1 Notations and Assumptions

In most cases (if without local definitions), we use

- Greek alphabets such as α, β, and γ to denote real numbers;
- Small letters such as x, y, and z to denote vectors;
- Capital letters to denote matrices, e.g., A, B, and C.

Other notations:

- \mathbb{R} is the one dimensional Euclidean space;
- \mathbb{R}^n is the n dimensional vector Euclidean space;
- $\mathbb{R}^{m \times n}$ is the $m \times n$ dimensional matrix Euclidean space;
- \mathbb{R}_+ denotes the range $[0, +\infty)$;
- $1_n \in \mathbb{R}^n$ denotes a vector with 1 in all entries;
- For any vector $x \in \mathbb{R}^n$, we use $|x|$ to denote the absolute vector, that is, $|x|_i = |x_i| \ \forall i = 1, \cdots, n$;
- \odot denotes the component-wise product, that is, for any vectors x and y, $(x \odot y)_i = x_i y_i$.

Some assumptions:

- Unless explicit (local) definition, we always assume that all vectors are column vectors.

2 Vector norms, Inner product

A function $f : x \in \mathbb{R}^n \rightarrow y \in \mathbb{R}_+$ is called a “norm”, if the following three conditions are satisfied

- $f(x) \geq 0$ and $f(x) = 0$ if and only if $x = 0$;
- For any $\alpha \in \mathbb{R}$ and $x \in \mathbb{R}^n$, $f(\alpha x) = |\alpha|f(x)$;
- (triangle inequality) Any $x, y \in \mathbb{R}^n$ satisfy $f(x) + f(y) \geq f(x + y)$.

The ℓ_2 norm “$\| \cdot \|_2$” (a special “$f(\cdot)$”) in \mathbb{R}^n is defined as

$$\|x\|_2 = (|x_1|^2 + |x_2|^2 + \cdots + |x_n|^2)^{\frac{1}{2}}.$$

Because of ℓ_2 is the most commonly used norm (also known as Euclidean norm), we denote it as $\| \cdot \|$ sometimes for short.

A general ℓ_p norm ($p \geq 1$) is defined as

$$\|x\|_p = (|x_1|^p + |x_2|^p + \cdots + |x_n|^p)^{\frac{1}{p}}.$$

Note that for $p < 1$, it is not a “norm” since the triangle inequality is violated. ℓ_∞ norm is defined as

$$\|x\|_\infty = \max\{|x_1|, |x_2|, \cdots, |x_n|\}.$$

One may notice that the ℓ_∞ norm is the limit of the ℓ_p norm, that is, for any $x \in \mathbb{R}^n$, $\|x\|_\infty = \lim_{p \to +\infty} \|x\|_p$. In addition, people use $\|x\|_0$ to denote the ℓ_0 “norm”.

The inner product $\langle \cdot, \cdot \rangle$ in \mathbb{R}^n is defined as

$$\langle x, y \rangle = \sum_i x_i y_i.$$

One can show that $\langle x, x \rangle = \|x\|^2$. Two vectors x and y are orthogonal if $\langle x, y \rangle = 0$. That is one reason why ℓ_2 norm is so special.

If $p \geq q$, then for any $x \in \mathbb{R}^n$ we have $\|x\|_p \leq \|x\|_q$. In particular, we have

$$\|x\|_1 \geq \|x\|_2 \geq \|x\|_\infty.$$

To bound from the order sides, we have

$$\|x\|_1 \leq \sqrt{n}\|x\|_2 \quad \|x\|_2 \leq \sqrt{n}\|x\|_\infty.$$

Proof. To see the first one, we have

$$\|x\|_1 = \langle 1_n, |x| \rangle \leq \|1_n\|_2 \|x\|_2 = \sqrt{n}\|x\|_2$$

where the last inequality uses the Cauchy inequality. I leave the proof of the second inequality in your homework. \qed

Given a norm “$\| \cdot \|_A$”, its dual norm is defined as

$$\|x\|_{A^*} = \max_{\|y\|_A \leq 1} \langle x, y \rangle = \max_{\|y\|_A = 1} \langle x, y \rangle = \max_{\|z\|_A} \frac{\langle x, z \rangle}{\|z\|_A}.$$

