
Optimal Cache Partition-Sharing?
Don’t ever take a fence down until you know why it was put up. – Robert Frost

Jacob Brock, Chencheng Ye1, Chen Ding
University of Rochester
Rochester, NY, USA

Yechen Li, Xiaolin Wang and Yingwei Luo
Peking University
Beijing, China

Abstract— When a cache is shared by multiple cores, its
space may be allocated either by sharing, partitioning, or
both. We call the last case partition-sharing. This paper studies
partition-sharing as a general solution, and presents a theory
an technique for optimizing partition-sharing. We present a
theory and a technique to optimize partition sharing. The
theory shows that the problem of partition-sharing is reducible
to the problem of partitioning. The technique uses dynamic
programming to optimize partitioning for overall miss ratio,
and for two different kinds of fairness.

Finally, the paper evaluates the effect of optimal cache
sharing and compares it with conventional solutions for thou-
sands of 4-program co-run groups, with nearly 180 million
different ways to share the cache by each co-run group.
Optimal partition-sharing is on average 26% better than free-
for-all sharing, and 98% better than equal partitioning. We
also demonstrate the trade-off between optimal partitioning
and fair partitioning.

I. INTRODUCTION

There are two popular options for sharing an individual
resource such as cache: partitioning and sharing. In partition-
ing, each core gets a protected portion of the total cache. In
sharing, each core has access to the whole cache, and may
evict data belonging to another core. Partitioning provides
each program protection against aggressive partners, while
sharing prevents resources from going unused when they
may be needed2. If there are only two programs, they may
either share or partition any given resource. However, for
three or more programs, partitioning and sharing may both
be used. For example, two programs may share a partition,
while the third program has its own partition. We propose to
call this type of scheme partition-sharing. Strict partitioning

∗The research is supported in part by the National Science Foundation
(Contract No. CNS-1319617, CCF-1116104, CCF-0963759); IBM CAS
Faculty Fellow program; the National Science Foundation of China (Con-
tract No. 61232008, 61272158, 61328201, 61472008 and 61170055); the
863 Program of China under Grant No.2012AA010905, 2015AA015305;
and a grant from Huawei. Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and
do not necessarily reflect the views of the funding organizations.

1Chencheng Ye is a visiting student, funded by the Chinese Scholarship
Council. His home institution is Huazhong University of Science and
Technology, Wuhan, China.

2Parihar et al. presented a counter-based hardware mechanism to provide
programs the protection of partitioning, without the risk of unused space [4].

and free-for-all sharing can be seen as opposite edge cases
of partition-sharing. In this paper, we investigate partition-
sharing as a general problem and give an optimal solution
for both throughput and fairness.

The new solution has two components. First, we reduce
the problem of partition-sharing to just partitioning, i.e., the
optimal solution for partitioning is at least as good as the
optimal solution for partition-sharing. The essence of the
reduction is the concept of a Natural Cache Partition. Given
a set of programs sharing a cache, the natural partition is a
cache partition such that each program has the same miss
ratio in its natural partition as it has in the shared cache.
The performance of any shared cache is then equivalent to
the performance of naturally partitioned cache. The general
problem of finding the best partition-sharing is thus reduced
to finding the best partitioning. We give the formal derivation
including the precise conditions for optimality.

The second component of the solution is an optimization
algorithm to find the best cache partitioning. The previous
solution by Stone et al. was designed to maximize per-
formance (minimal group miss ratio) and required the as-
sumption that the individual miss ratio curve be convex [9].
Our algorithm uses dynamic programming to examine the
entire solution space. It generalizes the optimization in two
ways. First, the miss ratio curve of individual programs does
not have to be convex. In fact, it can be any function.
Second, it can optimize for any objective function, for
example, fairness and quality of service (QoS) in addition
to throughput.

For fairness, we define two types of baseline optimization
which increase the group performance if no program would
perform worse than it is with a baseline partition. We
consider two example baselines: the equal partition and the
natural partition (i.e., free-for-all sharing).

The main contributions of the paper are:

• Cache partition-sharing, for which the existing prob-
lems of cache partitioning and sharing are special cases.

• Natural cache partition, which gives a theoretical re-
duction to make the optimization problem solvable.

• Optimal partitioning algorithm, which handles all types
of programs and objective functions.

Free-for-All Sharing

Core 1 A B C D E F G H I J K L

Core 2 O P Q R S T U V W X Y Z

Core 3 a b c a b c a a a a a a

Core 4 x x x x x x x y z x y z

Partition-Sharing

Core 1 A B C D E F G H I J K L

Core 2 O P Q R S T U V W X Y Z

Core 3 a b c a b c a a a a a a

Core 4 x x x x x x x y z x y z

Best Partitioning

Core 1 A B C D E F G H I J K L

Core 2 O P Q R S T U V W X Y Z

Core 3 a b c a b c a a a a a a

Core 4 x x x x x x x y z x y z

1{

1{

1{
3{

{6
{2
{4

Figure 1: A set of program traces that will benefit from
partition sharing. Core 1 and core 2 run streaming programs,
so partitioning them off prevents them from polluting the
cache. Cores 3 and 4 alternate between having large and
small working sets. Sharing a partition allows them each
to use more cache when it is needed. Capacity misses are
shaded with gray.

