
Competitive Prefetching for Concurrent Sequential I/O∗

Chuanpeng Li
Dept. of Computer Science

University of Rochester
cli@cs.rochester.edu

Kai Shen
Dept. of Computer Science

University of Rochester
kshen@cs.rochester.edu

Athanasios
E. Papathanasiou
Intel Massachusetts

athanasios.papathanasiou@intel.com

ABSTRACT
During concurrent I/O workloads, sequential access to one
I/O stream can be interrupted by accesses to other streams
in the system. Frequent switching between multiple sequen-
tial I/O streams may severely affect I/O efficiency due to
long disk seek and rotational delays of disk-based storage
devices. Aggressive prefetching can improve the granularity
of sequential data access in such cases, but it comes with
a higher risk of retrieving unneeded data. This paper pro-
poses a competitive prefetching strategy that controls the
prefetching depth so that the overhead of disk I/O switch
and unnecessary prefetching are balanced. The proposed
strategy does not require a-priori information on the data
access pattern, and achieves at least half the performance (in
terms of I/O throughput) of the optimal offline policy. We
also provide analysis on the optimality of our competitive-
ness result and extend the competitiveness result to capture
prefetching in the case of random-access workloads.

We have implemented the proposed competitive prefetch-
ing policy in Linux 2.6.10 and evaluated its performance on
both standalone disks and a disk array using a variety of
workloads (including two common file utilities, Linux ker-
nel compilation, the TPC-H benchmark, the Apache web
server, and index searching). Compared to the original
Linux kernel, our competitive prefetching system improves
performance by up to 53%. At the same time, it trails the
performance of an oracle prefetching strategy by no more
than 42%.

Categories and Subject Descriptors
D.4.3 [Operating Systems]: File Systems Management

∗This work was supported in part by the National Science
Foundation (NSF) grants CCR-0306473, ITR/IIS-0312925,
CNS-0615045, CCF-0621472, NSF CAREER Award CCF-
0448413, and an IBM Faculty Award.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroSys’07, March 21–23, 2007, Lisbon, Portugal.
Copyright 2007 ACM 978-1-59593-636-3/07/0003 ...$5.00.

General Terms
Design, Performance, Experimentation

Keywords
Competitive Prefetching, I/O, Performance Evaluation

1. INTRODUCTION
Concurrent access to multiple sequential I/O streams is a

common case in both server and desktop workloads. Multi-
tasking systems allow the concurrent execution of programs
that access different I/O streams, while common applica-
tions, such as the diff file utility, database operations and
file merging operations, multiplex accesses to several files.
For concurrent I/O workloads, continuous accesses to one se-
quential data stream can be interrupted by accesses to other
streams in the system. Frequent switching between multiple
sequential I/O streams may severely affect I/O efficiency due
to long disk seek and rotational delays of disk-based storage
devices. In the rest of the paper, we refer to any disk head
movement that interrupts a sequential data transfer as an
I/O switch. The cost of an I/O switch includes both seek
and rotational delays.

The problem of unnecessary disk I/O switch during con-
current I/O workloads may be alleviated partially by non-
work-conserving disk schedulers. In particular, the anticipa-
tory scheduler [16] may temporarily idle the disk (even when
there are outstanding I/O requests) so that consecutive I/O
requests that belong to the same process/thread may be ser-
viced without interruption. However, anticipatory schedul-
ing is ineffective, in cases where a single process or thread
synchronously accesses multiple sequential data streams in
an interleaving fashion or when a substantial amount of pro-
cessing or think time exists between consecutive sequential
requests from a process. In addition, anticipatory scheduling
may not function properly when it lacks the knowledge of
I/O request-issuing process contexts, as in the cases of I/O
scheduling within a virtual machine monitor [17] or within
a parallel/distributed file system server [8].

Another technique to reduce I/O switch frequency for con-
current I/O workloads is to increase the granularity of se-
quential I/O operations. This can be accomplished by ag-
gressive OS-level prefetching that prefetches deeper in each
sequential I/O stream. However, under certain scenarios,
aggressive prefetching may have a negative impact on per-
formance due to buffer cache pollution and inefficient use
of I/O bandwidth. Specifically, aggressive prefetching has
a higher risk of retrieving data that are not needed by the

application. This paper proposes an OS-level prefetching
technique that balances the overhead of I/O switching and
the disk bandwidth wasted on prefetching unnecessary data.
We focus on the mechanism that controls the prefetching
depth for sequential or partially sequential accesses. We do
not consider other aspects or forms of prefetching.

The proposed prefetching technique is based on a fun-
damental 2-competitiveness result: “when the prefetching
depth is equal to the amount of data that can be sequen-
tially transferred within the average time of a single I/O
switch, the total disk resource consumption of an I/O work-
load is at most twice that of the optimal offline prefetch-
ing strategy”. Our proposed prefetching technique does not
require a-priori knowledge of an application’s data access
pattern or any other type of application support. We also
show that the 2-competitiveness result is optimal, i.e., no
transparent OS-level online prefetching can achieve a com-
petitiveness ratio lower than 2. Finally, we further extend
the competitiveness result to capture prefetching in the case
of random-access workloads.

The rest of this paper is structured as follows. Section 2
discusses previous work. Section 3 provides background on
our targeted I/O workloads, existing OS support, and rel-
evant storage device characteristics. Section 4 presents the
analysis and design of our proposed competitive prefetch-
ing strategy. Section 5 discusses practical issues concerning
storage device characterization. Section 6 evaluates the pro-
posed strategy using several microbenchmarks and a variety
of real application workloads. Section 7 concludes the paper.

2. RELATED WORK
The literature on prefetching is very rich. Cao et al. ex-

plored application-controlled prefetching and caching [6, 7].
They proposed a two-level page replacement scheme that
allows applications to control their cache replacement pol-
icy, while the kernel controls the allocation of cache space
among applications. Patterson et al. explored a cost-benefit
model to guide prefetching decisions [26]. Their results sug-
gest a prefetching depth up to a process’ prefetch horizon
under the assumption of no disk congestion. Tomkins et al.
extended the proposed cost-benefit model for workloads con-
sisting of multiple applications [30]. The above techniques
require a-priori knowledge of the application I/O access pat-
terns. Patterson et al. and Tomkins et al. depend on appli-
cation disclosed hints to predict future data accesses. In
contrast, our work proposes a transparent operating system
prefetching technique that does not require any application
support or modification.

Previous work has also examined ways to acquire or pre-
dict I/O access patterns without direct application involve-
ment. Proposed techniques include modeling and analysis
of important system events [20, 34], offline application pro-
filing [25], and speculative program execution [10, 12]. The
reliance on I/O access pattern prediction affects the appli-
cability of these approaches in several ways. Particularly,
the accuracy of predicted information is not guaranteed and
no general method exists to assess the accuracy for different
application workloads with certainty. In addition, some of
these approaches still require offline profiling or application
changes, which increases the barrier for deployment in real
systems.

Shriver et al. studied performance factors in a disk-based
file system [29] and suggested that aggressive prefetching

should be employed when it is safe to assume the prefetched
data will be used. More recently, Papathanasiou and Scott
argued that aggressive prefetching has become more and
more appropriate due to recent developments in I/O hard-
ware and emerging needs of applications [24]. Our work
builds on this idea by providing a systematic way to control
prefetching depth.

Previous work has also explored performance issues as-
sociated with concurrent sequential I/O at various system
levels. Carrera and Bianchini explored disk cache manage-
ment and proposed two disk firmware-level techniques to
improve the I/O throughput of data intensive servers [9].
Our work shares their objective while focusing on operat-
ing system-level techniques. Anastasiadis et al. explored an
application-level block reordering technique that can reduce
server disk traffic when large content files are shared by con-
current clients [1]. Our work provides transparent operat-
ing system level support for a wider scope of data-intensive
workloads.

Barve et al. [5] have investigated competitive prefetch-
ing in parallel I/O systems with a given lookahead amount
(i.e., the knowledge of a certain number of upcoming I/O
requests). Their problem model is different from ours on at
least the following aspects. First, the target performance
metric in their study (the number of parallel I/O operations
to complete a given workload) is only meaningful in the con-
text of parallel I/O systems. Second, the lookahead of up-
coming of I/O requests is essential in their system model
while our study only considers transparent OS-level pre-
fetching techniques that require no information about ap-
plication data access pattern.