Several important properties about the dual norm are

- The dual norm’s dual norm is itself, that is, $\|x\|_{(A^*)^*} = \|x\|_A$;
- The ℓ_2 norm is self-dual, that is, the dual norm of the ℓ_2 norm is still the ℓ_2 norm;
- The dual norm of the ℓ_p norm ($p \geq 1$) is ℓ_q norm where p and q satisfy $1/p + 1/q = 1$. Particularly, ℓ_1 norm and ℓ_∞ norm are dual to each other.
- (Holder inequality): $\langle x, y \rangle \leq \|x\|_A \|y\|_{A^*}$
3 Linear space, subspace, linear transformation

A set S is a linear space if

1. $0 \in S$;
2. given any two points $x, y \in S$ and any two scalers $\alpha, \beta \in \mathbb{R}$, we have $\alpha x + \beta y \in S$.

Note that \emptyset is not a linear space. Examples: vector space \mathbb{R}^n, matrix space $\mathbb{R}^{m \times n}$. How about the following things:

- 0; (no)
- $\{0\}$; (yes)
- $\{x \mid Ax = b\}$ where A is a matrix and b is a vector. ($b = 0$ yes; otherwise, no)

Let S be a linear space. A set S' is a subspace if S' is a linear space and also a subset of S. Actually, “subspace” is equivalent to “linear space”, because any subspace is a linear space and any linear space is a subspace. They are indeed talking about the same thing.

Let S be a linear space. A function $L(\cdot)$ is a linear transformation if given any two points $x, y \in S$ and two scalars $\alpha, \beta \in \mathbb{R}$, one has

$$L(\alpha x + \beta y) = \alpha L(x) + \beta L(y).$$

For vector space, there exists a 1-1 correspondence between a linear transformation and a matrix. Therefore, we can simply say “a matrix is a linear transformation”.

- Prove that $\{L(x) \mid x \in S\}$ is a linear space if S is a linear space and L is a linear transformation.
- Prove that $\{x \mid L(x) \in S\}$ a linear space assuming S is a linear space, and L is a linear transformation.

How to express a subspace? The most intuitive way is to use a bunch of vectors. A subspace can be expressed by

$$\text{span}\{x_1, x_2, \cdots, x_n\} = \left\{ \sum_{i=1}^{n} \alpha_i x_i \mid \alpha_i \in \mathbb{R} \right\} = \{X\alpha \mid \alpha\},$$

which is called the range space of matrix X. A subspace can be also represented by the null space of X by

$$\{\alpha \mid X\alpha = 0\}.$$
4 Eigenvalues / eigenvectors, rank, SVD, inverse

The transpose of a matrix \(A \in \mathbb{R}^{m \times n} \) is defined as \(A^T \in \mathbb{R}^{n \times m} \):

\[
(A^T)_{ij} = A_{ji}.
\]

One can verify that

\[
(AB)^T = B^T A^T.
\]

A matrix \(B \in \mathbb{R}^{n \times n} \) is the inverse of an invertible matrix \(A \in \mathbb{R}^{n \times n} \) if

\[
AB = I \quad \text{and} \quad BA = I.
\]

\(B \) can be denoted as \(A^{-1} \). \(A \) has the inverse is equivalent to that \(A \) has a full rank (the definition for “rank” will be clear very soon.) Note that the inverse of a matrix is unique. One can also verify that if both \(A \) and \(B \) are invertible, then

\[
(AB)^{-1} = B^{-1} A^{-1}.
\]

The “transpose” and the “inverse” are exchangeable:

\[
(A^T)^{-1} = (A^{-1})^T.
\]

When we write \(A^{-1} \), we have to make sure that \(A \) is invertible.

Given a square matrix \(A \in \mathbb{R}^{n \times n} \), \(x \in \mathbb{R}^n \) (\(x \neq 0 \)) is called its eigenvector and \(\lambda \in \mathbb{R} \) is called its eigenvalue, if the following relationship is satisfied

\[
Ax = \lambda x. \quad \text{(The effect of applying the linear transformation} \ A \ \text{on} \ x \ \text{is nothing but scaling it.)}
\]

Note that

- If \(\{\lambda, x\} \) is a pair of eigenvalue-eigenvector, then so is \(\{\lambda, \alpha x\} \) for any \(\alpha \neq 0 \).
- One eigenvalue may correspond to multiple different eigenvectors. “Different” means eigenvectors are different after normalization.

