Monotonic Inference for Underspecified Episodic Logic

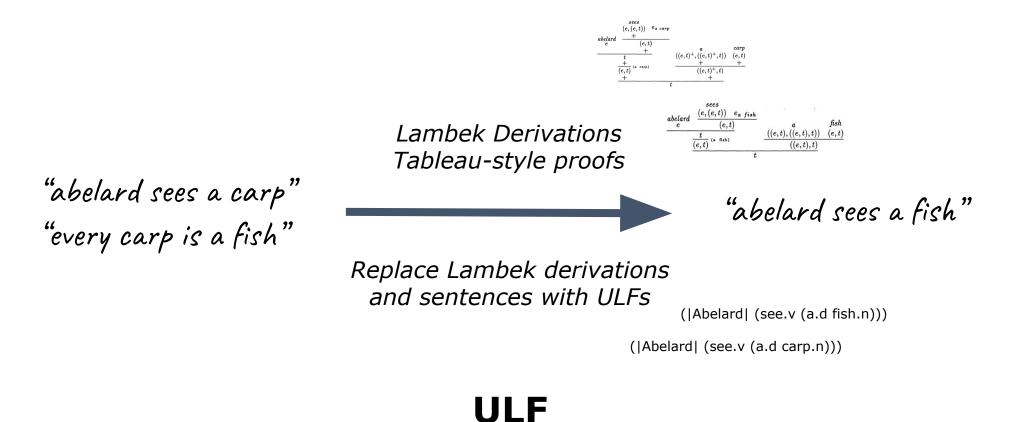
Mandar Juvekar

University of Rochester

Natural Logic Meets Machine Learning 17 July 2020

Gene Louis Kim UR Lenhart K. Schubert UR

Sánchez Valencia



Episodic Logic (EL)

An extended FOL that closely matches the form and expressivity of natural language.

Unscoped Logical Form (ULF)

An underspecified form of EL. Specifies semantic type structure while leaving scope, anaphora, and word sense unresolved.

(|Adam| ((past place.v) |John| (under.p (k arrest.n))))

"Adam placed John under arrest."

Typical EL Inference Unscoped episodic logical forms are fully resolved before inference

Premises abelard sees a carp, every carp is a fish Key English She wants to eat the cake. structure flow Parsing information flow _ -ULF (she.pro ((pres want.v) (Unscoped) (to (eat.v (the.d cake.n))))) Scoping Anaphora $x \rightarrow |Cake3|$, SLF (pres (the.d x (x cake.n) Interpret she.pro \rightarrow |Chell| (Scoped) (she.pro (want.v (to (eat.v x))))) Deindexing and Canonicalization WSD want.v \rightarrow want1.v, (|E|.sk at-about.p |Now17|) CLF ((the.d x (x cake.n) eat.v \rightarrow eat1.v, (Contextual) cake.n → cake1.n (she.pro (want.v (to (eat.v x))))) ** |E|.sk) (|E|.sk at-about.p |Now17|), ELF ((|Chell| (want1 .v (to (eat1 .v |Cake3|)))) $MAJ(\phi^{-}), MIN(\phi^{\prime+})$ (Episodic) ** |E|.sk) $MAJ_{\sigma}(\neg MIN_{\sigma}(\bot^{+})^{-})$ Infer $MAJ(\phi^{-}), MIN(\phi^{\prime +})$ $MIN_{\sigma}(MAJ_{\sigma}(\top^{-})^{+})$