Our previous position paper [21] introduced the competi-
tiveness result for server workloads under the assumption of
a constant I/O switch time and a constant sequential disk
transfer rate. This paper substantially relaxes the above as-
sumptions. Additionally, it shows the optimality of our com-
petitiveness result; it extends the competitiveness result to
capture prefetching in the case of random-access workloads;
and evaluates the proposed prefetching strategy for signifi-
cantly broader range of applications and storage devices.

3. BACKGROUND

3.1 Targeted I/O Workloads
Our work targets concurrent, read-mostly, sequential I/O

workloads. We define a sequential I/O stream as a group of
spatially contiguous data items that are accessed by a single
program (process or thread). The program does not neces-
sarily make use of the whole stream. It may also perform
interleaving I/O that does not belong to the same sequential
stream. Multiple sequential I/O streams may be accessed
concurrently under the following situations.

First, in a multitasking system several applications ac-
cess disk-resident data concurrently (Figure 1). This case is
particularly common in data-intensive online servers where
multiple user requests are serviced simultaneously. For ex-
ample, a substantial fraction of disk operations in FTP and
web servers, which tend to retrieve whole or partial files, is
associated with sequential I/O streams. In addition, some
applications employ data correlation techniques in order to
layout their data sequentially on disk and increase I/O effi-
ciency.

Concurrent sequential I/O may also be generated by a sin-

A thread/process

Timeline

Disk I/O CPU
Waiting for

resources

A thread/process

A thread/process

Figure 1: Concurrent I/O under concurrent pro-
gram executions.

A sequential stream

Timeline

Disk I/O CPU

A sequential stream

Figure 2: Concurrent sequential I/O under alternat-
ing accesses from a single program execution.

gle process or thread that multiplexes accesses among mul-
tiple sequential streams (Figure 2). Examples include the
file comparison utility diff and several database workloads.
For instance, web search engines [3] maintain an ordered list
of matching web pages for each indexed keyword. For multi-
keyword queries, the search engine has to compute the inter-
section of multiple such lists. In addition, SQL multi-table
join queries require accessing a number of files sequentially.

Many applications read a portion of each data stream at
a time instead of retrieving the complete data stream into
application-level buffers at once. Reading complete data
streams is generally avoided for the following reasons. First,
some applications do not have prior knowledge of the exact
amount of data required from a certain data stream. For
instance, index search and SQL join queries will often ter-
minate when a desired number of “matches” are found. Sec-
ond, applications that employ memory-mapped I/O do not
directly initiate I/O operations. The operating system loads
into memory a small number of pages (through page faults)
at a time on their behalf. Third, retrieving complete data
streams into application-level buffers may result in double
buffering and/or increase memory contention. For instance,
while GNU diff [15] reads the complete files into memory
at once, the BSD diff can read a portion of the files at a
time and thus it consumes significantly less memory when
comparing large files.

3.2 Existing Operating System Support
During concurrent I/O workloads, sequential access to a

data stream can be interrupted by accesses to other streams,
increasing the number of expensive disk seek operations.
Anticipatory scheduling [16] can partially alleviate the prob-
lem. At the completion of an I/O request, anticipatory
scheduling may keep the disk idle for a short period of time
(even if there are outstanding requests) in anticipation of
a new I/O request from the process/thread that issued the
request that was just serviced. Consecutive requests gen-
erated from the same process/thread often involve data re-

proc1 proc2 proc3

virtual I/O device

guest system

…

…

...

other guest systems

virtual machine monitor

I/O scheduler

Physical

device

req req req

Figure 3: An illustration of I/O scheduling at the
virtual machine monitor (VMM). Typically, the
VMM I/O scheduler has no knowledge of the re-
quest issuing process contexts within the guest sys-
tems. As a result, the anticipatory I/O scheduling
at the VMM may not function properly.

siding on neighboring disk locations and require little or no
seeking. This technique results in significant performance
improvement for concurrent I/O workloads, where all I/O
requests, issued by an individual process, exhibit strong lo-
cality. However, anticipatory scheduling may be ineffective
in several cases.

• Since anticipatory scheduling expects a process to issue
requests with strong locality in a consecutive way, it
cannot avoid disk seek operations when a single process
multiplexes accesses among two or more data streams
(Figure 2).

• The limited anticipation period introduced by antici-
patory scheduling may not avoid I/O switches when a
substantial amount of processing or think time exists
between consecutive sequential requests from the same
process. More specifically, the anticipation may time-
out before the anticipated request actually arrives.

• Anticipatory scheduling needs to keep track of the I/O
behavior of each process so that it can decide whether
to wait for a process to issue a new request and how
long to wait. It may not function properly when the
I/O scheduler does not know the process contexts from
which I/O requests are issued. In particular, Jones et
al. [17] pointed out that I/O schedulers within virtual
machine monitors typically do not know the request
process contexts inside the guest systems (Figure 3).
Another example is that the I/O scheduler at a paral-
lel/distributed file system server [8] may not have the
knowledge of remote process contexts for I/O requests.

An alternative to anticipatory scheduling is I/O prefetch-
ing, which can also increase the granularity of sequential
data accesses and, consequently, decrease the frequency of
disk I/O switch. Since sequential transfer rates improve sig-
nificantly faster than seek and rotational latencies on mod-
ern disk drives, aggressive prefetching becomes increasingly

appealing. In order to limit the amount of wasted I/O band-
width and memory space, operating systems often employ
an upper-bound on the prefetching depth, without a system-
atic understanding of the impact of the prefetching depth on
performance.

Our analysis in this paper assumes that application-level
logically sequential data blocks are mapped to physically
contiguous blocks on storage devices. This is mostly true
because file systems usually attempt to organize logically se-
quential data blocks in a contiguous way in order to achieve
high performance for sequential access. Bad sector remap-
ping on storage devices can disrupt sequential block alloca-
tion. However, such remapping does not occur for the ma-
jority of sectors in practice. We do not consider its impact
on our analysis.

3.3 Disk Drive Characteristics
The disk service time of an I/O request consists of three

main components: the head seek time, the rotational delay,
and the data transfer time. Disk performance characteris-
tics have been extensively studied in the past [19, 27, 28].
The seek time depends on the distance to be traveled by the
disk head. It consists roughly of a fixed head initiation cost
plus a cost linear to the seek distance. The rotational delay
mainly depends on the rotation distance (fraction of a rev-
olution). Techniques such as out-of-order transfer and free-
block scheduling [23] are available to reduce the rotational
delay. The sequential data transfer rate varies at different
data locations because of zoning on modern disks. Specif-
ically, tracks on outer cylinders often contain more sectors
per track and, consequently, exhibit higher data transfer
rates.

Modern disks are equipped with read-ahead caches so they
may continue to read data after the requested data have
already been retrieved. However, disk cache sizes are rel-
atively small (usually less than 16 MB) and, consequently,
data stored in the disk cache are replaced frequently un-
der concurrent I/O workloads. In addition, read-ahead is
usually performed only when there are no pending requests,
which is rare in the context of I/O-intensive workloads. There-
fore, we do not consider the impact of disk cache read-ahead
on our analysis of OS-level prefetching.

4. COMPETITIVE PREFETCHING
We investigate I/O prefetching strategies that address the

following tradeoff in deciding the I/O prefetching depth:
conservative prefetching may lead to a high I/O switch over-
head, while aggressive prefetching may waste too much I/O
bandwidth on fetching unnecessary data. Section 4.1 presents
a prefetching policy that achieves at least half the perfor-
mance (in terms of I/O throughput) of the optimal offline
prefetching strategy without a-priori knowledge of the ap-
plication data access pattern. In the context of this paper,
we refer to the “optimal” prefetching as the best-performing
sequential prefetching strategy that minimizes the combined
cost of disk I/O switch and retrieving unnecessary data.
We do not consider other issues such as prefetching-induced
memory contention. Previous work has explored such is-
sues [6, 18, 22, 26, 30]. In Section 4.2, we show that the 2-
competitive prefetching is the best competitive strategy pos-
sible. Section 4.3 examines prefetching strategies adapted
to accommodate mostly random-access workloads and their
competitiveness results.

The competitiveness analysis in this section focuses on
systems employing standalone disk drives. In later sections,
we will discuss practical issues and present experimental re-
sults when extending our results for disk arrays.

4.1 2-Competitive Prefetching
Consider a concurrent I/O workload consisting of N se-

quential streams. For each stream i (1 ≤ i ≤ N), we as-
sume the total amount of accessed data (or stream length)
is Stot[i]. Due to zoning on modern disks, the sequential
data transfer rate on a disk can vary depending on the data
location. Since each stream is likely localized to one disk
zone, it is reasonable to assume that the transfer rate for
any data access on stream i is a constant, denoted as Rtr[i].