If the matrix \(A \) is symmetric, then any two eigenvectors (corresponding to different eigenvalues) are orthogonal, that is, if \(A^T = A \), \(Ax_1 = \lambda_1 x_1 \), \(Ax_2 = \lambda_2 x_2 \), and \(\lambda_1 \neq \lambda_2 \), then

\[
x_1^T x_2 = 0.
\]

\textbf{Proof.} Consider \(x_1^T A x_2 \). We have

\[
x_1^T A x_2 = x_1^T (Ax_2) = x_1^T (Ax_2) = x_1^T (\lambda_2 x_2) = \lambda_2 x_1^T x_2,
\]

and

\[
x_1^T A x_2 = (x_1^T A) x_2 = (A^T x_1)^T x_2 = (Ax_1)^T x_2 = \lambda_1 x_1^T x_2.
\]

Therefore, we have

\[
\lambda_2 x_1^T x_2 = \lambda_1 x_1^T x_2.
\]

Since \(\lambda_1 \neq \lambda_2 \), we obtain \(x_1^T x_2 = 0. \) \qed
A matrix $A \in \mathbb{R}^{m \times n}$ is a "rank-1" matrix, if A can be expressed as

$$A = xy^T$$

where $x \in \mathbb{R}^m$ and $y \in \mathbb{R}^n$, and $x \neq 0$, $y \neq 0$. The rank of a matrix $A \in \mathbb{R}^{m \times n}$ is defined as

$$\text{rank}(A) = \min \left\{ r \mid A = \sum_{i=1}^{r} x_i y_i^T, x_i \in \mathbb{R}^m, y_i \in \mathbb{R}^n \right\} = \min \left\{ r \mid A = \sum_{i=1}^{r} B_i, B_i \text{ is a "rank-1" matrix} \right\}.$$

Examples: $[1, 1; 1, 1]$, $[1, 1; 2, 2]$, and many natural images have the low rank property. "Low rank" implies that the contained information is few.

A matrix $U \in \mathbb{R}^{m \times n}$ has orthogonal columns if

$$U^T U = I,$$

that is, any two columns U_i and U_j of U satisfies

$$U_i^T U_j = 0 \text{ if } i \neq j; \text{ otherwise } U_i^T U_j = 1.$$

Swapping any two columns in U to get U', U' still satisfies $U'^T U' = I$. If U is a square matrix and has orthogonal columns, then we call it "orthogonal matrix". It has some nice properties

- $U^{-1} = U^T$ (which means that $U U^T = U^T U = I$.)
- The effect of applying the transformation U on a vector x is to rotate x, that is, $\|Ux\| = \|x\|$.

"SVD" is short for "singular value decomposition", which is the most important concept in linear algebra and matrix analysis. SVD almost explores all structures of a matrix. Given any matrix $A \in \mathbb{R}^{m \times n}$, it can be decomposed into

$$A = U \Sigma V^T = \sum_{i=1}^{r} \sigma_i U_i V_i^T$$

where $U \in \mathbb{R}^{m \times r}$ and $V \in \mathbb{R}^{n \times r}$ have orthogonal columns, and $\Sigma = \text{diag}\{\sigma_1, \sigma_2, \ldots, \sigma_r\}$ is a diagonal matrix with positive diagonal elements. σ_i’s are called singular values, which are positive and are arranged in the decreasing order.

- $\text{rank}(A) = r$;
- $\|Ax\| \leq \sigma_1 \|x\|$. Why?

A matrix $B \in \mathbb{R}^{n \times n}$ is positive semi-definite (PSD), if the following things are satisfied

- B is symmetric;
- $\forall x \in \mathbb{R}^n$, we have $x^T B x \geq 0$.

The positive definite matrix is defined by adding one more condition

- $x^T B x = 0 \iff x = 0$.

We can also use an equivalent definition for PSD matrices in the following: A matrix $B \in \mathbb{R}^{n \times n}$ is positive semi-definite (PSD), if the SVD of B can be written as

$$B = U \Sigma U^T$$

where $U^T U = I$ and Σ is a diagonal matrix with nonnegative diagonal elements. Examples of PSD matrices: I, $A^T A$.

