1 Suitability of EL-Based Lexical Axioms for Inference

Figure 1 illustrates a simple forward inference chain using an axiom from WordNet for the sentence “John stumbles, but does not fall”. Using the axiom for stumble2.v, and a hand written axiom schema asserting that statements conjoined with the connective “but” asserts the conjunction of the two statements as well. The semantics of abstract words, such as “but” need to be encoded by hand since dictionaries simply define abstract words in cycles. This second axiom is an axiom schema since it uses substitutional quantification over well-formed formulas, $\forall wff$. Substitutional quantification is part of what allows EL to represent information about its own syntax and is used for meta-syntactic reasoning. Substitutional quantification and meta-reasoning in EL is explained in detail by Morbini & Schubert (2008). The inference process concludes that “John misses a step and nearly falls”. This is an example of an inference that representations using an intersective approach to predicate modification cannot make since “John nearly falls” and “John does not fall” would contradict each other.

Inference using only verb axioms is largely limited to paraphrasing verbs in terms of other words. Therefore, we limit ourselves to an inference example to demonstrate the inference capabilities of the axioms. Future work in axiomatizing nouns, adjectives, and adverbs will lead to much broader inference capabilities. This will allow us to demonstrate the inference in a more general setting. Nouns in particular would boost the inference process because many verbs are defined in terms of nominal forms of other verbs.

The example in Figure 1 only uses forward inference, but EL supports deductive, uncertain, and Natural Logic-like inference as well. Its suit-
Axioms
A1. stumble2.v : miss a step and fall or nearly fall

\((\forall x, e \ ((x \text{ stumble2.v} \ && e) \ \rightarrow ((\exists z \ (z \text{ step2.n}) \ (x \text{ miss4.v} z)) \ \& \\
(x \text{ fall23.v} \lor (x \text{ nearlyadv fall23.v})))) \ && e)) \)

A2. If two statements are conjoined by “but”, then both statements are true (i.e. conjunction)

\((\forall wff \ x, y \ ((x \text{ but.cc y} \ && e) \ \rightarrow ((x \land y) \ && e))) \)

Inference
Sentence: “John stumbles, but does not fall”

I1. ((John stumble2.v) but.cc ¬(John fall23.v))

I2. ((John stumble2.v) \& ¬(John fall23.v))

I3. (John stumble2.v),¬(John fall23.v)

I4. ((∃z (z step2.n) (John miss4.v z)) \&

((John fall23.v) \lor (John (nearlyadv fall23.v))))

I5. ((∃z (z step2.n) (John miss4.v z)) \& (John (nearlyadv fall23.v)))

Figure 1: If John stumbles, but doesn’t fall, we can infer from the axioms extracted from WordNet verbs that he misses a step and nearly falls. This inference would not be possible with representations that use an intersective approach to predicate modification, such as OWL-DL.

References

