such
information affects the applicability of these ap-
proaches and their relatively slow adoption in pro-
duction operating systems is a reflection of this
problem. Our objective in this work is to provide
transparent memory management that does not re-
quire any explicit application assistance.

• Existing transparent memory management meth-
ods typically use access history-based page recla-
mations, such as Working-Set [8], LRU/LFU [19],
or CLOCK [27]. Because prefetched pages do
not have any access history, an access recency
or frequency-based memory management scheme
tends to evict them earlier than pages that have
been accessed before. Although MRU-like schemes
may benefit prefetched pages, they perform poorly
with general application workloads and in practice
they are only used for workloads with exclusively
sequential data access pattern. Among prefetched
pages themselves, the eviction order based on tradi-
tional reclamation policies would be actually First-
In-First-Out, again due to the lack of any access his-



tory. Under such management, memory contention
at high execution concurrency may result in prema-
ture eviction of prefetched pages before they are
accessed, which we call page thrashing. It could
severely degrade the server performance.

One reason for the lack of specific attention on manag-
ing the prefetched (but not-yet-accessed) memory pages
is that these pages only constitute a small portion of the
memory in normal systems. However, their presence
is substantial for data-intensive online servers at high
execution concurrency. Further, it was recently argued
that more aggressive prefetching should be supported in
modern operating systems due to emerging application
needs and the disk I/O energy efficiency [21]. Aggres-
sive prefetching would also contribute to more substan-
tial presence of prefetched memory pages.

In this paper, we propose a new memory management
framework that handles prefetched pages separately from
other pages in the memory system. Such a separation
protects against excessive eviction of prefetched pages
and allows a customized page reclamation policy for
them. We explore heuristic page reclamation policies
that can identify the prefetched pages least likely to be
accessed in the near future. In addition to the page recla-
mation policy, the prefetch memory management must
also address the memory allocation between caching and
prefetching. We employ a gradient descent-based ap-
proach that dynamically adjusts the memory allocation
for prefetched pages in order to minimize the overall
page miss rate in the system.

A number of earlier studies have investigated I/O
prefetching and its memory management in an integrated
fashion [5, 14, 22, 23]. These approaches can adjust
the prefetching strategy depending on the memory cache
content and therefore achieve better memory utilization.
Our work in this paper is exclusively focused on the
prefetch memory management with a given prefetching
strategy. Combining our results with adaptive prefetch-
ing may further improve the overall system performance
but it is beyond the scope of this work.

The rest of the paper is organized as follows. Section 2
discusses the characteristics of targeted data-intensive
online servers and describes the existing OS support.
Section 3 presents the design of our proposed prefetch
memory management techniques and its implementation
in the Linux 2.6.10 kernel. Section 4 provides the perfor-
mance results based on microbenchmarks and two real
application workloads. Section 5 describes the related
work and Section 6 concludes the paper.

2 Targeted Applications and Existing OS
Support

Our work focuses on online servers supporting highly
concurrent workloads that access a large amount of disk-
resident data. We further assume that our targeted work-
loads involve mostly read-only I/O. In these servers, each
incoming request is serviced by a request handler which
can be a thread in a multi-threaded server or a series of
event handlers in an event-driven server. The request
handler then repeatedly accesses disk data and consumes
the CPU before completion. A request handler may
block if the needed resource is unavailable. While re-
quest processing consumes both disk I/O and CPU re-
sources, the overall server throughput is often dominated
by the disk I/O performance and the memory utilization
efficiency when the application data size far exceeds the
available server memory. Figure 1 illustrates such an ex-
ecution environment.

During concurrent execution, sequential data access
of one request handler can be frequently interrupted by
other active request handlers in the server. This may
severely affect I/O efficiency due to long disk seek and
rotational delays. Anticipatory disk I/O scheduling [11]
alleviates this problem by temporarily idling the disk so
that consecutive I/O requests that belong to the same re-
quest handler are serviced without interruption. How-
ever, anticipatory scheduling may not be effective when
substantial think time exists between consecutive I/O re-
quests. The anticipation may also be rendered ineffective
when a request handler has to perform some interleav-
ing synchronous I/O that does not exhibit strong locality.
Such a situation arises when a request handler simultane-
ously accesses multiple data streams. For example, the
index searching server needs to produce the intersection
of multiple sequential keyword indexes when answering
multi-keyword queries.

Improving the I/O efficiency can be accomplished by
employing a large I/O prefetching depth when the appli-
cation exhibits some sequential I/O access patterns [26].
A larger prefetching depth results in less frequent I/O
switching, and consequently yields fewer disk seeks per
time unit. In practice, the default Linux and FreeBSD
may prefetch up to 128 KB and 256 KB respectively in
advance during sequential file accesses. We recently pro-
posed a competitive prefetching strategy that can achieve
at least half the optimal I/O throughput when there is
no memory contention [17]. This strategy specifies that
the prefetching depth should be equal to the amount of
data that can be sequentially transfered within a single
I/O switching period. The competitive prefetching depth
is around 500 KB for several modern IBM and Seagate
disks that were measured.

I/O prefetching can create significant memory de-



���������

�	
������

���
	�

���������
	����
��		����������


�
������

�
������

�
������

�������� ���
��������
	�

	��
�	���

Figure 1: Concurrent application execution in a data-intensive online server.

mands. Such demands may result in severe contention
at high concurrency levels, where many request handlers
in the server are simultaneously competing for memory
pages. Access recency or frequency-based replacement
policies are misplaced for handling prefetched pages be-
cause they fail to give proper priority to pages that are
prefetched but not yet accessed. We use the follow-
ing two examples to illustrate the problems with access
history-based replacement policies.

• Priority between prefetched pages and accessed
pages: Assume page p1 is prefetched and then ac-
cessed at t1 while page p2 is prefetched at t2 and
it has not yet been accessed. If the prefetching op-
eration itself is not counted as an access, then p2

will be evicted earlier under an access recency or
frequency-based policy although it may be more
useful in the near future. If the prefetching oper-
ation is counted as an access but t1 occurs after t2,
then p2 will still be evicted earlier than p1.

• Priority among prefetched pages: Due to the lack
of any access history, prefetched pages will fol-
low a FIFO eviction order among themselves dur-
ing memory contention. Assume page p1 and p2

are both prefetched but not yet accessed and p1 is
prefetched ahead of p2. Then p1 will always be
evicted earlier under the FIFO order even if p2’s
owner request handler (defined as the request han-
dler that initiated p2’s prefetching) has completed
its task and exited from the server, an strong indica-
tion that p2 would not be accessed in the near future.