For stream i, the optimal prefetching strategy has a-priori
knowledge of Stot[i] (the amount of data to be accessed). It
performs a single I/O switch (including seek and rotation)
to the head of the stream and then sequentially transfers
data of size Stot[i]. Let the I/O switch cost for stream i

be Cswitch[i]. The disk resource consumption (in time) for
accessing all N streams under optimal prefetching is:

Copt

total =
X

1≤i≤N

„

Stot[i]

Rtr[i]
+ Cswitch[i]

«

(1)

However, in practice the total amount of data to be ac-
cessed Stot[i] is not known a-priori. Consequently, OS-level
prefetching tries to approximate Stot[i] using an appropriate
prefetching depth. For simplicity, we assume that the OS
employs a constant prefetching depth Sp[i] for each stream.1

Therefore, accessing a stream requires ⌈Stot[i]
Sp[i]

⌉ prefetch op-

erations. Each prefetch operation requires one I/O switch.
Let the I/O switch cost be Cswitch[i, j] for the j-th prefetch
operation of stream i. The total I/O switch cost for access-
ing stream i is represented by:

Ctot switch[i] =
X

1≤j≤⌈
Stot[i]
Sp[i]

⌉

Cswitch[i, j] (2)

The time wasted while fetching unnecessary data is bounded
by the cost of the last prefetch operation:

Cwaste[i] ≤
Sp[i]

Rtr[i]
(3)

Therefore, the total disk resource (in time) consumed to
access all streams is bounded by:

Ctotal

=
X

1≤i≤N

„

Stot[i]

Rtr[i]
+ Cwaste[i] + Ctot switch[i]

«

≤
X

1≤i≤N

0

B

B

@

Stot[i]

Rtr[i]
+

Sp[i]

Rtr[i]
+

X

1≤j≤⌈
Stot[i]
Sp[i]

⌉

Cswitch[i, j]

1

C

C

A

(4)

1The assumption of a constant prefetching depth constrains
only the design of the prefetching policy. However, what
can be achieved with a constrained policy can certainly be
achieved with a non-constrained, broader policy. Thus, our
simplification does not restrict the competitiveness result
presented in this section.

The expected average I/O switch time (including seek and
rotation) for a concurrent I/O workload can be derived from
the disk drive characteristics and the workload concurrency.
We consider the seek time and rotational delay below.

• I/O scheduling algorithms such as the Cyclic-SCAN
reorder outstanding I/O requests based on the data lo-
cation and schedule the I/O request closest to the cur-
rent disk head location. When the disk scheduler can
choose from n concurrent I/O requests at uniformly
random disk locations, the inter-request seek distance
Dseek follows the following distribution:

Pr[Dseek ≥ x] = (1 −
x

C
)n (5)

Where C is the size of the contiguous portion of the
disk where the application dataset resides. The ex-
pected seek time can then be acquired by combining
Equation (5) and the seek distance to seek time map-
ping of the disk.

• The expected rotational delay of an I/O workload is
the mean rotational time between two random track
locations (i.e., the time it takes the disk to spin half a
revolution).

The above result suggests that the expected average I/O
switch time of a concurrent workload is independent of the
prefetching schemes (optimal or not) being employed. We
denote such cost as C

avg

switch. Therefore, Equation (1) can be
simplified to:

Copt

total =
X

1≤i≤N

„

Stot[i]

Rtr[i]

«

+ N · Cavg

switch (6)

And Equation (4) can be simplified to:

Ctotal

≤
X

1≤i≤N

„

Stot[i]

Rtr[i]
+

Sp[i]

Rtr[i]

«

+
X

1≤i≤N

⌈
Stot[i]

Sp[i]
⌉ · Cavg

switch

<
X

1≤i≤N

„

Stot[i]

Rtr[i]
+

Sp[i]

Rtr[i]

«

+
X

1≤i≤N

„

Stot[i]

Sp[i]
+ 1

«

· Cavg

switch

(7)

Based on Equations (6) and (7), we find that:

if Sp[i] = C
avg

switch · Rtr[i], then Ctotal < 2 · Copt

total (8)

Equation 8 allows us to design a prefetching strategy with
bounded worst-case performance:

When the prefetching depth is equal to the amount
of data that can be sequentially transferred within
the average time of a single I/O switch, the total
disk resource consumption of an I/O workload is
at most twice that of the optimal offline strategy.

Consequently, the I/O throughput of a prefetching strat-
egy that follows the above guideline is at least half of the
throughput of the optimal offline strategy. Competitive strate-
gies commonly refer to solutions whose performance can be
shown to be no worse than some constant factor of an opti-
mal offline strategy. We follow such convention to name our
prefetching strategy competitive prefetching.

4.2 Optimality of 2-Competitiveness
In this section, we show that no transparent OS-level on-

line prefetching strategy (without prior knowledge of the
sequential stream length Stot[i] or any other application-
specific information) can achieve a competitiveness ratio
lower than 2. Intuitively, we can reach the above conclusion
since: 1) short sequential streams demand conservative pre-
fetching, while long streams require aggressive prefetching;
and 2) no online prefetching strategy can unify the above
conflicting goals with a competitiveness ratio lower than 2.

We prove the above by contradiction. We assume there ex-
ists an α-competitive solution X (where 1 < α < 2). In the
derivation of the contradiction, we assume the I/O switch
cost Cswitch is constant.2 The discussion below is in the
context of a single stream, therefore we do not specify the
stream id for notational simplicity (e.g., Stot[i] → Stot). In
X , let Sn

p be the size of the n-th prefetch for a stream. Since

X is α-competitive, we have Ctotal ≤ α · Copt

total.
First, we show that the size of the first prefetch operation

S1
p satisfies:

S
1
p < Cswitch · Rtr (9)

Otherwise, we let Stot = ǫ where 0 < ǫ < (2−α
α

)·Cswitch ·Rtr.

In this case, Copt

total = Cswitch + ǫ
Rtr

and

Ctotal = Cswitch +
S1

p

Rtr
≥ 2 · Cswitch. Therefore, we have

Ctotal > α · Copt

total. Contradiction!
We then show that:

∀k ≥ 2, S
k
p <

k−1
X

j=1

S
j
p

!

− (k − 2) · Cswitch · Rtr (10)

Otherwise (if Equation (10) is not true for a particular k),
we define T as below, and we know T > 0.

T = S
k
p + (k − α) · Cswitch · Rtr + (1 − α) ·

k−1
X

j=1

S
j
p

!

We then let Stot =
“

Pk−1
j=1 Sj

p

”

+ ǫ where 0 < ǫ < T
α

. In

this case, Copt

total = Cswitch +
(

Pk−1
j=1 Sj

p)+ǫ

Rtr
and Ctotal ≥ k ·

Cswitch +
(

Pk
j=1 Sj

p)
Rtr

. Therefore, we have Ctotal > α · Copt
total.

Contradiction!
We next show:

∀k ≥ 2, S
k
p < S

k−1
p (11)

We prove Equation 11 by induction. Equation (11) is true
for k = 2 as a direct result of Equation (10). Assume Equa-

tion (11) is true for all 2 ≤ k ≤ k̂ − 1. This also means that

2This assumption is safe because contradiction under the
constrained disk system model entails contradiction under
the more general disk system model. Specifically, if an α-
competitive solution does not exist under the constrained
disk system model, then such solution certainly should not
exist under the more general case.

Sk
p < Cswitch · Rtr for all 2 ≤ k ≤ k̂ − 1. Below we show

Equation (11) is true for k = k̂:

S
k̂
p <

0

@

k̂−1
X

j=1

S
j
p

1

A− (k̂ − 2) · Cswitch · Rtr

= S
k̂−1
p +

0

@

k̂−2
X

j=1

(Sj
p − Cswitch · Rtr)

1

A

< S
k̂−1
p

(12)

Our final contradiction is that for any k ≥
2·Cswitch·Rtr−S1

p

Cswitch·Rtr−S1
p

,

we have Sk
p < 0:

S
k
p <

k−1
X

j=1

S
j
p

!

