CSC242 |
|
|
|
|
|
|
|
|
|
Fall
2018 - TR 1525-1640 - Wegmans 1400 |
|
|
|
|
Mon |
Day |
DOW |
Special |
Class |
Lecture |
Unit |
Topic |
AIMA |
Project |
Poole & Mackworth |
8 |
30 |
R |
|
1 |
0 |
Intro |
|
|
|
|
9 |
4 |
T |
|
2 |
1.1 |
Search |
Problem Solving |
3.0-3.3.1 |
|
3.1-3.4 |
9 |
6 |
R |
|
3 |
1.2 |
|
Search Strategies |
3.3.2-3.6 |
|
3.5-3.6 |
9 |
11 |
T |
|
4 |
1.3 |
|
Adversarial Search |
5.0-5.2.1 |
|
11.0-11.3 |
9 |
13 |
R |
|
5 |
1.4 |
|
Adversarial Search 2 |
5.3-5.4.2; 5.5-5.6;
5.7-5.9 fyi |
|
9 |
18 |
T |
|
6 |
1.5 |
|
Local Search |
4.0-4.1 |
|
4.7 |
9 |
20 |
R |
|
7 |
1.6 |
|
Local Search 2 |
4.3-4.4; 4.2, 4.5 fyi |
|
9 |
25 |
T |
|
8 |
|
|
Exam |
|
Project 1 due |
9 |
27 |
R |
|
9 |
2.1 |
Representation |
Constraint Satisfaction |
6.0-6.4 |
|
4.0-4.6 |
10 |
2 |
T |
|
10 |
2.2 |
|
Propositional Logic |
7.0-7.4 |
|
5.0-5.1 |
10 |
4 |
R |
|
11 |
2.3 |
|
Propositional Inference |
7.5 |
|
5.2-5.3 |
10 |
9 |
T |
|
12 |
2.4 |
|
First-Order Logic |
8.0-8.3; 8.1.1-8.1.2 fyi |
13.0-13.3 |
10 |
11 |
R |
|
13 |
2.5 |
|
First-Order Inference |
9 |
|
13.4-13.5 |
10 |
16 |
T |
Fall Break |
|
|
|
|
|
|
|
10 |
18 |
R |
|
14 |
|
|
Exam |
|
Project 2 due |
10 |
23 |
T |
|
15 |
3.1 |
Uncertainty |
Representing Uncertainty |
13.0-13.2; 13.2.3 fyi |
8.0-8.2 |
10 |
25 |
R |
|
16 |
3.2 |
|
Uncertain Inference |
13.3-13.6 |
|
|
10 |
30 |
T |
|
17 |
3.3 |
|
Bayesian Networks |
14.0-14.2, 14.4-14.4.3 |
8.3-8.4 |
11 |
1 |
R |
|
18 |
3.4 |
|
Approximate Inference in Bayesian Networks |
14.5; 14.7 fyi |
|
8.6 |
11 |
6 |
T |
|
19 |
3.5 |
|
Inference in Termporal Models |
15.0-15.3 |
|
8.5 |
11 |
8 |
R |
|
20 |
|
|
Exam |
|
Project 3 due |
11 |
13 |
T |
|
21 |
4.1 |
Learning |
Learning From Examples, Decision Trees |
18.0-18.3, 18.4.0 |
7.0-7.3.1 |
11 |
15 |
R |
|
22 |
4.2 |
|
Linear Regression and Linear Classifiers |
18.6 |
|
7.3.2-7.4 |
11 |
20 |
T |
|
23 |
TBD |
|
TBD |
|
|
|
11 |
22 |
R |
Thanksgiving |
|
|
|
|
|
|
11 |
27 |
T |
|
24 |
4.3 |
|
Neural Networks |
18.7-18.7.4 |
|
7.5 |
11 |
29 |
R |
|
25 |
4.4 |
|
Learning Probabilistic Models |
20.0-20.2.2; 20.2.5 fyi |
10.3-10.3.1 |
12 |
4 |
T |
|
26 |
4.5 |
|
Learning with Incomplete Data |
20.3-20.3.4 |
|
10.3.2-10.3.3 |
12 |
6 |
R |
|
27 |
|
|
Exam |
|
Project 4 due |
12 |
11 |
T |
|
28 |
TBD |
|
TBD |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
19 |
W |
|
|
|
|
Final Exam: Wednesday,
December 19, 0830 |
|
|
|
|
|
|
|
|
|
|
|
|
|