5
5 Matrix norms (spectral norm, nuclear norm, Frobenius norm)

The Frobenius norm (F-norm) of a matrix $A \in \mathbb{R}^{m \times n}$ is defined as

$$\|A\|_F = \left(\sum_{1 \leq i \leq m, 1 \leq j \leq n} |A_{i,j}|^2 \right)^{1/2} = \left(\sum_{i=1}^{\sigma_i^2} \right)^{1/2}$$

If A is a vector, one can verify that $\|A\|_F = \|A\|_2$.

The inner product $\langle \cdot, \cdot \rangle$ in $\mathbb{R}^{m \times n}$ is defined as

$$\langle X, Y \rangle = \sum_{i,j} X_{ij} Y_{ij} = \text{trace}(X^T Y) = \text{trace}(Y^T X) = \text{trace}(XY^T) = \text{trace}(Y^T X).$$

An important property for trace(AB):

$$\text{trace}(AB) = \text{trace}(BA) = \text{trace}(A^T B^T) = \text{trace}(B^T A^T).$$

One may notice that $\langle X, X \rangle = \|X\|^2_F$.

The spectral (trace) norm of a matrix $A \in \mathbb{R}^{m \times n}$ is defined as

$$\|A\|_{\text{spec}} = \max_{\|x\|=1} \|Ax\| = \max_{\|x\|=1, \|y\|=1} y^T Ax = \sigma_1(A)$$

The nuclear norm of a matrix $A \in \mathbb{R}^{m \times n}$ is defined as

$$\|A\|_\text{tr} = \sum_i \sigma_i(A) = \text{trace}(\Sigma)$$

where Σ is the diagonal matrix of SVD of $A = U \Sigma V^T$.

An important relationship

$$\|A\|_\text{spec} \leq \|A\|_F \leq \|A\|_\text{tr} \quad \text{and} \quad \text{rank}(A) \|A\|_\text{spec} \geq \sqrt{\text{rank}(A)} \|A\|_F \geq \|A\|_\text{tr}.$$

The dual norm for a matrix norm $\| \cdot \|_A$ is defined as

$$\|Y\|_{A^*} := \max_{\|X\| \leq 1} \frac{\langle X, Y \rangle}{\|X\|_A} = \max_X \langle X, Y \rangle. \quad (1)$$

We have the following properties (think about why it is true):

$$\|X\|_{\text{spec}^*} = \|X\|_{\text{tr}}, \quad \|X\|_{F^*} = \|X\|_F.$$

6 Matrix and Vector Differential

Let $f(X) : \mathbb{R}^{m \times n} \rightarrow \mathbb{R}$ be a function with respect to matrix $X \in \mathbb{R}^{m \times n}$. It is differential (or gradient) is defined as

$$\frac{\partial f(X)}{\partial X} = \begin{bmatrix} \frac{\partial f(X)}{\partial X_{11}} & \cdots & \frac{\partial f(X)}{\partial X_{1j}} & \cdots & \frac{\partial f(X)}{\partial X_{1n}} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \frac{\partial f(X)}{\partial X_{i1}} & \cdots & \frac{\partial f(X)}{\partial X_{ij}} & \cdots & \frac{\partial f(X)}{\partial X_{in}} \\ \vdots & \ddots & \vdots & \ddots & \vdots \\ \frac{\partial f(X)}{\partial X_{m1}} & \cdots & \frac{\partial f(X)}{\partial X_{mj}} & \cdots & \frac{\partial f(X)}{\partial X_{mn}} \end{bmatrix}.$$
We provide a few examples in the following

\[
\begin{align*}
 f(X) &= \text{trace}(A^T X) = \langle A, X \rangle \\
 \frac{\partial f(X)}{\partial X} &= A \\
 f(X) &= \text{trace}(X^T A X) \\
 \frac{\partial f(X)}{\partial X} &= (A + A^T)X \\
 f(X) &= \frac{1}{2} \|AX - B\|_F^2 \\
 \frac{\partial f(X)}{\partial X} &= A^T(AX - B) \\
 f(X) &= \frac{1}{2} \text{trace}(B^T X^T X B) \\
 \frac{\partial f(X)}{\partial X} &= XBB^T \\
 f(X) &= \frac{1}{2} \text{trace}(B^T X^T A X B) \\
 \frac{\partial f(X)}{\partial X} &= \frac{1}{2}(A + A^T)XBB^T
\end{align*}
\]