Under poor memory management, many prefetched
pages may be evicted before their owner request handlers
get the chance to access them. Prematurely evicted pages
will have to be fetched again and we call such a phe-
nomenon prefetch page thrashing. In addition to wast-
ing I/O bandwidth on makeup fetches, page thrashing
further reduces the I/O efficiency. This is because page
thrashing destroys sequential access sequence crucial for
large-granularity prefetching and consequently many of
the makeup fetches are inefficient small-granularity I/O
operations.

1 100 200 300 400 500 600 700 800 900 1000
0

2

4

6

8

10

Number of concurrent request handlers

A
pp

lic
at

io
n 

IO
 th

ro
ug

hp
ut

 (
in

 M
B

/s
ec

)
0

60

120

180

240

300

P
ag

e 
th

ra
sh

in
g 

(in
 p

ag
es

/s
ec

)

application throughput
page thrashing rate

Figure 2: Application throughput and prefetch page
thrashing rate of a trace-driven index searching server
under the original Linux 2.6.10 kernel. A prefetch
thrashing is counted when a prefetched page is evicted
before the request handler that initiated the prefetching
attempts to access it.

Measured performance We use the Linux kernel as
an example to illustrate the performance of an access
history-based memory management. Linux employs two
LRU lists for memory management: an active list used
to cache hot pages and an inactive list used to cache cold
pages. Prefetched pages are initially attached to the tail
of the inactive list. Frequently accessed pages are moved
from the inactive list to the active list. When the available
memory falls below a reclamation threshold, an aging al-
gorithm moves pages from the active list to the inactive
list and cold pages at the head of the inactive list are con-
sidered first for eviction.

Figure 2 shows the performance of a trace-driven in-
dex searching server under the Linux 2.6.10 kernel. This
kernel is slightly modified to correct several performance
anomalies during highly concurrent I/O [25]. The de-
tails about the benchmark and the experimental settings
can be found in Section 4.1. We show the application
throughput and page thrashing rate for up to 1000 con-
current request handlers in the server. At high execu-
tion concurrency, the I/O throughput drops significantly



as a result of high page thrashing rate. Particularly at the
concurrency level of 1000, the I/O throughput degrades
to about 25% of its peak performance while the prefetch
page thrashing rate increases to about 258 pages/sec.

3 Prefetch Memory Management

We propose a new memory management framework
with the aim to reduce prefetch page thrashing and im-
prove the performance for data-intensive online servers.
Our framework is based on a separate prefetch cache to
manage prefetched but not-yet-accessed pages (shown
in Figure 3). The basic concept of prefetch cache was
used earlier by Papathanasiou and Scott [22] to manage
the prefetched memory for energy-efficient bursty disk
I/O. Prefetched pages are initially placed in the prefetch
cache. When a page is referenced, it is moved from the
prefetch cache to the normal memory buffer cache and is
thereafter controlled by the kernel’s default page replace-
ment policy. At the presence of high memory pressure,
some not-yet-accessed pages in the prefetch cache may
be moved to the normal buffer cache (called reclamation)
for possible eviction.

The separation of prefetched pages from the rest of
the memory system protects against excessive eviction
of prefetched pages and allows a customized page recla-
mation policy for them. However, like many of the
other previous studies [6, 16, 23, 29], Papathanasiou
and Scott’s prefetch cache management [22] requires
application-supplied information on their I/O access pat-
terns. The reliance on such information affects the ap-
plicability of these approaches and our objective is to
provide transparent memory management that does not
require any application assistance. The design of our
prefetch memory management addresses the reclamation
order among prefetched pages (Section 3.1) and the par-
titioning between prefetched pages and the rest of the
memory buffer cache (Section 3.2). Section 3.3 describes
our implementation in the Linux 2.6.10 kernel.

3.1 Page Reclamation Policy

Previous studies pointed out that the offline optimal
replacement rule for a prefetching system is that every
prefetch should discard the page whose next reference is
furthest in the future [4, 5]. Such a rule was introduced
for minimizing the run time of a standalone application
process. We adapt such a rule in the context of opti-
mizing the throughput of data-intensive online servers,
where a large number of request handlers execute con-
currently and each request handler runs for a relatively
short period of time. Since request handlers in an on-
line server are independent from each other, the data
prefetched by one request handler is unlikely to be ac-

���������	


�����

������������

�������	

������

��������������
����������	

Figure 3: A separate prefetch cache for prefetched pages.

cessed by others in the near future. Our adapted offline
optimal replacement rules are the following:

A. If there exist prefetched pages that will not be ac-
cessed by their respective owner request handlers,
discard one of these pages first.

B. Otherwise, discard the page whose next reference is
furthest in the future.

The optimal replacement rules can only be followed
when the I/O access patterns for all request handlers are
known. We explore heuristic page reclamation policies
that can approximate the above rules without such in-
formation. We define a prefetch stream as a group of
sequentially prefetched pages that have not yet been ac-
cessed. We examine the following online heuristics to
identify a victim page for reclamation.

#1. Discard any page whose owner request handler has
completed its task and exited from the server.

#2. Discard the last page from the longest prefetch
stream.

#3. Discard the last page from the prefetch stream
whose last access is least recent. The recency can
measured by either the elapsed wall clock time or
the CPU time of each stream’s owner request han-
dler. Since in most cases only a page’s owner re-
quest handler would reference it, its CPU time may
be a better indicator of how much opportunity of
access it had in the past.

Heuristic #1 is designed to follow the offline replacement
rule A while heuristic #2 approximates rule B. Heuris-
tic #3 approximates both rules A and B since a prefetch
stream that has not been referenced for a long time is
not likely to be referenced soon and it may even not be
referenced at all. Although heuristic #3 is based on ac-
cess recency, it is different from traditional LRU in that
it relies on the access recency of the prefetch stream it
belongs to, not its own. Note that every page that was
referenced before would have already been moved out of
the prefetch cache.

Heuristic #1 can be combined with either heuristic #2
or #3 to form a page reclamation policy. In either case,



heuristic #1 should take precedence since it guarantees to
discard a page that is unlikely to be accessed in the near
future. When applying heuristic #3, we have two differ-
ent ways to identify least recently used prefetch stream.
Putting these together, we have three page reclamation
policies when a victim page needs to be identified for
reclamation:

• Longest: If there exist pages whose owner request
handlers have exited from the server, discard one of
them first. Otherwise, discard the last page from the
longest prefetch stream.

