Lecture 5: More on Estimation

1. Estimations based on Smoothing Counts

In the last lecture, we saw the held-out estimation technique, which used a second corpus
to estimate how accurate the estimates from the first corpora were and to adjust them
accordingly. The first topic today looks at techniques to do this from a more analytic
basis that does not require a second corpus, but uses some smoothing function on the size
of Class(r) sets (remember, Class(r) = the set of elements that occur r times in the
corpus). The main idea underlying this is that we believe that the plot of frequencies of
outcomes is some well-defined function. For English word-based models, we’d expect
this function to decrease as the number of occurrences rises. For instance, in a bigram
model for English, we’d expect to see more bigrams that occur once than those that occur
twice, and certainly more than those that occur ten times. This seems to be so, as seen in
the chart from data in Manning and Schutze that plots the frequency (on a log scale) of
the size of classes of ngrams that occurred once through to 60 times in 600,000 words of
text from Jane Austen’s novels. With a corpus of this size, we see the distribution is
relatively “smooth".

So another way to smooth a probability distribution would be to smoothing the frequency

1nnNNNN e - Qarioe 1
=

-1

100N0NN

100NN

10NN

10N

N

of frequency data and then convert that back into a probability distribution. Many
different smoothing functions used, ranging from simple techniques such as averaging
two or three values, to more complex technique of curve fitting a function to the observed
data and then using the function values. For example, let’s look at a simple one. Let N(r)
be the number of outcomes that occur r times in the corpus (i.e., N(r) = IClass(r)l) and Ny
(r) be a revised count defined by

Ns (0) = N(0)

Ny (1) = (N(r-1)+ N(1)+ N(r+1))/3, for r >0

T ectnre 6 1

Given we have smoothed the distribution, how do we convert those revised counts back
into revised probability estimates for each class. One technique for this was developed by
Good in 1953 described a technique attributed to Turing. The method is developed
assuming that the true distribution of the pdf is a binomial distribution, an assumption not
always valid for language processing. But the methods appears to work well in many
cases, especially in applications with very large vocabularies and large training sets.
Specifically, the Good-Turing estimate uses the ratio of the smoothed estimates of two
adjacent classes. Specifically, the revised estimates for count
s 1, R(r) is defined by:

R(r) = (r+1) Ng(r+1) / Ng(r)
This could be used with any smoothing function, although, to be well defined the
smoothed values Ny(r) must always be greater than O up to one more than the maximum
size r that we need.

To complete the process, the Good-Turing Estimate would be obtained simply by
normalizing these revised counts
Psr (0) = R(r) / 2, N(r)*R(r), where o occurs r times in training corpus

Note that since we normally expect fewer n-grams to occur r+1 times than those that
occur r times (also demonstrated by the plot above), this technique typically discounts the
probability of the more frequent elements (but of course boosts the probability of
elements that did not occur in the original training corpus).

For instance, consider the Good-Turing estimate for our ABC example (which is really
too small for this technique but serves to illustrate the technique). In this example, the
corpus size N is 18, we have 1 n-gram that occurs 3 times, 3 that occur twice, 9 that occur
once, and 14 that didn’t occur at all. Once we derive the revised n-gram counts R(r) for
each r, the normalization constant 2 N(r)*R(r) can be computed and is 21.44. We can
then compare the Good-Turing estimate with the MLE.

r N() | Ng(r) | R(r) | Pgy Pyie
4 0 33

3 1 1.33 |1 .047 | .166

2 3 433 | .92 043 | .11

1 9 8.66 |1 .047 |.055

0 14 14 .62 029 |10

Note in this example, we get dramatic smoothing of the distribution, which in fact is not a
bad thing given it is such as small training set and so the estimates will be very uncertain.

2. Interpolation Methods

Another method for dealing with unseen events is to use a combination of probabilistic
models. This especially useful when we are trying to estimate conditional probabilities
and may construct a series of estimates of distributions using different contexts. For
instance, to estimate the probability of a word given the context of the previous two

T .ecture 6 2

words, we might use a linear combination of trigram, bigram and unigram models. In
particular,

Py (W3 Il w, wy) = AP (W3) + APy (ws T wy) + A Py(ws | w, wy)

Where P, P, and P; are the unigram, bigram and trigram estimates respectively. To
guarantee that P, is a probability distribution, we must require each A; be between 0 and
1, and X; A, = 1. (You proved a version of this in assignment 1)

For example, using the same ABC corpus (repeated here for convenience) and the
standard MLE technique.

ABCABBCCACBCAACBCCBC

we can use MLE to estimate the bigram and unigram probabilities. The trigram
probabilities were estimated in the last lecture.

Unigram Count MLE
A 5 25

B 6 3

C 9 45
Table 1: The Unigram estimates

Bigram: x, , x; | Pair Count | Py, o(X; 1 X))
AA 1 2

AB 2 4

AC 2 4

BA 0 0

B B 1 167

BC 5 .833

CA 3 375

CB 3 375

CC 2 25

Table 2: The “bigram” conditional probability

We could set the weighting factors by hand. Lets say A, = .05, A, =.1 and A, = .85.
With these weights, the linear interpolated probability function would assign the
following probability to the sequence A A A.