Conclude

abelard sees a fish

Key Observation ULF provides the structural foundation for monotonic inference

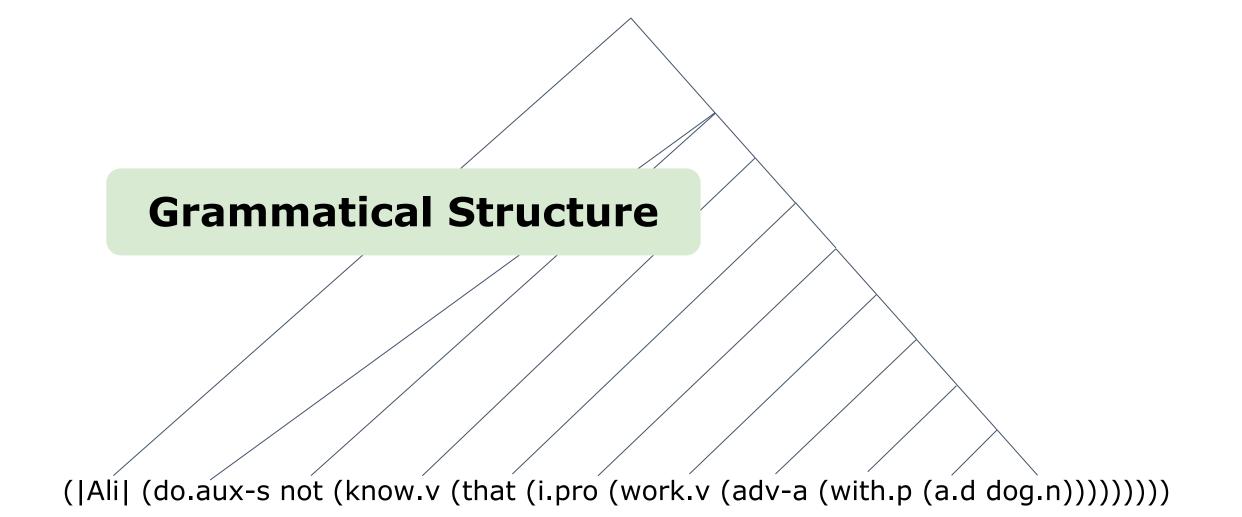
(|Ali| (do.aux-s not (know.v (that (i.pro (work.v (adv-a (with.p (a.d dog.n)))))))))

"Ali does not know that I work with a dog"

Preserved Word Order

(|Ali| (do.aux-s not (know.v (that (i.pro (work.v (adv-a (with.p (a.d dog.n)))))))))

"Ali does not know that I work with a dog"



"Ali does not know that I work with a dog"

Semantic Types

(|Ali| (do.aux-s not (know.v (that (i.pro (work.v (adv-a (with.p (a.d dog.n))))))) e <t',t'> <t',t'> <e,<e,t'>< < <e,<e,t'> <<e,<t'><<e,<t'><<e,t'><<e,t'><<e,t'><</tr>"Ali does not know that I work with a dog"

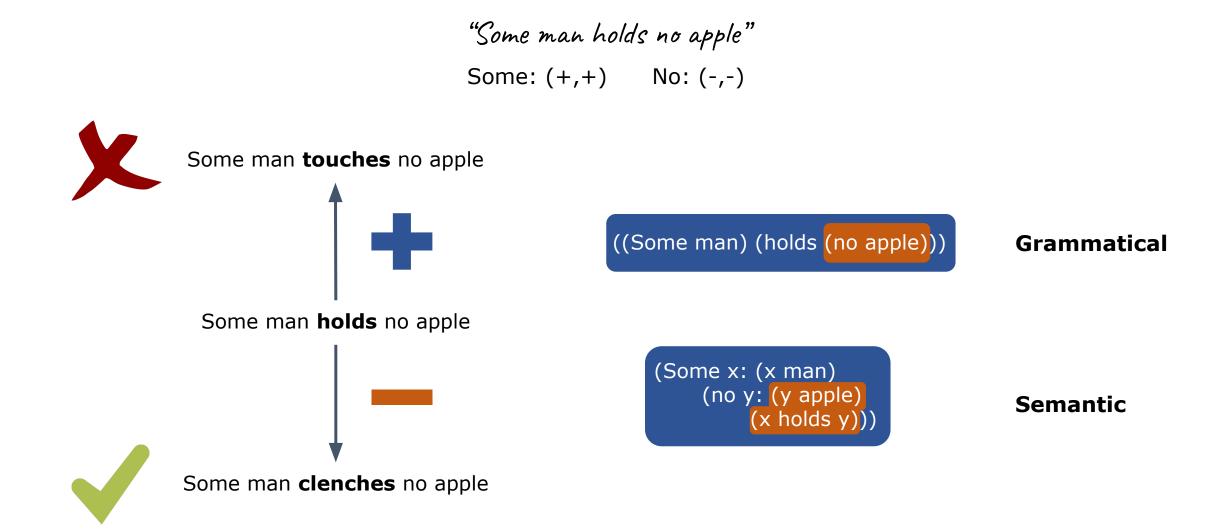
We need semantic argument structure

"Some man holds no apple" Some: (+,+) No: (-,-)

We need semantic argument structure

"Some man holds no apple" Some: (+,+) No: (-,-)