• Coldest: If there exist pages whose owner request
handlers have exited from the server, discard one of
them first. Otherwise, discard the last page of the
prefetch stream which has not been accessed for the
longest time.

• Coldest+: If there exist pages whose owner request
handlers have exited from the server, discard one of
them first. Otherwise, discard the last page of the
prefetch stream whose owner request handler has
consumed the most amount of CPU since it last ac-
cessed the prefetch stream.

3.2 Memory Allocation for Prefetched Pages

The memory allocation between prefetched pages and
the rest of the memory buffer cache can also affect
the memory utilization efficiency. Too small a prefetch
cache would not sufficiently reduce the prefetch page
thrashing. Too large a prefetch cache, on the other hand,
would result in many page misses on the normal memory
buffer cache. To achieve high performance, we aim to
minimize the combined prefetch miss rate and the cache
miss rate. A prefetch miss is defined as a miss on a page
which was prefetched and then evicted without being ac-
cessed while a cache miss is a miss on a page that has
already been accessed at the time of last eviction.

Previous studies [14, 28] have proposed to use hit
histograms to adaptively partition the memory among
prefetching and caching or among multiple processes. In
particular, based on Thiébaut et al.’s work [28], the min-
imal overall miss rate can be achieved when the current
miss-rate derivative of the prefetch cache as a function
of its allocated size is the same as the current miss-rate
derivative of the normal memory buffer cache. This in-
dicates an allocation point where there is no benefit of
either increasing or decreasing the prefetch cache allo-
cation. These solutions have not been implemented in
practice and implementations suggested in these studies
require significant overhead in maintaining page hit his-
tograms. In order to allow a relatively light-wight imple-
mentation, we approximate Thiébaut et al.’s result using
a gradient descent-based greedy algorithm [24]. Given

the curve of combined prefetch and cache miss rates as
a function of the prefetch cache allocation, gradient de-
scent takes steps proportional to the negative of the gra-
dient at the current point and proceeds downhill toward
the bottom.

We divide the runtime into epochs (or time windows)
and the prefetch cache allocation is adjusted epoch-by-
epoch based on gradient descending of the combined
prefetch and cache miss rates. In the first epoch, we ran-
domly increase or decrease the prefetch cache allocation
by an adjustment unit. We calculate the change of com-
bined miss rates in each subsequent epoch. This value is
used to approximate the derivative of the combined miss
rate. If the miss rate increases by a substantial margin,
we reverse the adjustment of the previous epoch (e.g.,
increase the prefetch cache allocation if the previous ad-
justment has decreased it). Otherwise, we further the ad-
justment made in the previous epoch (e.g., increase the
prefetch cache allocation further if the previous adjust-
ment has increased it).

3.3 Implementation

We have implemented the proposed prefetch memory
management framework in the Linux 2.6.10 kernel. In
Linux, page reclamation is initiated when the number of
free pages falls below a certain threshold. Pages are first
moved from the active list to the inactive list and then the
OS scans the inactive list to find candidate pages for evic-
tion. In our implementation, when a page in the prefetch
cache is referenced, it is moved to the inactive LRU list
of the Linux memory buffer cache. Prefetch cache recla-
mation is triggered at each invocation of the global Linux
page reclamation. If the prefetch cache size exceeds its
allocation, prefetched pages will be selected for reclama-
tion until the desired allocation is reached.

We initialize the prefetch cache allocation to be 25%
of the total physical memory. Our gradient descent-based
prefetch cache allocation requires the knowledge on sev-
eral memory performance statistics (e.g., the prefetch
miss rate and the cache miss rate). In order to identify
misses on recently evicted pages, the system maintains
a bounded-length history of evicted pages along with
flags that identify their status at the time of eviction (e.g.,
whether they were prefetched but not-yet-accessed).

The prefetch cache data structure is organized as a list
of stream descriptors. Each stream descriptor points to
a list of ordered page descriptors, with newly prefetched
page in the tail. A stream descriptor also maintains a
link to its owner process (i.e., the process that initiated
the prefetching of pages in this stream) and the times-
tamp when the stream is last accessed. The timestamp
is the wall clock time or the the CPU run time of the
stream’s owner process depending on the adopted re-



����������	���

��������
��

���	�	�
�� �����

�
�

���������
	��
����	���
��

��	�

�
���

��	��

�����

�
�

�
���

��	��

�����

�
�

�
���

��	��

�����

�
�

�
���

��	��

����	���

����	���

����	���

����	���


�	��
����	���


��

��
��
��

�	��������
����

Figure 4: An illustration of the prefetch cache data structure and our implementation in Linux.

cency heuristic policy. Figure 4 provides an illustration
of the prefetch cache data structure. In our current im-
plementation, we assume a request handler is a thread (or
process) in a multi-threaded (or multi-processed) server.
Each prefetch stream can track the status of its owner
process through the link in the stream descriptor. Due
to its reliance on the process status, our current imple-
mentation cannot monitor the status of request handlers
in event-driven servers that reuse each process for mul-
tiple request executions. In future implementation, we
plan to associate each prefetch stream with its open file
data structure directly. In this way, a file close operation
will also cause the associated stream to be a reclamation
candidate.

We assess the space overhead of our implementation.
Since the number of active streams in the server is rel-
atively small compared with the number of pages, the
space consumption of stream headers is not a serious
concern. The extra space overhead in each page in-
cludes two 4-byte pointers to form the stream page list.
Therefore they incur 0.2% space overhead (8 bytes per
4 KB page). An additional space overhead is that used
by the eviction history for identifying misses on recently
evicted pages. We can limit this overhead by controlling
the number of entries in the eviction history. A smaller
history size may be adopted at the expense of the accu-
racy of the memory performance statistics. A 20-byte
data structure is used to record information about each
evicted page. When we limit the eviction history size
to 40% of the total number of physical pages, the space
overhead for the eviction history is about 0.2% of the to-
tal memory space.

4 Experimental Evaluation

We assess the effectiveness of our proposed prefetch
memory management techniques on improving the per-

formance of data-intensive online servers. Experiments
were conducted on servers each with dual 2.0 GHz Xeon
processors, 2 GB memory, a 36.4 GB IBM 10 KRPM
SCSI drive, and a 146 GB Seagate 10 KRPM SCSI drive.
Note that we lower the memory size used in some exper-
iments to better illustrate the memory contention. Each
experiment involves a server and a load generation client.
The client can adjust the number of simultaneous re-
quests to control the server concurrency level.