− (k − 2) · Cswitch · Rtr

< (k − 1) · S1
p − (k − 2) · Cswitch · Rtr

= 2 · Cswitch · Rtr − S
1
p − k · (Cswitch · Rtr − S

1
p)

≤ 2 · Cswitch · Rtr − S
1
p − (2 · Cswitch · Rtr − S

1
p)

= 0

(13)

4.3 Accommodation for Random-Access
Workloads

Competitive strategies address only the worst-case per-
formance. A general-purpose operating system prefetching
policy should deliver high average-case performance for com-
mon application workloads. In particular, many applica-
tions only exhibit fairly short sequential access streams or
even completely random access patterns. In order to accom-
modate these workloads, our competitive prefetching policy
employs a slow-start phase, commonly employed in modern
operating systems. For a new data stream, prefetching takes
place with a relatively small initial prefetching depth. Upon
detection of a sequential access pattern, the depth of each
additional prefetching operation is increased until it reaches
the desired competitive prefetching depth.

The following example illustrates the slow-start phase.
Let the initial prefetching depth be 16 pages (64KB). Upon
detection of a sequential access pattern, the depth of each
consecutive prefetch operation increases by a factor of two
until it reaches its maximum permitted value. For a se-
quential I/O stream with a competitive prefetching depth
of 98 pages (392 KB), a typical series of prefetching depths
should look like: 16 pages → 32 pages → 64 pages → 98 pages
→ 98 pages → · · ·

For our targeted sequential I/O workloads, the introduc-
tion of slow-start phase will affect the competitiveness of our
proposed technique. In the rest of this subsection, we ex-
tend the previous competitiveness result when a slow-start
phase is employed by the prefetching policy. Assume the
slow-start phase consists of at most P prefetching opera-
tions (3 in the above example). Also let the total amount
of data fetched during a slow-start phase be bounded by T

(112 pages in the above example). The total disk resource
consumed (Equation (7)) becomes:

Ctotal

≤
X

1≤i≤N

„

Stot[i]

Rtr[i]
+

Sp[i]

Rtr[i]

«

+
X

1≤i≤N

„

⌈
Stot[i] − T

Sp[i]
⌉ + P

«

· Cavg

switch

<
X

1≤i≤N

„

Stot[i]

Rtr[i]
+

Sp[i]

Rtr[i]

«

+
X

1≤i≤N

„

Stot[i]

Sp[i]
+ 1 + P

«

· Cavg

switch

(14)

Since the competitive prefetching depth Sp[i] is equal to
C

avg
switch · Rtr[i], Equation (14) becomes:

Ctotal < 2 ·
X

1≤i≤N

„

Stot[i]

Rtr[i]

«

+ (2 + P) · N · Cavg

switch (15)

Equations (6) and (15) lead to Ctotal < (2 + P) · Copt

total.
Consequently, the prefetching strategy that employs a slow-
start phase is still competitive, but with a weaker competi-
tiveness factor (“2+P” instead of “2”). Despite this weaker
analytical result, our experimental results in Section 6 show
that the new strategy still delivers at least half the emulated
optimal performance in practice.

5. IMPLEMENTATION ISSUES
We have implemented the proposed competitive prefetch-

ing technique in the Linux 2.6.10 kernel. In our implemen-
tation, we use our competitive prefetching policy to control
the depth of prefetching operations. We have not modified
other aspects of the prefetching algorithm used in the Linux
kernel.

Our competitive prefetching policy depends on several
storage device characteristics, including the functional map-
ping from seek distance to seek time (denoted by fseek) and
the mapping from the data location to the sequential trans-
fer rate (denoted by ftransfer).

The disk drive characteristics can be evaluated offline, at
disk installation time or OS boot time. Using the two map-
pings, we determine the runtime C

avg

switch and Rtr[i] in the
following way:

• During runtime, our system tracks the seek distances
of past I/O operations and determines their seek time
using fseek. We use an exponentially-weighted mov-
ing average of the past disk seek times for estimating
the seek component of the next I/O switch cost. The
average rotational delay component of C

avg

switch is es-
timated as the average rotational delay between two
random track locations (i.e., the time it takes the disk
to spin half a revolution).

• For each I/O request starting at logical disk location
Ltransfer, the data transfer rate is determined as
ftransfer(Ltransfer).

The competitiveness analysis in the previous section tar-
gets systems with standalone disk drives. However, the anal-
ysis applies also to more complex storage devices as long as
they exhibit disk-like I/O switch and sequential data trans-
fer characteristics. Hence, multi-disk storage devices can
utilize the proposed competitive prefetching algorithm. Disk
arrays allow simultaneous transfers out of multiple disks so
they may offer higher aggregate I/O bandwidth. However,

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

Starting logical block number (in proportion to the max block number)

T
ra

ns
fe

r
ra

te
 (

in
 M

B
/s

ec
)

(A) Sequential transfer rate

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

12

Seek distance (in proportion to the total disk size)

S
ee

k
tim

e
(in

 m
ill

is
ec

on
d)

(B) Disk seek time

Adaptec RAID0 with two Segate drives
Single Seagate drive
Single IBM drive (Linux 2.6.16)
Single IBM drive

Seagate drive
IBM drive

Figure 4: Sequential transfer rate and seek time for
two disk drives and a RAID. Most results were ac-
quired under the Linux 2.6.10 kernel. The transfer
rate of the IBM drive appears to be affected by the
operating system software. We also show its transfer
rate on a Linux 2.6.16 kernel.

seek and rotational delays are still limited by individual
disks. Overall, multi-disk storage devices often desire larger
competitive prefetching depths.

We include three disk-based storage devices in our exper-
imental evaluation: a 36.4 GB IBM 10 KRPM SCSI drive,
a 146 GB Seagate 10KRPM SCSI drive, and a RAID0 disk
array with two Seagate drives using an Adaptec RAID con-
troller. We have also measured a RAID5 disk array with
five Seagate drives, which has a lower transfer rate than the
RAID0 due to the overhead of relatively complex RAID5
processing. We keep the RAID0 device in our evaluation as
a representative of high-bandwidth devices.

We measure the storage device properties by issuing di-
rect SCSI commands through the Linux generic SCSI inter-
face, which allows us to bypass the OS memory cache and
selectively disable the disk controller cache. Our disk pro-
filing takes less than two minutes to complete for each disk
drive/array and it could be easily performed at disk installa-
tion time. Figure 4 shows the measured sequential transfer
rate and the seek time. Most measurements were performed
on a Linux 2.6.10 kernel. We speculate that the transfer
rate of the IBM drive is constrained by a software-related
bottleneck (at 37.5 MB/sec, or 300 Mbps). A more recent
Linux kernel (2.6.16) does not have this problem.

For the IBM drive (under Linux 2.6.10 kernel), the trans-

fer speed is around 37.3 MB/sec; the average seek time be-
tween two independently random disk locations is 7.53 ms;
and the average rotational delay is 3.00 ms. The average
competitive prefetching depth is the amount of data that can
sequentially transferred within the average time of a single
disk seek and rotation—393 KB. For the Seagate drive and
the RAID0 disk array, measured average sequential transfer
rates are 55.8 MB/sec and 80.9 MB/sec respectively. With
the assumption that the average seek time of the disk array is
the same as that of a single disk drive (7.98 ms), the average
competitive prefetching depths for the Seagate drive and the
disk array are 446 KB and 646 KB respectively. In compari-
son, the default maximum prefetching depth in Linux 2.6.10
is only 128 KB.

Note that the above average competitive prefetching deriva-
tion is based on the average seek time between two indepen-
dently random disk locations (or when there are two concur-
rent processes). The average seek time is smaller at higher
concurrency levels since the disk scheduler can choose from
more concurrent requests for seek reduction. Thus, the run-
time competitive prefetching depth should be lower in these
cases. We use the average competitive prefetching depth
as a reference for implementing aggressive prefetching (sec-
tion 6.2).

6. EXPERIMENTAL EVALUATION
We assess the effectiveness and competitiveness of the pro-

posed technique in this section. In our experimental evalu-
ation, we compare a Linux kernel extended with our com-
petitive prefetching policy against the original Linux kernel
and a Linux kernel employing an aggressive prefetching algo-
rithm. Anticipatory scheduling is enabled across all exper-
iments and kernel configurations. Our main experimental
platform is a machine equipped with two 2GHz Intel Xeon
processors, 2GB memory, and three storage drives. Figure 4
presents sequential transfer rate and seek time characteris-
tics of the three storage drives.

The performance of competitive prefetching is affected by
several factors: 1) virtualized or distributed I/O architecture
that may limit the effectiveness of anticipatory I/O schedul-
ing; 2) the storage device characteristics; and 3) serial vs.
concurrent workloads. Section 6.2 presents the base-case
performance of concurrent workloads using the standalone
IBM drive. Then we explicitly examine the impact of each of
these factors (sections 6.3, 6.4, and 6.5). Finally, section 6.6
summarizes the experimental results.