P(AIAA)
=05 *PI(A)+.1 * P2(A 1 A) + .85 * P3(A | A A)
=.05%25+.1%2+85%0

= 0125 +.02 =.0325

T ectnre 6

By assigning some probability to unseen elements, this method obviously takes some
probability from the ones that were seen. For instance, the most common trigram CBC is
the only trigram beginning with CB. Thus Py, .(C | CB) = 1.0. With linear interpolation
we get

P,(C|CB)

=.85* P3(C I B C) +.15 * P2(C | B) + .05 * P1(C)
= 85% 1 +.1 % .833+.05* 45

.85 +.083 +.0225

= .9558

This estimate is slightly lower but still in the right ballpark because the trigram, bigram
and unigram estimates all found the combination likely.

Table 3 looks at how this model works on our development corpus.

Element Pue(z1xy) Pue(zly) Pyie(2) Linear
Combination

P (CICB) 1 .833 45 9558

P (CIBC) .5 25 45 4725

P (A 1CC) .5 375 25 475

P (A 1CA) 1 2 25 .8825

P, (B1AA) 0 4 3 .055

Table 3: Calculating the likelihood of the development corpus

Multiplying these conditional probabilities together, we find that the likelihood of the
development corpus with this estimate is .01. We could experiment with different weights
and see what combination works best in practice. Later we will consider learning
procedures to determine good values for these parameters.

Note we can also generalize this model so that we have lambda’s that depend on some
property of the current context or history h. This is called generalized linear
interpolation, and the general formula given a set of probability distributions P,

P (c | h) =X, A(h)P,(w | h), such that for all h, A,(h) >=0 and 2, A,(h) = 1

For instance, with the trigram model we might have a different set of lambda’s based on
how frequent the first two items in the trigram occur. If they occur frequently, then we
would tend to weight the trigram probability more heavily since we have seen this
context many times before. If, on the other hand, we have rarely seen the context, if ever,
we would downplay the trigram model and emphasize the bigram and unigram models
more. The reason why this could be a good strategy is that it captures some aspect of
certainty about our estimate of the trigram model. For instance, in the ABC corpus, the
bigram BA never occurs, so certainly the trigram model for BAC would also be 0, as
would the bigram, and we would be left with a highly discounted unigram probability for
the estimate. With the new model, we’d have a series of lambda’s, one for each context

T .ecture 6 4

count. Instead of 1,, we’d have a function 1,(c), where c is the count of the bigram context.
Similarly, we have functional values for 1, and 1;. To maximize the probability, if c=0,
then we’d like 15(0) to be higher than usual, and 1,(0) to be lower.

As a concrete example, let’s assume the following lambda values based on context counts

for the ABC corpus:

Count A A, A

0 .333 .333 .333

1 .5 3 2

2 i 2 B

3 .85 B .05

Table: Having the lambda’s depend on context counts

Trigram Context | Py (z1xy) | Pus(zly) | Pue(z) | Pou(z 1 xy)

Count

P(CIBA) |0 0 P(CIA)= | P(A)= | .4 *.333+.25*.333=.21
4 25

PBIBC) |4 0 PBI1C)= | P(B)= | .05 (=.1*.833+.05*.45)
375 3

Table: comparing estimates for two unseen trigrams

Note that while neither BAC or BCB occurred in the corpus, the context BC was quite
common while BA was never seen. This means that we have reasonable evidence that B
is unlikely to follow BC (since out of 4 trials it didn’t occur). We have no evidence one
way or the other, however, on how likely it is that C follows BA, since BA was never
seen. Thus we should tend to be more conservative and smooth our estimates more
heavily. The above example shows this as it estimates that C following B A is three time
more likely than B following B C.

3. Back-Off Methods

The final approach can be viewed as an instance of generalized linear interpolation and
uses similar intuitions. For example, if we are interested in estimating P(W, | W,, W,),
we use the MLE estimate for the trigram if we feel we have a good enough estimate for
the trigram. By “good enough” we mean that it occurred more than some number k in the
training data. If it is not good enough, then we use the bigram estimate discounted by
some factor o.. In other words, our initial estimates (before normalization) would be
Poo(Wi I Wi, W) =if (W, Wy, W) >k then (1 —d;) *Py (W, | W, W)
else o, * P’po(W, I W,)
We would compute the backoff estimate of the bigram in the same way, backing off to
the unigram estimate if necessary. We would then compute the backoff probability
distribution by normalizing in the usual way.

Note to use this method for a general n-gram model, we need to set k, the minimum
number of observations to make us believe we have a good estimate, and a series of
normalizing factors o, ... a, for each possible backoff from an n-gram to an n-1-gram.

T ectnre 6

More sophisticated models can be developed that would discount the MLE estimates
above and encode the remaining probability mass in the a,’s, thus eliminating the need
for renormalization. Back-off models were suggested by Katz, and his particular method
including techniques for discounting is often called the Katz Back-off Model. There are
more details in the text.

T ectnre 6