The evaluation results are affected by several fac-
tors, including the I/O prefetching aggressiveness, server
memory size, and the application dataset size. Our strat-
egy is to first demonstrate the performance at a typical
setting and then explicitly evaluate the impact of various
factors. We perform experiments on several microbench-
marks and two real application workloads. Each exper-
iment is run for 4 rounds and each round takes 120 sec-
onds. The performance metric we use for all workloads
is the I/O throughput observed at the application level.
They are acquired by instrumenting the server applica-
tions with statistics-collection code. In addition to show-
ing the server I/O throughput, we also provide some re-
sults on the prefetch page thrashing statistics. We sum-
marize the evaluation results in the end of this section.

4.1 Evaluation Benchmarks

All microbenchmarks we use access a dataset of 6000
4 MB disk-resident files. On the arrival of each request,
the server spawns a thread to process it. We explore
the performance of four microbenchmarks with different
I/O access patterns. They differ in the number of files
accessed by each request handler (one to four) and the
portion of each file accessed (the whole file, a random
portion, or a 64 KB chunk). We use the following mi-
crobenchmarks in the evaluation:

• One-Whole: Each request handler randomly
chooses a file and it repeatedly reads 64 KB data



Benchmark/workload Whole-file Streams per Memory Total data Min-mean-max size of
access? request Footprint size sequential access streams

Microbenchmark: One-Whole Yes Single 1 MB/request 24.0 GB 4 MB–4 MB–4 MB
Microbenchmark: One-Rand No Single 1 MB/request 24.0 GB 64 KB–2 MB–4 MB
Microbenchmark: Two-Rand No Multiple 1 MB/request 24.0 GB 64 KB–2 MB–4 MB
Microbenchmark: Four-64KB No N/A 1 MB/request 24.0 GB N/A

Index searching No Multiple Unknown 19.0 GB Unknown
Apache hosting media clips No Single Unknown 20.4 GB 24 KB–152 KB–1418 KB

Table 1: Benchmark statistics. The column “Whole-file access?” indicates whether a request handler would prefetch
some data that it would never access. No such data exists if whole files are accessed by application request han-
dlers. The column “Stream per request” indicates the number of prefetching streams each request handler initiates
simultaneously. More prefetching streams per request handler would create higher memory contention.

blocks until the whole file is accessed.
• One-Rand: Each request handler randomly chooses

a file and it repeatedly reads 64 KB data blocks from
the file up to a random total size (evenly distributed
between 64 KB and 4 MB).

• Two-Rand: Each request handler alternates reading
64 KB data blocks from two randomly chosen files.
For each file, the request handler accesses the same
random number of blocks. This workload emulates
applications that simultaneously access multiple se-
quential data streams.

• Four-64KB: Each request handler randomly
chooses four files and reads a 64 KB random data
block from each file.

We also include two real application workloads in the
evaluation:

• Index searching: We acquired an earlier prototype
of the index searching server and a dataset from the
Web search engine Ask Jeeves [3]. The dataset con-
tains the search index for 12.6 million Web pages.
It includes a 522 MB mapping file that maps MD5-
encoded keywords to proper locations in the search
index. The search index itself is approximately
18.5 GB, divided into 8 partitions. For each key-
word in an input query, a binary search is first per-
formed on the mapping file and then the search in-
dex is accessed following a sequential access pat-
tern. Multiple prefetching streams on the search in-
dex are accessed for each multi-keyword query. The
search query words in our test workload are based
on a trace recorded at the Ask Jeeves online site in
early 2002.

• Apache hosting media clips: We include the Apache
Web server in our evaluation. Since our work fo-
cuses on data-intensive applications, we use a work-
load containing a set of media clips, following the
file size and access distribution of the video/audio
clips portion of the 1998 World Cup workload [2].

About 9% of files in the workload are large video
clips while the rest are small audio clips. The over-
all file size range is 24 KB–1418 KB with an aver-
age of 152 KB. The total dataset size is 20.4 GB.
During the tests, individual media files are chosen
in the client requests according to a Zipf distribu-
tion. A random-size portion of each chosen file is
accessed.

We summarizes our benchmark statistics in table 1.

4.2 Microbenchmark Performance

We assess the effectiveness of the proposed techniques
by comparing the server performance under the follow-
ing five kernel versions:

#1. AccessHistory: We use the original Linux 2.6.10 to
represent kernels that manage the prefetched pages
along with other memory pages using an access
history-based LRU reclamation policy. Note that
a more sophisticated access recency or frequency-
based reclamation policy would not make much dif-
ference for managing prefetched pages. Although
MRU-like schemes may benefit prefetched pages,
they perform poorly with general application work-
loads and in practice they are only used for work-
loads with exclusively sequential data access pat-
tern.

#2. PC-AccessHistory: The original kernel with a
prefetch cache whose allocation is dynamically
maintained using our gradient-descent algorithm
described in Section 3.2. Pages in the prefetch
cache is reclaimed in FIFO-order, which is the ef-
fective reclamation order for prefetched pages un-
der any access history-based reclamation policy.

#3. PC-Longest: The original kernel with a prefetch
cache managed by the Longest reclamation policy
described in Section 3.1.



100 200 300 400 500 600 700 800 900 1000
0

8

16

24

32

40

Number of concurrent request handlers

A
pp

lic
at

io
n 

I/O
 th

ro
ug

hp
ut

 (
in

 M
B

/s
ec

)

(A) One−Whole

100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

Number of concurrent request handlers

A
pp

lic
at

io
n 

I/O
 th

ro
ug

hp
ut

 (
in

 M
B

/s
ec

)

(C) Two−Rand

100 200 300 400 500 600 700 800 900 1000
0

6

12

18

24

30

Number of concurrent request handlers

A
pp

lic
at

io
n 

I/O
 th

ro
ug

hp
ut

 (
in

 M
B

/s
ec

)

(B) One−Rand

100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

Number of concurrent request handlers

A
pp

lic
at

io
n 

I/O
 th

ro
ug

hp
ut

 (
in

 M
B

/s
ec

)

(D) Four−64KB

AccessHistory
PC−AccessHistory
PC−Longest
PC−Coldest
PC−Coldest+

AccessHistory
PC−AccessHistory
PC−Longest
PC−Coldest
PC−Coldest+

AccessHistory
PC−AccessHistory
PC−Longest
PC−Coldest
PC−Coldest+

AccessHistory
PC−AccessHistory
PC−Longest
PC−Coldest
PC−Coldest+

Figure 5: Microbenchmark I/O throughput at different concurrency levels. Our proposed prefetch memory manage-
ment produces throughput improvement on One-Rand and Two-Rand.