6.1 Evaluation Benchmarks
Our evaluation benchmarks consist of a variety of I/O-

intensive workloads, including four microbenchmarks, two
common file utilities, and four real applications.

Each of our microbenchmarks is a server workload involv-
ing a server and a client. The server provides access to a
dataset of 6000 4MB disk-resident files. Upon arrival of
a new request from the client, the server spawns a thread,
which we call a request handler, to process it. Each request
handler reads one or more disk files in a certain pattern.
The microbenchmark suite consists of four microbenchmarks
that are characterized by different access patterns. Specifi-
cally, the microbenchmarks differ in the number of files ac-
cessed by each request handler (one to four), the portion
of each file accessed (the whole file, a random portion, or a
64 KB chunk) and a processing delay (0ms or 10 ms). We use

0

0.5

1

1.5

2

2.5

x 10
4

B
lo

ck
 o

ffs
et

 in
 fo

ur
 fi

le
s

Virtual time

(A) I/O access of TPC−H Q2

0

1000

2000

3000

4000

5000

6000

7000

B
lo

ck
 o

ffs
et

 in
 fo

ur
 fi

le
s

Virtual time

(B) I/O access of TPC−H Q16

0

500

1000

1500

P
ag

e
of

fs
et

 o
n

th
e

se
ar

ch
 in

de
x

Virtual time

(C) I/O access of index searching

Figure 5: I/O access pattern of certain application workloads. Virtual time represents the sequence of
discrete data accesses. In (A), each straight line implies sequential access pattern of a file. In (B), random
and non-sequential accesses make the files indistinguishable.

a descriptive naming convention to refer to each benchmark.
For example, <Two-Rand-0> describes a microbenchmark
whose request handler accesses a random portion of two files
with 0 ms processing delay. The random portion starts from
the beginning of each file. Its size is evenly distributed be-
tween 64KB and 4 MB. Accesses within a portion of a file
are always sequential in nature. The specifications of the
four microbenchmarks are:

• One-Whole-0: Each request handler randomly chooses
a file and it repeatedly reads 64KB data blocks until
the whole file is accessed.

• One-Rand-10: Each request handler randomly chooses
a file and it repeatedly reads 64 KB data blocks from
the beginning of the file up to a random total size
(evenly distributed between 64KB and 4MB). Addi-
tionally, we add a 10 ms processing delay at four ran-
dom file access points during the processing of each re-
quest. The processing delays are used to emulate pos-
sible delays during request processing and may cause
the anticipatory I/O scheduler to timeout.

• Two-Rand-0: Each request handler alternates read-
ing 64KB data blocks sequentially from two randomly
chosen files. It accesses a random portion of each file
from the beginning. This workload emulates appli-
cations that simultaneously access multiple sequential
data streams.

• Four-64KB-0: Each request handler randomly chooses
four files and reads a 64KB random data block from
each file.

We include two common file utilities and four real appli-
cations in our evaluation:

• cp: cp reads a source file chunk by chunk and copies
the chunks into a destination file. We run cp on files of
different sizes. We use cp5 and cp50 to represent test
runs of cp on files of 5MB and 50 MB respectively.

• BSD diff: diff is a utility that compares the content
of two text files. BSD diff alternately accesses two
files in making the comparison and it is more scalable
than GNU diff [15]. We have ported BSD diff to

our experimental platform. Again, we run it on files
of different sizes. diff5 works on 2 files of 5MB each
and diff50 works on 2 files of 50MB each.

• Kernel build: The kernel build workload includes com-
piling and linking a Linux 2.6.10 kernel. The kernel
build involves reading from and writing to many small
files.

• TPC-H: We evaluate a local implementation of the
TPC-H decision support benchmark [31] running on
the MySQL 5.0.17 database. The TPC-H workload
consists of 22 SQL queries with 2 GB database size.
The maximum database file size is 730 MB, while the
minimum is 432 B. Each query accesses several database
files with mixed random and sequential access pat-
terns.

• Apache hosting media clips: We include the Apache
web server in our evaluation. Typical web workloads
often contain many small files. Since our work fo-
cuses on applications with substantially sequential ac-
cess pattern, we use a workload containing a set of
media clips, following the file size and access distribu-
tion of the video/audio clips portion of the 1998 World
Cup workload [2]. About 9% of files in the workload
are large video clips while the rest are small audio clips.
The overall file size range is 24KB–1418 KB with an
average of 152 KB. The total dataset size is 20.4 GB.
During the tests, individual media files are chosen in
the client requests according to a Zipf distribution.

• Index searching: Another application we evaluate is
a trace-driven index searching server using a dataset
from the Ask Jeeves search engine [3]. The dataset
supports search on 12.6 million web pages. The to-
tal dataset is approximately 18.5 GB and it includes a
522 MB index file. For each keyword in an input query,
a lookup on the index file returns the location and size
of this keyword’s matching web page identifier list in
the main dataset. The dataset is then accessed follow-
ing a sequential access pattern. Multiple sequential
I/O streams on the dataset are accessed alternately
for each multi-keyword query. The search query words
in our test workload are based on a trace recorded at
the Ask Jeeves site in summer 2004.

1 2 4 8 16 32 64
0

5

10

15

20

25

30

35

40

Number of concurrent request handlers

A
pp

lic
at

io
n

I/O
 th

ro
ug

hp
ut

 (
M

B
/s

ec
)

(A) Microbenchmark One−Whole−0

1 2 4 8 16 32 64
0

5

10

15

20

25

30

35

40

Number of concurrent request handlers

A
pp

lic
at

io
n

I/O
 th

ro
ug

hp
ut

 (
M

B
/s

ec
)

(B) Microbenchmark One−Rand−10

1 2 4 8 16 32 64
0

5

10

15

20

25

30

35

40

Number of concurrent request handlers

A
pp

lic
at

io
n

I/O
 th

ro
ug

hp
ut

 (
M

B
/s

ec
)

(C) Microbenchmark Two−Rand−0

OPT
AP
CP
Linux

OPT
AP
CP
Linux

OPT
AP
CP
Linux

1 2 4 8 16 32 64
0

2

4

6

8

Number of concurrent request handlers

A
pp

lic
at

io
n

I/O
 th

ro
ug

hp
ut

 (
M

B
/s

ec
)

(D) Microbenchmark Four−64KB−0

1 2 4 8 16 32 64
0

8

16

24

32

Number of concurrent requests

A
pp

lic
at

io
n

I/O
 th

ro
ug

hp
ut

 (
in

 M
B

/s
ec

) (E) Apache

1 2 4 8 16 32 64
0

5

10

15

20

Number of concurrent request handlers

A
pp

lic
at

io
n

I/O
 th

ro
ug

hp
ut

 (
M

B
/s

ec
)

(F) Index searching

OPT
AP
CP
Linux

AP
CP
Linux

AP
CP
Linux

Figure 6: Performance of server-style workloads (four microbenchmarks and two real applications). The
emulated optimal performance is presented only for the microbenchmarks.

These workloads contain a variety of different I/O access
patterns. cp, kernel build, and the Apache web server re-
quest handler follow a simple sequential access pattern to ac-
cess whole files. BSD diff accesses two files alternately and
it also accesses whole files. TPC-H and the index searching
server access partial files and they have more complex I/O
access patterns. Figure 5 illustrates the access pattern of
two TPC-H queries (Q2 and Q16) as well as a typical index
searching request processing. We observe that the TPC-H
Q2 and the index searching exhibit alternating sequential
access patterns while TPC-H Q16 has a mixed pattern with
a large amount of random accesses.

Among these workloads, the microbenchmarks, Apache
web server, and index searching are considered as server-
style concurrent applications. The other workloads are con-
sidered as non-server applications. Each server-style appli-
cation may run at different concurrency levels depending
on the input workload. In our experiments, each server
workload involves a server application and a load genera-
tion client (running on a different machine) that can adjust
the number of simultaneous requests to control the server
concurrency level.

6.2 Base-Case Performance
We assess the effectiveness of the proposed technique by

first showing the base-case performance. All the perfor-
mance tests in this subsection are performed on the stan-
dalone IBM drive. We compare application performance
under the following different kernel versions:

#1. Linux: The original Linux 2.6.10 kernel with a maxi-
mum prefetching depth of 128 KB.

#2. CP: Our proposed competitive prefetching strategy de-
scribed in Section 4 (with the slow-start phase to ac-
commodate random-access workloads).