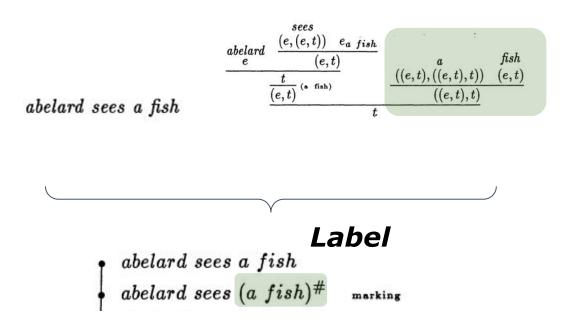
We need semantic argument structure



Proposal Directly use ULFs as the basis for inference

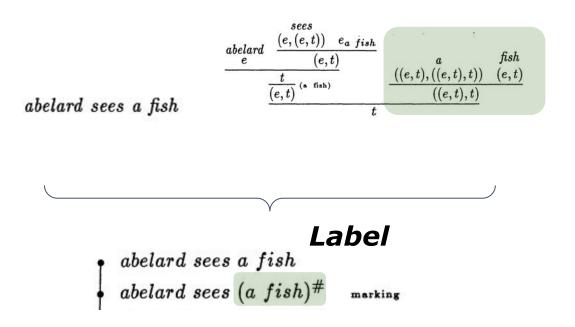
Scope Marking

Sánchez Valencia



Scope Marking

Sánchez Valencia



ULF

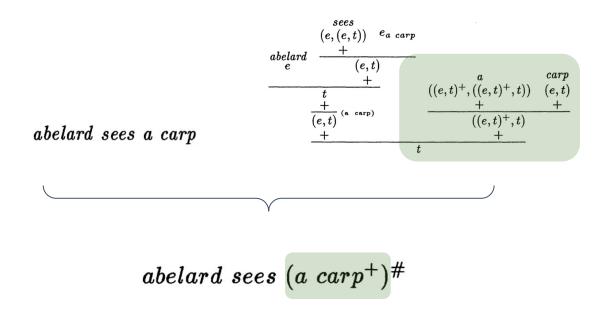
- 1. every dog sees a fish
- 2. ((every.d dog.n) (see.v (a.d fish.n)))
- 3. (every.d x: (x dog.n) (a.d y: (y fish.n) (x see.v y)))

- ULF of 1.
- Scope every.d above a.d
- 4. ((every.d dog.n)[#] (see.v (a.d fish.n)))

Marking

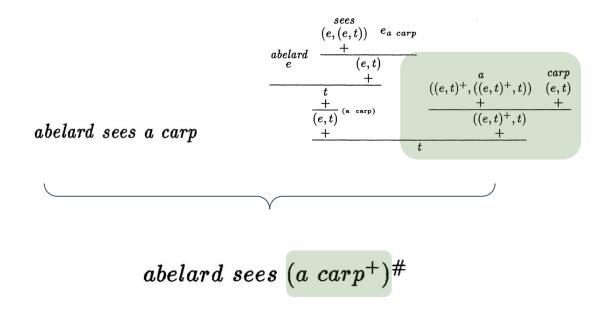
Polarity Marking

Sánchez Valencia



Polarity Marking

Sánchez Valencia



ULF

1. (IAbelardl (see.v (a.d carp.n)))	Assumption
2. ((every.d carp.n) (be.v (= (a.d fish.n))))	Assumption
3. (a.d x : $(x \operatorname{carp.n})^+$ (Abelardl (see.v x) ⁺) ⁺)	SLF of 1. w/ polarity
4. (IAbelardl (see.v (a.d carp.n) ⁺))	Pol marking 1.,3.

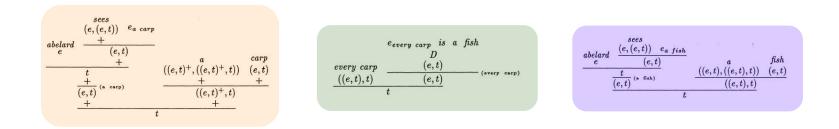
Monotonicity

 $(every \ x)^{\#} \ is \ a \ y, F(x^+), X \bullet Y$ $(every \ x)^{\#} \ is \ a \ y, F(y), X \bullet Y$