#4. PC-Coldest: The original kernel with a prefetch
cache managed by the Coldest reclamation policy
described in Section 3.1.

#5. PC-Coldest+: The original kernel with a prefetch
cache managed by the Coldest+ reclamation policy
described in Section 3.1.

The original Linux 2.6.10 exhibits several perfor-
mance anomalies when supporting data-intensive on-
line servers [25]. They include a mis-management of
prefetching during disk congestion and some lesser is-
sues in the disk I/O scheduler. Details about these prob-
lems and some suggested fixes can be found in [25]. All
experimental results in this paper are based on corrected
kernels.

Figure 5 illustrates the I/O throughput of the four mi-
crobenchmarks under all concurrency levels. The re-
sults are measured with the maximum prefetching depth
at 512 KB and the server memory size at 512 MB. Fig-
ure 5(A) shows consistently high performance attained
by all memory management schemes for the first mi-
crobenchmark (One-Whole). This is because this mi-
crobenchmark accesses whole files and consequently all
prefetched pages will be accessed. Further, for applica-

tions with strictly sequential access pattern, the anticipa-
tory I/O scheduling allows each request handler to run
without interruption. This results in a near-serial exe-
cution even at high concurrency levels, therefore little
memory contention exists in the system.

Figure 5(B) shows the I/O throughput results for
One-Rand. Since this microbenchmark does not access
whole files, some prefetched pages will not be accessed.
Results indicate that our proposed schemes can improve
the performance of access history-based memory man-
agement at high concurrency. In particular, the improve-
ment achieved by PC-Coldest+ is 8–97%.

Figures 5(C) shows the performance for Two-Rand.
The anticipatory scheduling is not effective for this mi-
crobenchmark since a request handler in this case ac-
cesses two streams alternately. Results show that our
proposed schemes can improve the performance of ac-
cess history-based memory management at the concur-
rency level of 200 or higher. For instance, the improve-
ment of PC-Coldest+ is 34% and two-fold at the con-
currency levels of 400 and 500 respectively. This im-
provement is attributed to two factors: 1) the differ-
ence between PC-Coldest+ and PC-AccessHistory is at-
tributed to the better page reclamation order inside the



1 100 200 300 400 500 600 700 800 900 1000
0

6

12

18

24

30

Number of concurrent request handlers

A
pp

lic
at

io
n 

I/O
 th

ro
ug

hp
ut

 (
in

 M
B

/s
ec

)

(A) One−Rand

AccessHistory
PC−Coldest+
Approximated Optimal

1 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

Number of concurrent request handlers

A
pp

lic
at

io
n 

I/O
 th

ro
ug

hp
ut

 (
in

 M
B

/s
ec

)

(B) Two−Rand

AccessHistory
PC−Coldest+
Approximated Optimal

Figure 6: Comparison among AccessHistory, Coldest+, and an approximated optimal policy. The throughput of
Coldest+ is 10–32% lower than that of the approximated optimal while it is 8–97% higher than that of AccessHistory
in high concurrency.

prefetch cache; 2) the improvement of PC-AccessHistory
over AccessHistory is due to the separation of prefetched
pages from the rest of the memory buffer cache. Fi-
nally, we observe that the performance of PC-Coldest
and PC-Longest are not as good as that of PC-Coldest+.

Figure 5(D) illustrates the performance of the random-
access microbenchmark. We observe that all kernels per-
form similarly at all concurrency levels. Since prefetched
pages in this microbenchmark are mostly not used, early
eviction would not hurt the server performance. On the
other hand, our memory partitioning scheme can quickly
converge to small prefetch cache allocations through
greedy adjustments and thus would not waste space on
keeping prefetched pages.

Note that despite the substantial improvement on
Two-Rand and One-Rand, our proposed prefetch mem-
ory management cannot eliminate memory contention
and the resulted performance degradation at high con-
currency. However, this is neither intended nor achiev-
able. Consider a server with 1000 concurrent threads
each prefetches up to 512 KB. Just the pages pinned for
outstanding I/O operations alone occupies up to 512 MB
memory space in this server.

To assess the remaining room for improvement, we
approximate the offline optimal policy through direct
application assistance. In our approximation, applica-
tions provide exact hints about their data access pattern
through an augmented open() system call. With the
hints, the approximated optimal policy can easily iden-
tify those prefetched but unneeded pages and evict them
first (following the offline optimal replacement rule A
in Section 3.1). The approximated optimal policy does
not accurately embrace offline optimal replacement rule
B, because there is no way to determine the access or-
der among pages from different processes without the

process scheduling knowledge. For the eviction order
among pages that would be accessed by their owner re-
quest handers, the approximated optimal policy follows
that of Coldest+. Figure 6 shows that the performance
of Coldest+ approach is 10–32% lower than the approx-
imated optimal in high concurrency with the two tested
microbenchmarks.

4.3 Performance of Real Applications

We examine the performance of two real application
workloads. Figure 7 shows the I/O throughput of the
index searching server at various concurrency levels.
The results are measured with the maximum prefetching
depth at 512 KB and the server memory size at 512 MB.
All schemes perform similarly at low concurrency. We
notice that the I/O throughput initially increases as the
concurrency level climbs up. This is mainly due to
lower average seek distance when the disk scheduler can
choose from more concurrent requests for seek reduc-
tion. At high concurrency levels (100 and above), the
PC-Coldest+ scheme outperforms access history-based
management by 11–64%. Again, this improvement is
attributed to two factors. The performance difference
between PC-AccessHistory and AccessHistory (about
10%) is due to separated management of prefetched
pages while the rest is attributed to better reclamation
order in the prefetch cache.

In order to better understand the performance results,
we examine the page thrashing rate in the server. Fig-
ure 8 shows the result for the index searching server.
We observe that the page thrashing rate increases as the
server concurrency level goes up. Particularly at the con-
currency of 1000, the page thrashing rates are around
258, 238, 217, 207 and 200 pages/request for the five
schemes respectively. We observe that the difference



1 100 200 300 400 500 600 700 800 900 1000
0

1.6

3.2

4.8

6.4

8

Number of concurrent request handlers

A
pp

lic
at

io
n 

I/O
 th

ro
ug

hp
ut

 (
in

 M
B

/s
ec

)

Index searching

AccessHistory
PC−AccessHistory
PC−Longest
PC−Coldest
PC−Coldest+

Figure 7: Throughput of the index searching server.