#3. AP: Aggressive prefetching with a maximum prefetch-
ing depth of 800 KB (about twice that of average com-
petitive prefetching).

#4. OPT: An oracle prefetching policy implemented using
application disclosed hints. We have only implemented
this policy for microbenchmarks. Each microbench-
mark provides accurate data access pattern to the OS
through an extended open() system call. The OS then
prefetches exactly the amount of data needed for each
sequential stream. The oracle prefetching policy is a
hypothetical approach employed to approximate the
performance of optimal prefetching.

We separately show the results for server-style and non-
server workloads because server workloads naturally run at
varying concurrency levels. Figure 6 illustrates the perfor-
mance of server-style workloads (including four microbench-
marks, Apache hosting media clips, and index searching).

For the first microbenchmark (One-Whole-0), all practi-
cal policies (Linux, CP, and AP) perform equally well (Fig-
ure 6(A)). Anticipatory scheduling avoids I/O switching and
files are accessed sequentially. However, Figures 6(B) and
6(C) demonstrate that anticipatory scheduling is not effec-
tive when significant processing time (think time) is present
or when a request handler accesses multiple streams alter-
nately. In such cases, our proposed competitive prefetching
policy can significantly improve the overall I/O performance

2cp5 2cp50 2diff5 2diff50 cp5+diff5 cp50+diff50 2TPC−H
0

0.5

1

1.5

1.18 s 3.85 s 2.57 s 18.56 s 1.59 s 11.43 s 19.92 m

Non−server concurrent application workloads

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Linux
CP
AP

Figure 7: Normalized execution time of non-server concurrent applications. The values on top of the “Linux”
bars represent the running time of each workload under the original Linux kernel (in minutes or seconds).

(16–24% and 10–35% for One-Ran-10 and Two-Rand-0 re-
spectively). Figure 6(D) presents performance results for
the random-access microbenchmark. We observe that all
policies perform similarly. Competitive and aggressive pre-
fetching do not exhibit degraded performance because the
slow-start phase quickly identifies the non-sequential access
pattern and avoids prefetching a significant amount of un-
necessary data. Figures 6(A–D) also demonstrate that the
performance of competitive prefetching is always at least
half the performance of the oracle policy for all microbench-
marks.

Figure 6(E) shows the throughput of the Apache web
server hosting media clips. Each request follows a strictly
sequential data access pattern on a single file. Similarly
to One-Whole-0, anticipatory scheduling minimizes the disk
I/O switch cost and competitive prefetching does not lead to
further performance improvement. Figure 6(F) presents the
I/O throughput of the index search server at various con-
currency levels. Each request handler for this application
alternates among several sequential streams. Competitive
prefetching can improve I/O throughput by 10–28% com-
pared to the original Linux kernel.

We use the following concurrent workload scenarios for the
non-server applications (cp, BSD diff, and TPC-H). 2cp5

represents the concurrent execution of two instances of cp5
(copying a 5MB file). 2cp50 represents two instances of cp50
running concurrently. 2diff5 represents the concurrent exe-
cution of two instances of diff5. 2diff50 represents two in-
stances of diff50 running concurrently. cp5+diff5 represents
the concurrent execution of cp5 and diff5. cp50+diff50

represents the concurrent execution of cp50 and diff50.
2TPC-H represents the concurrent run of the TPC-H query
series Q2→Q3→ · · · →Q11 and Q12→Q13→ · · · →Q22.

Figure 7 presents the execution time of the seven non-
server concurrent workloads. There is relatively small per-
formance variation between different prefetching policies for
the concurrent execution of cp, because with anticipatory
scheduling, files are read without almost any disk I/O switch-
ing even under concurrent execution. However, for 2diff5

and 2diff50 with alternating sequential access patterns,
competitive prefetching reduces the execution time by 31%
and 34% respectively. For 2TPC-H, the performance im-
provement achieved by competitive prefetching is 8%.

While competitive prefetching improves the performance

of several workload scenarios, aggressive prefetching pro-
vides very little additional improvement. For index search-
ing, aggressive prefetching performs significantly worse than
competitive prefetching, since competitive prefetching main-
tains a good balance between the overhead of disk I/O switch
and that of unnecessary prefetching. Furthermore, aggres-
sive prefetching risks wasting too much I/O bandwidth and
memory resources on fetching and storing unnecessary data.

6.3 Performance with
Process-Context-Oblivious I/O Scheduling

The experimental results in the previous section show
that during the concurrent execution of applications with
strictly sequential access patterns, anticipatory scheduling
avoids unnecessary I/O switch and competitive prefetching
leads to little further performance improvement. Such work-
loads include one-Whole-0, Apache web server, 2cp5, 2cp50,
cp5+diff5, and cp50+diff50. However, our discussion in
Section 3.2 suggests that anticipatory scheduling is not effec-
tive in virtualized [17] or parallel/distributed I/O architec-
ture due to the lack of knowledge on request issuing process
contexts. In this subsection, we examine such performance
effect under a virtual machine platform. Specifically, we use
the Xen (version 3.0.2) [4] virtual machine monitor and the
guest OS is a modified Linux 2.6.16 kernel. We have imple-
mented our competitive prefetching algorithm in the guest
OS.

Experiments are conducted using the standalone IBM hard
drive. However, since the drive delivers higher I/O through-
put under the Linux 2.6.16 kernel than under the Linux 2.6.10
kernel (as illustrated in Figure 4), the absolute workload
performance shown here appears higher than that in the
previous subsection.

Figures 8 and 9 show the performance of server-style and
non-server workloads on a virtual machine platform. We
present results only for the targeted workloads mentioned in
the beginning of this subsection. In contrast to Figure 6(A),
Figure 8(A) shows that competitive prefetching is very effec-
tive in improving the performance of the microbenchmark
(up to 71% throughput enhancement compared to the orig-
inal Linux kernel). Similarly, comparing Figure 8(B) with
Figure 6(E) and Figure 9 with Figure 7 shows that compet-
itive prefetching improves the performance of the Apache
web server and the four non-server workloads. The perfor-

1 2 4 8 16 32 64
0

16

32

48

64

Number of concurrent request handlers

A
pp

lic
at

io
n

I/O
 th

ro
ug

hp
ut

 (
M

B
/s

ec
)

(A) Microbenchmark One−Whole−0

OPT
AP
CP
Linux

1 2 4 8 16 32 64
0

15

30

45

60

Number of concurrent requests

A
pp

lic
at

io
n

I/O
 th

ro
ug

hp
ut

 (
in

 M
B

/s
ec

) (B) Apache

AP
CP
Linux

Figure 8: Performance of server-style workloads on
a virtual machine platform where the I/O schedul-
ing is oblivious to request-issuing process contexts.
We present results only for workloads whose perfor-
mance substantially differ from that in the base case
(shown in Figure 6). For the microbenchmark, we
also show an emulated optimal performance.

mance effects are due to ineffective anticipatory scheduling
in a virtual machine environment. In addition, Figure 8(A)
demonstrates that the performance of competitive prefetch-
ing is always at least half the performance of the oracle pol-
icy for the microbenchmark.

6.4 Performance on Different Storage Devices
The experiments of the previous sections are all performed

on a standalone IBM disk drive. In this section, we assess
the impact of different storage devices on the effectiveness
of competitive prefetching. We compare results from three
different storage devices characterized in Section 5: a stan-
dalone IBM drive, a standalone Seagate drive, and a RAID0
with two Seagate drives using an Adaptec RAID controller.
Experiments in this section are performed on a normal I/O
architecture (not on a virtual machine platform).

We choose the workloads that already exhibit significant
performance variation among different prefetching policies
on the standalone IBM drive. Figure 10 shows the nor-
malized execution time of non-server workloads 2diff5 and
2diff50. We observe that the competitive prefetching is ef-
fective for all three storage devices (up to 53% for 2diff50

on RAID0). In addition, we find that the performance im-
provement is more pronounced on the disk array than on
standalone disks, because the disk array’s competitive pre-

2cp5 2cp50 cp5+diff5 cp50+diff50
0

0.2

0.4

0.6

0.8

1

Non−server concurrent application workloads

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

0.86 s 3.29 s 0.55 s 4.85 s Linux
CP
AP

Figure 9: Normalized execution time of non-server
concurrent applications on a virtual machine plat-
form where the I/O scheduling is oblivious of
request-issuing process contexts. We present results
only for workloads whose performance substantially
differ from that in the base case (shown in Figure 7).
The values on top of the “Linux” bars represent the
running time of each workload under the original
Linux kernel (in seconds).

fetching depth is larger than that of standalone disks due to
the array’s larger sequential transfer rate.