Inference 1 abelard sees a carp, every carp is a fish / abelard sees a fish

Monotonicity

 $(every \ x)^{\#} \ is \ a \ y, F(x^{+}), X \bullet Y$ $(every \ x)^{\#} \ is \ a \ y, F(y), X \bullet Y$



abe see a carp, every carp is a fish \bullet abe see a fish abe sees $(a \ carp)^{\#}$, $(every \ carp)^{\#}$ is a fish \bullet abe sees $(a \ fish)^{\#}$ marking abe sees $(a \ carp^+)^{\#}$, $(every \ carp)^{\#}$ is a fish \bullet abe sees $(a \ fish)^{\#}$ marking abe sees $(a \ fish)^{\#}$, $(every \ carp)^{\#}$ is a fish \bullet abe sees $(a \ fish)^{\#}$ monotonicity

Monotonicity

 $(every \ x)^{\#} \ is \ a \ y, F(x^+), X \bullet Y$ $(every \ x)^{\#} \ is \ a \ y, F(y), X \bullet Y$

Monotonicity (UMI)

 $\frac{\phi[(\delta P1)^+], ((\text{every.d } P1) (\text{be.v} (= (\text{a.d } P2))))}{\phi[(\delta P2)]}$

where δ is a determiner.

1. (|Abelard| (see.v (a.d carp.n)))

2. ((every.d carp.n) (be.v (= (a.d fish.n))))

3. (a.d x: $(x \operatorname{carp.n})^+$ (|Abelard| (see.v x)⁺)⁺)

4. ($|Abe|ard| (see.v (a.d carp.n)^+)$)

SLF of 1.

Pol marking 1.,3.

5. (IAbelardl (see.v (a.d fish.n))) UMI 2.,4.

Monotonicity (UMI)

 $\frac{\phi[(\delta P1)^+], ((\text{every.d } P1) (\text{be.v} (= (\text{a.d } P2))))}{\phi[(\delta P2)]}$

where δ is a determiner.

Assumption

Assumption

Conversion

 $(some \ y)^{\#} \ is \ a \ x, X \bullet Y \\ (some \ x)^{\#} \ is \ a \ y, X \bullet Y$

Conversion (UCI)

 $\frac{((d1 \ P) \ (\text{be.v} \ (= (d2 \ Q))))}{((d1 \ Q) \ (\text{be.v} \ (= (d2 \ P))))} \quad \text{where} \ d1 \in \{\text{some.d, a.d, no.d}\} \\ \text{and} \ d2 \in \{\text{some.d, a.d}\}.$

Conversion

 $(some \ y)^{\#} \ is \ a \ x, X \bullet Y$ $(some \ x)^{\#} \ is \ a \ y, X \bullet Y$

Conversion (UCI)

 $\frac{((d1 \ P) \ (\text{be.v} \ (= (d2 \ Q))))}{((d1 \ Q) \ (\text{be.v} \ (= (d2 \ P))))} \quad \text{where } d1 \in \{\text{some.d, a.d, no.d}\}$ $\text{and } d2 \in \{\text{some.d, a.d}\}.$

- 1. ((every.d S) (be.v (= (a.d P)))) Assumption
- 2. ((some S) (be.v (= (a.d M)))) Assumption
- 3. $((\text{some } S)^+ (\text{be.v} (= (\text{a.d } M))))$
 - Polarity marking, 2.
- 4. ((some P) (be.v (= (a.d M)))) UMI, 1.,3.
- 5. ((some M) (be.v (= (a.d P)))) Conversion, 4.

Rule Instantiation (EL)

"Every carp is a fish" (every.d x: $(x \operatorname{carp.n})^- (x \operatorname{fish.n})^+$) "Abelard sees a carp" (a.d y: $(y \operatorname{carp.n})^+$ (|Abelard| (see.v y))⁺)

Rule Instantiation (EL)

1. Select logical fragments with opposing polarities

"Every carp is a fish" (every.d $x: (x \text{ carp.n})^- (x \text{ fish.n})^+$) "Abelard sees a carp" (a.d $y: (y \text{ carp.n})^+$ (|Abelard| (see.v y))⁺)

Rule Instantiation (EL)

1. Select logical fragments with opposing polarities

"Every carp is a fish" (every.d $x: (x \operatorname{carp.n})^{-} (x \operatorname{fish.n})^{+})$ "Abelard sees a carp" (a.d $y: (y \operatorname{carp.n})^{+}$ (|Abelard| (see.v y))⁺)

2. Matchably bind the two fragments (fail if unable)

 $(x \rightarrow y)$

Rule Instantiation (EL)