1 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

Number of concurrent request handlers

P
ag

e 
th

ra
sh

in
g 

(in
 p

ag
es

/s
ec

)

Index searching

AccessHistory
PC−AccessHistory
PC−Longest
PC−Coldest
PC−Coldest+

Figure 8: Prefetch page thrashing rate for the index
searching server.

in page thrashing rates across the four schemes matches
well with that of the throughput performance in Figure 7,
indicating that the page thrashing is a main factor in
the server performance degradation at high concurrency.
Even under the improved management, the page thrash-
ing rate still increases in high concurrency levels for the
same reason we described earlier for the microbench-
marks.

Figure 9 shows the application IO throughput of the
Apache Web server hosting media clips. The results
are measured with the maximum prefetching depth at
512 KB and the server memory size at 256 MB. The
four prefetch cache-based approaches perform better
than access history-based approach in all concurrency
levels. This improvement is due to separated man-
agement of prefetched pages. The difference among
the four prefetch cache-based approaches is slight, but
PC-Coldest+ persistently performs better than others.
This is because of its effective reclamation management
of prefetched pages.

1 100 200 300 400 500 600 700 800 900 1000
0

4

8

12

16

20

Number of concurrent request handlers

A
pp

lic
at

io
n 

I/O
 th

ro
ug

hp
ut

 (
in

 M
B

/s
ec

)

Apache Web Server hosting media clips. 

AccessHistory
PC−AccessHistory
PC−Longest
PC−Coldest
PC−Coldest+

Figure 9: Throughput of the Apache Web server hosting
media clips.

1 100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

Number of concurrent request handlers

A
pp

lic
at

io
n 

I/O
 th

ro
ug

hp
ut

 (
in

 M
B

/s
ec

)

Two−Rand

PCC+, 512KB pref.
PCC+, 256KB pref.
PCC+, 128KB pref.
AH, 512KB pref.
AH, 256KB pref.
AH, 128KB pref.

Figure 10: Performance impact of the maximum
prefetching depth for the microbenchmark Two-Rand.
“PCC+” stands for PC-Coldest+ and “AH” stands for Ac-
cessHistory.

4.4 Impact of Factors

In this section, we explore the performance impact of
the I/O prefetching aggressiveness, server memory size,
and the application dataset size. We use a microbench-
mark in this evaluation because of its flexibility in ad-
justing the workload parameters. When we evaluate the
impact of one factor, we set the other factors to default
values: 512 KB maximum prefetching depth, 512 MB
for the server memory size, and 24 GB for the appli-
cation dataset size. We only show the performance of
PC-Coldest+ and AccessHistory in the results.

Figure 10 shows the performance of the microbench-
mark Two-Rand with different maximum prefetching
depths: 128 KB, 256 KB, and 512 KB. Various maxi-
mum prefetching depths are achieved by adjusting the
appropriate parameter in the OS kernel. We observe that
our proposed prefetch memory management performs



100 200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25

Number of concurrent request handlers

A
pp

lic
at

io
n 

I/O
 th

ro
ug

hp
ut

 (
in

 M
B

/s
ec

)

Two−Rand

PCC+, 2GB mem
PCC+, 1GB mem
PCC+, 512MB mem
AH, 2GB mem
AH, 1GB mem
AH, 512MB mem

Figure 11: Performance impact of the server memory
size for the microbenchmark Two-Rand. “PCC+” stands
for PC-Coldest+ and “AH” stands for AccessHistory.

1 100 200 300 400 500 600 700 800 900 1000
0

6

12

18

24

30

Number of concurrent request handlers

A
pp

lic
at

io
n 

I/O
 th

ro
ug

hp
ut

 (
in

 M
B

/s
ec

)

Two−Rand

PCC+, 1GB data
PCC+, 8GB data
PCC+, 24GB data
AH, 1GB data
AH, 8GB data
AH, 24GB data

Figure 12: Performance impact of the workload data size
for the microbenchmark Two-Rand. “PCC+” stands for
PC-Coldest+ and “AH” stands for AccessHistory.

consistently better than AccessHistory at all configura-
tions. The improvement tends to be more substantial
for servers with higher prefetching depths due to higher
memory contention (and therefore more room to im-
prove).

Figure 11 shows the performance of the microbench-
mark at different server memory sizes: 2 GB, 1 GB, and
512 MB. Our proposed prefetch memory management
performs consistently better than AccessHistory at all
memory sizes. The improvement tends to be less sub-
stantial for servers with large memory due to lower mem-
ory contention (and therefore less room to improve).

Figure 12 illustrates the performance of the mi-
crobenchmark at different workload data sizes: 1 GB,
8 GB, and 24 GB. Intuitively better performance is cor-
related with smaller workload data sizes. However, the
change on the absolute performance does not signifi-
cantly affect the performance advantage of our strategy

over access history-based memory management.

4.5 Summary of Results

• Compared with access history-based memory man-
agement, our proposed prefetch memory manage-
ment scheme (PC-Coldest+) can improve the per-
formance of real workloads by 11–64% at high exe-
cution concurrency. The performance improvement
can be attributed to two factors: the separated man-
agement of prefetched pages and enhanced recla-
mation policies for them.

• At high concurrency, the performance of
PC-Coldest+ is 10–32% below an approxi-
mated optimal page reclamation policy that uses
application-provided I/O access hints.

• The microbenchmark results suggest that our
scheme does not provide performance enhancement
for applications that follow strictly sequential ac-
cess pattern to access whole files. This is because
the anticipatory I/O scheduler executes request han-
dlers serially for these applications, thus eliminating
memory contention even at high concurrency. In
addition, our scheme does not provide performance
enhancement for applications with only small-size
random data accesses since most prefetched pages
will not be accessed for these applications (and thus
their reclamation order does not matter).

• The performance benefit of the proposed prefetch
memory management may be affected by various
system parameters. In general, the benefit is higher
for systems with more memory contention. Addi-
tionally, our scheme does not degrade the server
performance on all the configurations that we have
tested.