Figure 11 shows the normalized inverse of throughput for
two server applications (microbenchmark Two-Rand-0 and
index searching) on the three different storage devices. We
use the inverse of throughput (as opposed to throughput
itself) so its illustration is more comparable to that in Fig-
ure 10. Figure 11(A) shows that competitive prefetching can
improve the microbenchmark I/O throughput by up to 52%
on RAID0. In addition, the throughput of competitive pre-
fetching is at least half the throughput of the oracle policy
for all storage devices. Figure 11(B) shows that competitive
prefetching can improve I/O throughput by 19–26% com-
pared to the original Linux kernel. In contrast, aggressive
prefetching provides significantly less improvement (up to
15%) due to wasted I/O bandwidth on fetching unnecessary
data. For index searching, the performance improvement
ratio on the disk array is not larger than that on standalone
disks, since the sequential access streams for this applica-
tion are typically not very long and consequently they do
not benefit from the larger competitive prefetching depth
on the disk array.

6.5 Performance of Serial Workloads
Though our competitive prefetching policy targets con-

current sequential I/O, we also assess its performance for
standalone serially executed workloads. For the server ap-
plications (Apache web server and index search), we show
their average request response time when each request runs
individually.

Figure 12 presents the normalized execution time of the
non-concurrent workloads. Competitive prefetching has lit-
tle or no performance impact on cp, kernel build, TPC-H,
and the Apache web server, since serial execution of the
above applications exhibits no concurrent I/O accesses. How-
ever, performance is improved for diff and the index search
server by 33% and 18% respectively. Both diff and the in-
dex search server exhibit concurrent sequential I/O (in the
form of alternation among multiple streams). Query Q2 of
TPC-H exhibits similar access patterns (as illustrated in Fig-
ure 5(A)). Our evaluation (Figure 12) suggests a 25% per-
formance improvement due to competitive prefetching for

IBM disk Seagate disk RAID0
0

0.5

1

1.5

2.57 s 1.32 s 1.08 s

Storage devices

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

(A) 2diff5

Linux
CP
AP

IBM disk Seagate disk RAID0
0

0.5

1

1.5

18.56 s 14.29 s 10.31 s

Storage devices

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

(B) 2diff50

Linux
CP
AP

Figure 10: Normalized execution time of two non-
server concurrent workloads on three different stor-
age devices.

query Q2. Competitive prefetching did not lead to perfor-
mance degradation for any of our experimental workloads.

6.6 Summary of Results

• Compared to the original Linux kernel, competitive
prefetching can improve application performance by
up to 53% for applications with significant concurrent
sequential I/O. Our experiments show no negative
side effects for applications without such I/O access
patterns. In addition, competitive prefetching trails
the performance of the oracle prefetching policy by no
more than 42% across all microbenchmarks.

• Overly aggressive prefetching does not perform signifi-
cantly better than competitive prefetching. In certain
cases (as demonstrated for index search), it hurts per-
formance due to I/O bandwidth and memory space
wasted on fetching and storing unnecessary data.

• Since anticipatory scheduling can minimize the disk
I/O switch cost during concurrent application execu-
tion, it diminishes the performance benefit of com-
petitive prefetching. However, anticipatory scheduling
may not be effective when: 1) applications exhibit al-
ternating sequential access patterns (as in BSD diff,
the microbenchmark Two-Rand-0, and index search-
ing); 2) substantial processing time exists between con-
secutive sequential requests from the same process (as

IBM disk Seagate disk RAID0
0

0.5

1

1.5

Storage devices

N
or

m
al

iz
ed

 in
ve

rs
e

of
 th

ro
ug

hp
ut

(A) Microbenchmark Two−Rand−0

Linux
CP
AP
OPT

IBM disk Seagate disk RAID0
0

0.5

1

1.5

Storage devices
N

or
m

al
iz

ed
 in

ve
rs

e
of

 th
ro

ug
hp

ut

(B) Index searching

Linux
CP
AP

Figure 11: Normalized inverse of throughput for two
server-style concurrent applications on three differ-
ent storage devices. We use the inverse of through-
put (as opposed to throughput itself) so that the il-
lustration is more comparable to that in Figure 10.
For the microbenchmark, we also show an emulated
optimal performance. For clear illustration, we only
show results at concurrency level 4. The perfor-
mance at other concurrency levels are in similar pat-
tern.

in the microbenchmark One-Rand-10); 3) I/O schedul-
ing in the system architecture is oblivious to request-
issuing process contexts (as in a virtual machine envi-
ronment or parallel/distributed file system server). In
such scenarios, competitive prefetching can yield sig-
nificant performance improvement.

• Competitive prefetching can be applied to both stan-
dalone disk drives and disk arrays that exhibit disk-
like characteristics on I/O switch and sequential data
transfer. Disk arrays often offer higher aggregate I/O
bandwidth than standalone disks and consequently their
competitive prefetching depths are larger.

7. CONCLUSION AND DISCUSSIONS
To conclude, this paper presents the design and implemen-

tation of a competitive I/O prefetching technique targeting
concurrent sequential I/O workloads. Our model and anal-
ysis shows that the performance of competitive prefetching
(in terms of I/O throughput) is at least half the performance
of the optimal offline policy on prefetching depth selection.
In practice, the new prefetching scheme is most beneficial

cp5 cp50 diff5 diff50 kernel build TPC−H TPC−H Q2 Apache index search
0

0.5

1

1.5

1.02 s 1.76 s 1.21 s 9.37 s 7.65 m 20.95 m 4.91 s 2.83 ms 718.15 ms

Serial application workloads

N
or

m
al

iz
ed

 e
xe

cu
tio

n
tim

e

Linux
CP
AP

Figure 12: Normalized execution time of serial application workloads. The values on top of the “Linux” bars
represent the running time of each workload under the original Linux prefetching (in minutes, seconds, or
milliseconds).

when anticipatory I/O scheduling is not effective (e.g., when
the application workload has an alternating sequential data
access pattern or possesses substantial think time between
consecutive I/O accesses, or when the system’s I/O sched-
uler is oblivious to I/O request process contexts).

We implemented the proposed prefetching technique in
the Linux 2.6.10 kernel and conducted experiments using
four microbenchmarks, two common file utilities, and four
real applications on several disk-based storage devices. Over-
all, our evaluation demonstrates that competitive prefetch-
ing can improve the throughput of real applications by up to
53% and it does not incur noticeable performance degrada-
tion on a variety of workloads not directly targeted in this
work. We also show that the performance of competitive
prefetching trails that of an oracle offline prefetching policy
by no more than 42%, affirming its competitiveness.

In the remainder of this section, we discuss implications
related to our competitive prefetching policy. Prefetching
and caching are complemental OS techniques that both use
data locality to hide disk access latency. Unfortunately,
they compete for memory resources against each other. Ag-
gressive prefetching can consume a significant amount of
memory during highly concurrent workloads. In extreme
cases, memory contention may lead to significant perfor-
mance degradation because previously cached or prefetched
data may be evicted before they are accessed. The compet-
itiveness of our prefetching strategy would not hold in the
presence of high memory contention. A possible method
to avoid performance degradation due to prefetching dur-
ing periods of memory contention is to adaptively reduce
the prefetching depth when increased memory contention is
detected and reinstate competitive prefetching when mem-
ory pressure is released. The topic of adaptively controlling
the amount of memory allocated for caching and prefetch-
ing has been previously addressed in the literature by Cao et
al. [6] and Patterson et al. [26]. More recently, Kaplan et al.
proposed a dynamic memory allocation method based on de-
tailed bookkeeping of cost and benefit statistics [18]. Gill et
al. proposed a cache management policy that dynamically
partitions the cache space amongst sequential and random
streams in order to reduce read misses [14]. In addition, in
our previous work [22] we proposed a set of OS-level tech-
niques that can be used to manage the amount of memory

4 16 64
0

0.5

1

1.5

2

2.5

3

3.5

Workload concurrency level

N
or

m
al

iz
ed

 la
te

nc
y

(s
ec

on
d)

0.085 0.245 0.810

Linux
CP
AP

Figure 13: Normalized latency of individual I/O re-
quest under concurrent workload. The latency of
an individual small I/O request is measured with
microbenchmark Two-Rand-0 running in the back-
ground. The values on top of the “Linux” bars rep-
resent the request latency under the original Linux
prefetching (in seconds).

dedicated to prefetching independently of the memory used
by the buffer cache. Memory contention can also be avoided
by limiting the server concurrency level with admission con-
trol or load conditioning [32, 33].