- 1. Select logical fragments with opposing polarities
- 2. Matchably bind the two fragments (fail if unable)
- 3. Convert the formula with the negative polarity

fragment

"Every carp is a fish" (every.d x: $(x \operatorname{carp.n})^- (x \operatorname{fish.n})^+$) "Abelard sees a carp" (a.d y: $(y \operatorname{carp.n})^+$ (IAbelardl (see.v y))⁺) $(x \rightarrow y)$ $(y \operatorname{carp.n}) \rightarrow T$ $\top \rightarrow (y \operatorname{fish.n})^+$

Rule Instantiation (EL)

- 1. Select logical fragments with opposing polarities
- 2. Matchably bind the two fragments (fail if unable)
- 3. Convert the formula with the negative polarity

fragment

"Every carp is a fish" (every.d x: $(x \operatorname{carp.n})^- (x \operatorname{fish.n})^+$) "Abelard sees a carp" (a.d y: $(y \operatorname{carp.n})^+$ (IAbelard (see.v y))+) $(x \to y)$ $(y \operatorname{carp.n}) \to T$ $\top \to (y \operatorname{fish.n})^+ = (y \operatorname{fish.n})^+$

Rule Instantiation (EL)

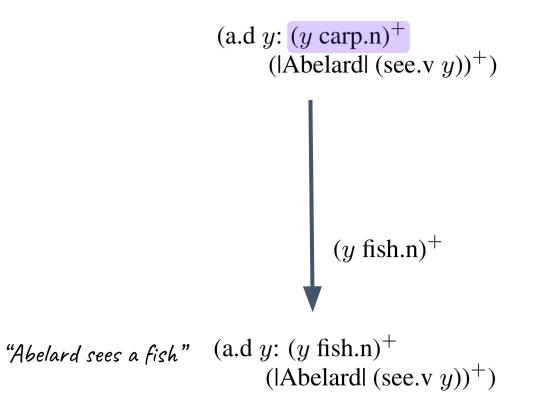
- 1. Select logical fragments with opposing polarities
- 2. Matchably bind the two fragments (fail if unable)
- Convert the formula with the negative polarity fragment

(a.d y: $(y \text{ carp.n})^+$ (|Abelardl (see.v y))⁺)

 $(y \text{ fish.n})^+$

Rule Instantiation (EL)

- 1. Select logical fragments with opposing polarities
- 2. Matchably bind the two fragments (fail if unable)
- Convert the formula with the negative polarity fragment
- 4. Substitute converted formula for other match



Rule Instantiation (EL)

- 1. Select logical fragments with opposing polarities
- 2. Matchably bind the two fragments (fail if unable)
- Convert the formula with the negative polarity fragment
- 4. Substitute converted formula for other match

MAJ: (every.d x: $(x \operatorname{carp.n})^- (x \operatorname{fish.n})^+$) MIN: (a.d y: $(y \operatorname{carp.n})^+$ (lAbelardl (see.v y))⁺) RI-2 $\underline{MAJ(\phi^-), MIN(\phi'^+)}$ $MIN_{\sigma}(MAJ_{\sigma}(\top^-)^+)$

"Abelard sees a fish" $(a.d y: (y fish.n)^+ (|Abelard| (see.v y))^+)$

Rule Instantiation (EL)

 $\frac{MAJ(\phi^{-}), MIN(\phi'^{+})}{MAJ_{\sigma}(\neg MIN_{\sigma}(\bot^{+})^{-})}$ $\frac{MAJ(\phi^{-}), MIN(\phi'^{+})}{MIN_{\sigma}(MAJ_{\sigma}(\top^{-})^{+})}$

generalizes

ULF Monotonic Inference

 $\frac{\phi[(\delta P1)^+], ((\text{every.d }P1) (\text{be.v} (= (\text{a.d }P2))))}{\phi[(\delta P2)]}$ $\frac{\phi[(\delta P2)^-], ((\text{every.d }P1) (\text{be.v} (= (\text{a.d }P2))))}{\phi[(\delta P1)]}$

where δ is a determiner.

Benefits

- Reduce sources of parsing error
- Dynamically choose scoping assumptions
- Retain a record of assumptions and inferences
- Simple interface to surface form

Integration with ML

- ULF was designed for ease of ML-based parsing. Parser under review with similar performance to initial AMR parsers
- ML-assisted ambiguity resolution (e.g. scopes, word sense, polarity)
- Retain semantic type and polarity coherence for interpretable inferences.

Thanks!