5 Related Work

Concurrency management. The subject of highly-
concurrent online servers has been investigated by sev-
eral researchers. Pai et al. showed that the HTTP server
workload with moderate disk I/O activities can be effi-
ciently managed by incorporating asynchronous I/O or
helper threads into an event-driven HTTP server [20].
A later study by Welsh et al. further improved the per-
formance by balancing the load of multiple event-driven
stages in an HTTP request handler [34]. The more re-
cent Capriccio work provided a user-level thread pack-
age that can scale to support hundreds of thousands
of threads [32]. These studies mostly targeted CPU-
intensive workloads with light disk I/O activities (e.g.,
the typical Web server workload and application-level



packet routing). They did not directly address the mem-
ory contention problem for data-intensive online servers
at high concurrency.

Admission control. The concurrency level of an on-
line server can be controlled by employing a fixed-size
process/thread pool and a request waiting queue. QoS-
oriented admission control strategies [18, 30, 31, 33]
can adjust the server concurrency according to a desired
performance level. Controlling the execution concur-
rency may mitigate the memory contention caused by
I/O prefetching. However, these strategies may not al-
ways identify the optimal concurrency threshold when
the server load fluctuates. Additionally, keeping the
concurrency level too low may reduce the server re-
source utilization efficiency (due to longer average disk
seek distance) and lower the server responsiveness (due
to higher probability for short requests to be blocked
by long requests). Our work complements the concur-
rency control management by inducing slower perfor-
mance degradation when the server load increases and
thus making it less critical to choose the optimal concur-
rency threshold.

Memory replacement. A large body of previous
work has explored efficient memory buffer page replace-
ment policies for data-intensive applications, such as
Working-Set [8], LRU/LFU [19], CLOCK [27], 2Q [13],
Unified Buffer Management [15], and LIRS [12]. All
these memory replacement strategies are based on the
page reference history such as reference recency or fre-
quency. In data-intensive online servers, a large num-
ber of prefetched but not-yet-accessed pages may emerge
due to aggressive I/O prefetching and high execution
concurrency. Due to a lack of any access history, these
pages may not be properly managed by access recency
or frequency-based replacement policies.

Memory management for Caching and Prefetch-
ing. Cao et al. proposed a two-level page replace-
ment scheme that allows applications to control their
own cache replacement while the kernel controls the
allocation of cache space among processes [6]. Pat-
terson et al. examined memory management based on
application-disclosed hints on application I/O access pat-
tern [23]. Such hints were used to construct a cost-
benefit model for deciding the prefetching and caching
strategy. Kimbrel et al. explored the performance of
application-assisted memory management for multi-disk
systems [16]. Tomkins et al. further expanded the
study for multi-programed execution of several pro-
cesses [29]. Hand studied application-assisted paging
techniques with the goal of performance isolation among
multiple concurrent processes [10]. Anastasiadis et al.
explored an application-level block reordering technique
that can reduce server disk traffic when large content
files are shared by concurrent clients [1]. Memory man-

agement with application assistance or application-level
information can achieve high (or optimal) performance.
However, the reliance on such assistance may affect the
applicability of these approaches and the goal of our
work is to provide transparent memory management that
does not require any application assistance.

Chang et al. studied the automatic generation of I/O
access hints through OS-supported speculative execu-
tion [7, 9]. The purpose of their work is to improve the
prefetching accuracy. They do not address the manage-
ment of prefetched memory pages during memory con-
tention.

Several researchers have addressed the problem of
memory allocation between prefetched and cached
pages. Many such studies required application assistance
or hints [5, 16, 23, 29]. Among those that did not re-
quire such assistance, Thiébaut et al. [28] and Kaplan et
al. [14] employed hit histogram-based cost-benefit mod-
els to dynamically control the prefetch memory alloca-
tion with the goal of minimizing the overall page fault
rate. Their solutions require expensive tracking of page
hits and they have not been implemented in practice. In
this work, we employ a greedy partitioning algorithm
that requires much less state maintenance and thus is eas-
ier to implement.

6 Conclusion

This paper presents the design and implementation
of a prefetch memory management scheme supporting
data-intensive online servers. Our main contribution
is the proposal of novel page reclamation policies for
prefetched but not-yet-accessed pages. Previously pro-
posed page reclamation policies are principally based on
the page access history, which are not well suited for
pages that have no such history. Additionally, we em-
ploy a gradient descent-based greedy algorithm that dy-
namically adjusts the memory allocation for prefetched
pages. Our work is guided by previous results on optimal
memory partitioning while we focus on a design with
low implementation overhead. We have implemented the
proposed techniques in the Linux 2.6.10 kernel and con-
ducted experiments using microbenchmarks and two real
application workloads. Results suggest that our approach
can substantially reduce prefetch page thrashing and im-
prove application performance at high concurrency lev-
els.

Acknowledgments The implementation of the statis-
tics for evicted pages (mentioned in section 3.3) is based
on a prototype by Athanasios Papathanasiou. We also
would like to thank Athanasios Papathanasiou, Michael
Scott, and the anonymous reviewers for their valuable



comments that greatly helped to improve this work.

References

[1] S. V. Anastasiadis, R. G. Wickremesinghe, and
J. S. Chase. Circus: Opportunistic Block Reorder-
ing for Scalable Content Servers. In Proc. of the
Third USENIX Conf. on File and Storage Technolo-
gies (FAST’04), pages 201–212, San Fancisco, CA,
March 2004.

[2] M. Arlitt and T. Jin. Workload Characterization of
the 1998 World Cup Web Site. Technical Report
HPL-1999-35, HP Laboratories Palo Alto, 1999.

[3] Ask Jeeves Search. http://www.ask.com.

[4] L. A. Belady. A Study of Replacement Algorithms
for Virtual Storage Computers. IBM Systems Jour-
nal, 5(2):78–101, 1966.

[5] P. Cao, E. W. Felten, A. R. Karlin, and K. Li. A
Study of Integrated Prefetching and Caching Strate-
gies. In Proc. of the ACM SIGMETRICS, pages
188–197, Ottawa, Canada, June 1995.

[6] P. Cao, E. W. Felten, and K. Li. Implemen-
tation and Performance of Application-Controlled
File Caching. In Proc. of the First USENIX Symp.
on Operating Systems Design and Implementation
(OSDI’94), Monterey, CA, November 1994.

[7] F. Chang and G. Gibson. Automatic I/O Hint Gen-
eration Through Speculative Execution. In Proc. of
the Third USENIX Symp. on Operating Systems De-
sign and Implementation (OSDI’99), New Orleans,
LA, February 1999.