The proposed prefetching technique has been designed to
minimize possible negative impact on applications not di-
rectly targeted by our work. However, such impact may
still exist. In particular, large prefetching depths can lead
to increased latencies for individual I/O requests under con-
current workloads. Figure 13 presents a quantitative illus-
tration of this impact. Techniques such as priority-based
disk queues [13] and semi-preemptible I/O [11] can be em-
ployed to alleviate this problem. Additional investigation is
needed to address the integration of such techniques.

Acknowledgments
This work benefited from discussions with our colleagues at
the University of Rochester (particularly Chen Ding, Michael
Huang, and Michael L. Scott). We thank Pin Lu for help-

ing us set up virtual machine test environment. We would
also like to thank the anonymous EuroSys reviewers for their
valuable comments that helped improve this work.

8. REFERENCES
[1] S. V. Anastasiadis, R. G. Wickremesinghe, and J. S. Chase.

Circus: Opportunistic Block Reordering for Scalable
Content Servers. In Proc. of the Third USENIX Conf. on
File and Storage Technologies, pages 201–212, San
Fancisco, CA, Mar. 2004.

[2] M. Arlitt and T. Jin. Workload Characterization of the
1998 World Cup Web Site. Technical Report HPL-1999-35,
HP Laboratories Palo Alto, 1999.

[3] Ask Jeeves Search. http://www.ask.com.
[4] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris,

A. Ho, R. Neugebauer, I. Pratt, and A. Warfield. Xen and
the art of virtualization. In Proc. of the 19th ACM Symp.
on Operating Systems Principles, pages 164–177, Bolton
Landing, NY, Oct. 2003.

[5] R. Barve, M. Kallahalla, P. J. Varman, and J. S. Vitter.
Competitive Parallel Disk Prefetching and Buffer
Management. Journal of Algorithms, 38(2):152–181, Aug.
2000.

[6] P. Cao, E. W. Felten, A. R. Karlin, and K. Li. A Study of
Integrated Prefetching and Caching Strategies. In Proc. of
the ACM SIGMETRICS, pages 188–197, Ottawa, Canada,
June 1995.

[7] P. Cao, E. W. Felten, and K. Li. Implementation and
Performance of Application-Controlled File Caching. In
Proc. of the First USENIX Symp. on Operating Systems
Design and Implementation, Monterey, CA, Nov. 1994.

[8] P. H. Carns, W. B. L. III, R. B. Ross, and R. Thakur.
PVFS: A Parallel File System For Linux Clusters. In Proc.
of the 4th Annual Linux Showcase and Conf., pages
317–327, Atlanta, GA, Oct. 2000.

[9] E. Carrera and R. Bianchini. Improving Disk Throughput
in Data-Intensive Servers. In Proc. of the 10th Int’l Symp.
on High Performance Computer Architecture, pages
130–141, Madrid,Spain, Feb. 2004.

[10] F. Chang and G. Gibson. Automatic I/O Hint Generation
Through Speculative Execution. In Proc. of the Third
USENIX Symp. on Operating Systems Design and
Implementation, New Orleans, LA, Feb. 1999.

[11] Z. Dimitrijevic, R. Rangaswami, and E. Chang. Design and
Implementation of Semi-preemptible IO. In Proc. of the
Second USENIX Conf. on File and Storage Technologies,
pages 145–158, San Francisco, CA, Mar. 2003.

[12] K. Fraser and F. Chang. Operating System I/O
Speculation: How Two Invocations Are Faster Than One.
In Proc. of the USENIX Annual Technical Conf., pages
325–338, San Antonio, TX, June 2003.

[13] G. R. Ganger and Y. N. Patt. Using System-Level Models
to Evaluate I/O Subsystem Designs. IEEE Transactions on
Computers, 47(6):667–678, June 1998.

[14] B. S. Gill and D. S. Modha. SARC: Sequential Prefetching
in Adaptive Replacement Cache. In Proc. of the USENIX
Annual Technical Conf., pages 293–308, Anaheim, CA,
Apr. 2005.

[15] GNU Diffutils Project, 2006. http://www.gnu.org
/software/diffutils/diffutils.html.

[16] S. Iyer and P. Druschel. Anticipatory Scheduling: A Disk
Scheduling Framework to Overcome Deceptive Idleness in
Synchronous I/O. In Proc. of the 18th ACM Symp. on
Operating Systems Principles, pages 117 – 130, Banff,
Canada, Oct. 2001.

[17] S. T. Jones, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Antfarm: Tracking processes in a virtual
machine environment. In Proc. of the USENIX Annual
Technical Conf., pages 1–14, Boston, MA, June 2006.

[18] S. F. Kaplan, L. A. McGeoch, and M. F. Cole. Adaptive
Caching for Demand Prepaging. In Proc. of the Third Int’l

Symp. on Memory Management, pages 114–126, Berlin,
Germany, June 2002.

[19] D. Kotz, S. B. Toh, and S. Radhakrishnan. A Detailed
Simulation Model of the HP 97560 Disk Drive. Technical
Report PCS-TR94-220, Dept. of Computer Science,
Dartmouth College, July 1994.

[20] H. Lei and D. Duchamp. An Analytical Approach to File
Prefetching. In Proc. of the USENIX Annual Technical
Conf., Anaheim, CA, Jan. 1997.

[21] C. Li, A. Papathanasiou, and K. Shen. Competitive
Prefetching for Data-Intensive Online Servers. In the First
Workshop on Operating System and Architectural Support
for the on demand IT InfraStructure, Boston, MA, Oct.
2004.

[22] C. Li and K. Shen. Managing Prefetch Memory for
Data-Intensive Online Servers. In Proc. of the 4th USENIX
Conf. on File and Storage Technologies, pages 253–266,
San Fancisco, CA, Dec. 2005.

[23] C. R. Lumb, J. Schindler, G. R. Ganger, and D. F. Nagle.
Towards Higher Disk Head Utilization: Extracting Free
Bandwidth From Busy Disk Drives. In Proc. of the 4th
USENIX Symp. on Operating Systems Design and
Implementation, San Diego, CA, Oct. 2000.

[24] A. Papathanasiou and M. Scott. Aggressive Prefetching:
An Idea Whose Time Has Come. In Proc. of the 10th
Workshop on Hot Topics in Operating Systems, Santa Fe,
NM, June 2005.

[25] A. E. Papathanasiou and M. L. Scott. Energy Efficient
Prefetching and Caching. In Proc. of the USENIX Annual
Technical Conf., Boston, MA, June 2004.

[26] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky,
and J. Zelenka. Informed Prefetching and Caching. In Proc.
of the 15th ACM Symp. on Operating Systems Principles,
pages 79–95, Copper Mountain Resort, CO, Dec. 1995.

[27] C. Ruemmler and J. Wilkes. An Introduction to Disk Drive
Modeling. IEEE Computer, 27(3):17–28, Mar. 1994.

[28] E. Shriver, A. Merchant, and J. Wilkes. An Analytical
Behavior Model for Disk Drives with Readahead Caches
and Request Reordering. In Proc. of the ACM
SIGMETRICS, pages 182–192, Madison, WI, June 1998.

[29] E. Shriver, C. Small, and K. A. Smith. Why Does File
System Prefetching Work? In Proc. of the USENIX Annual
Technical Conf., pages 71–84, Monterey, CA, June 1999.

[30] A. Tomkins, R. H. Patterson, and G. A. Gibson. Informed
Multi-Process Prefetching and Caching. In Proc. of the
ACM SIGMETRICS, pages 100–114, Seattle, WA, June
1997.

[31] TPC-H Benchmark. http://www.tpc.org.
[32] R. von Behren, J. Condit, F. Zhou, G. C. Necula, and

E. Brewer. Capriccio: Scalable Threads for Internet
Services. In Proc. of the 19th ACM Symp. on Operating
Systems Principles, pages 268–281, Bolton Landing, NY,
Oct. 2003.

[33] M. Welsh, D. Culler, and E. Brewer. SEDA: An
Architecture for Well-Conditioned, Scalable Internet
Services. In Proc. of the 18th ACM Symp. on Operating
Systems Principles, pages 230–243, Banff, Canada, Oct.
2001.

[34] T. Yeh, D. Long, and S. A. Brandt. Using Program and
User Information to Improve File Prediction Performance.
In Proc. of the Int’l Symposium on Performance Analysis
of Systems and Software, pages 111–119, Tucson, AZ, Nov.
2001.