[8] P. J. Denning. The Working Set Model for Program
Behavior. Communications of the ACM, 11:323–
333, May 1968.

[9] K. Fraser and F. Chang. Operating System I/O
Speculation: How Two Invocations Are Faster
Than One. In Proc. of the USENIX Annual Tech-
nical Conference, San Antonio, TX, June 2003.

[10] S. M. Hand. Self-paging in the Nemesis Operat-
ing System. In Proc. of the Third USENIX Symp.
on Operating Systems Design and Implementation
(OSDI’99), New Orleans, LA, February 1999.

[11] S. Iyer and P. Druschel. Anticipatory Scheduling:
A Disk Scheduling Framework to Overcome De-
ceptive Idleness in Synchronous I/O. In Proc. of
the 18th ACM Symp. on Operating Systems Princi-
ples (SOSP’01), pages 117 – 130, Banff, Canada,
October 2001.

[12] S. Jiang and X. Zhang. LIRS: An Efficient Low
Inter-reference Recency Set Replacement Policy to
Improve Buffer Cache Performance. In Proc. of the
ACM SIGMETRICS, pages 31–42, Marina Del Rey,
CA, June 2002.

[13] T. Johnson and D. Shasha. 2Q: A Low Overhead
High Performance Buffer Management Replace-
ment Algorithm. In Proc. of the 20th VLDB Confer-
ence, pages 439–450, Santiago, Chile, September
1994.

[14] S. F. Kaplan, L. A. McGeoch, and M. F. Cole.
Adaptive Caching for Demand Prepaging. In Proc.
of the Third Int’l Symp. on Memory Management,
pages 114–126, Berlin, Germany, June 2002.

[15] J. M. Kim, J. Choi, J. Kim, S. H. Noh, S. L. Min,
Y. Cho, and C. S. Kim. A Low-Overhead High-
Performance Unified Buffer Management Scheme
that Exploits Sequential and Looping References.
In Proc. of the 4th USENIX Symp. on Operating
Systems Design and Implementation (OSDI’00),
San Diego, CA, October 2000.

[16] T. Kimbrel, A. Tomkins, R. H. Patterson, B. Ber-
shad, P. Cao, E. W. Felten, G. A. Gibson, A. R.
Karlin, and K. Li. A Trace-Driven Comparison of
Algorithms for Parallel Prefetching and Caching. In
Proc. of the Second USENIX Symp. on Operating
Systems Design and Implementation (OSDI’96),
Seattle, WA, October 1996.

[17] C. Li, A. Papathanasiou, and K. Shen. Competi-
tive Prefetching for Data-Intensive Online Servers.
In Proc. of the First Workshop on Operating Sys-
tem and Architectural Support for the on demand
IT InfraStructure, Boston, MA, October 2004.

[18] K. Li and S. Jamin. A Measurement-Based
Admission-Controlled Web Server. In Proc. of the
IEEE INFOCOM, pages 651–659, Tel-Aviv, Israel,
March 2000.

[19] R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L.
Traiger. Evaluation Techniques for Storage Hier-
archies. IBM Systems J., 9(2):78–117, 1970.

[20] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash:
An Efficient and Portable Web Server. In Proc. of
the USENIX Annual Technical Conference, Mon-
terey, CA, June 1999.

[21] A. Papathanasiou and M. Scott. Aggressive
Prefetching: An Idea Whose Time Has Come. In
Proc. of the 10th Workshop on Hot Topics in Oper-
ating Systems, Santa Fe, NM, June 2005.



[22] A. E. Papathanasiou and M. L. Scott. Energy
Efficient Prefetching and Caching. In Proc. of
the USENIX Annual Technical Conference, Boston,
MA, June 2004.

[23] R. H. Patterson, G. A. Gibson, E. Ginting,
D. Stodolsky, and J. Zelenka. Informed Prefetch-
ing and Caching. In Proc. of the 15th ACM Symp.
on Operating Systems Principles (SOSP’95), pages
79–95, Copper Mountain Resort, CO, December
1995.

[24] S. Russell and P. Norvig. Artificial Intelligence:
A Modern Approach. Prentice Hall, 2nd edition,
2003.

[25] K. Shen, M. Zhong, and C. Li. I/O System Perfor-
mance Debugging Using Model-driven Anomaly
Characterization. In Proc. of the 4th USENIX Conf.
on File and Storage Technologies (FAST’05), San
Francisco, CA, December 2005.

[26] E. Shriver, C. Small, and K. Smith. Why Does File
System Prefetching Work ? In Proc. of the USENIX
Annual Technical Conference, Monterey, CA, June
1999.

[27] A. J. Smith. Sequentiality and Prefetching in
Database Systems. ACM Transactions on Database
Systems, 3(3):223–247, September 1978.

[28] D. Thiébaut, H. S. Stone, and J. L. Wolf. Improving
Disk Cache Hit-Ratios Through Cache Partitioning.
IEEE Transactions on Computers, 41(6):665–676,
June 1992.

[29] A. Tomkins, R. H. Patterson, and G. A. Gibson. In-
formed Multi-Process Prefetching and Caching. In
Proc. of the ACM SIGMETRICS, pages 100–114,
Seattle, WA, June 1997.

[30] T. Voigt and P. Gunningberg. Dealing with
Memory-Intensive Web Requests. Technical Re-
port 2001-010, Uppsala University, May 2001.

[31] T. Voigt, R. Tewari, D. Freimuth, and A. Mehra.
Kernel Mechanisms for Service Differentiation in
Overloaded Web Servers. In Proc. of the USENIX
Annual Technical Conference, Boston, MA, June
2001.

[32] R. von Behren, J. Condit, F. Zhou, G. C. Necula,
and E. Brewer. Capriccio: Scalable Threads for In-
ternet Services. In Proc. of the 19th ACM Symp.
on Operating Systems Principles (SOSP’03), pages
268–281, Bolton Landing, NY, October 2003.

[33] M. Welsh and D. Culler. Adaptive Overload Con-
trol for Busy Internet Servers. In Proc. of the 4th
USENIX Symp. on Internet Technologies and Sys-
tems, Seattle, WA, March 2003.

[34] M. Welsh, D. Culler, and E. Brewer. SEDA: An Ar-
chitecture for Well-Conditioned, Scalable Internet
Services. In Proc. of the 18th ACM Symp. on Op-
erating Systems Principles (SOSP’01), pages 230–
243, Banff, Canada, October 2001.