• Evaluation, which shows the effect of optimization for
a set of benchmark programs.

The new solution is useful for a programmer and a
computer architect to understand and solve the optimization
problem. It fully evaluates the potential of general cache
sharing, for both performance and fairness and over existing,
narrower solutions.

II. PARTITION-SHARING OPTIONS FOR MULTICORE
CACHE

The general need for partition sharing can be demon-
strated with a simple example trace, with 4 cores sharing
a cache size of 6. If cores 1 and 2 are running streaming
applications, and cores 3 and 4 alternate between large and
small working sets (i.e., core 3 needs cache, then core 4
needs cache), cores 1 and 2 should be partitioned to prevent
cache pollution, while cores 3 and 4 should share, so that
each may use the shared partition while the other does not.
The example is illustrated in Figure 1.

In order to understand the complexity of decision making
for the partition-sharing, we can divide the problem into 3
sub-problems, illustrated in Figure 2 and described below.
In the following descriptions, npr is the number of pro-
grams, npa is the number of partitions, nc is the number

Partition Sharing Scenarios

Sharing Only
Multiple Caches

Partition-Sharing
Single Cache

Partitioning
Only

1. 2. 3.
1 2 3 41 2

43
1 2

4
3

Figure 2: Examples of possible partition sharing scenarios
with 4 programs and one or two caches. 1: Two caches
shared by any number of programs. 2: One cache partitioned
for any number of groups of any number of programs
(general partition-sharing case). 3: One cache with dedicated
partitions for each program (partitioning-only).

of caches, C is the size of each cache, ng is the number
of groups, and G is the size of each group. The number
of possible arrangements (within the constraints) is called
the search space size (S). The search space sizes shown
below count every possible unique arrangement of programs
in caches/partitions.

1. Sharing, Multiple Caches:
There are multiple caches, but the number of users for
each cache may vary. Grouping is still the only variable,
but now group sizes are not required to be the same.
The problem size here is the number of ways we can
separate npr programs into nc non-empty groups. This
happens to be the well-known Stirling number of the
second kind:

S1 =

{
npr

nc

}
. (1)

2. Partition-Sharing, Single Cache: There is only one
cache, which is partitioned. Groups of programs are
assigned to partitions. The problem size is the sum of
the Stirling numbers multiplied by the number of ways
to assign “walls” that partition the cache. That is, for
each number of partitions npa, there are

{
npr
npa

}
ways

to group the programs, and for each of those, there
are

(
C+npa−1
npa−1

)
ways of assigning cache (balls) to the

partitions (bins).

S2 =

npr∑
npa=1

{
npr

npa

}(
C + npa − 1

npa − 1

)
(2)

3. Partitioning Only: When partitioning alone is used,
the number of partitions equals the number of pro-
grams. This problem is simply to assign units of cache
(balls) to each program (bins). The problem size is

S3 =

(
C + npr − 1

npr − 1

)
. (3)

As an example, for 4 programs run on an 8MB cache
that is divisible into 64B units, we have npr = 4
and C = 8MB/64B = 131072. In this case, S2 =
375, 368, 690, 761, 743 and S3 = 375, 317, 149, 057, 025.
In other words, the solution set of partitioning-only covers
99.99% of the solution set of partition-sharing. This is due
to the fact that there are so many more ways to assign cache
to 4 partitions than there are ways to assign it to 1, 2, or
3 partitions. Fortunately, we have an algorithm (presented
in Section V-B) to find the optimal solution among those
99.99%. We expect the solution in this space to be approach
the performance of the optimal partition-sharing solution,
particularly for programs without strong phase behavior, and
for higher partitioning granularity.

III. THE HIGHER ORDER THEORY OF LOCALITY

Relationships between several data locality metrics were
developed by Xiang et al. [16] in a theory called the
higher order theory of locality (HOTL). The metrics gives
preliminary definitions, as well as the metrics and their
relationships.

Window: A window beginning at the ith element (in-
clusive) of the trace and continuing for k elements is denoted
window (i, k). The windows (2, 6) and (4, 2) are boxed in
Figure 3.

Reuse Pair: A pair of accesses to the same datum, with
no other accesses to that datum in-between. Two reuse pairs
are highlighted in Figure 3.

Reuse Window: The smallest window containing both
members of a reuse pair. Two reuse windows are boxed in
Figure 3.

Reuse Time: The reuse time for a reuse pair is the
length of their reuse window. E.g., for the ith and jth

elements of a trace d1...dn,

rt(di, dj) = j − i+ 1. (4)

It is calculated at the second access of the pair, as shown in
Figure 3.

The reuse time histogram for a trace can be expressed as
a function freq(rt), denoting the number of reuse pairs with
reuse time rt.

Footprint: There are two formulations of the footprint
function: WSS(W) is the number of distinct data accessed
in a trace window W , and fp(w) is the average of WSS(W)
for all windows W of length w in a given memory trace.
The average footprint function can be approximated from a
histogram of reuse times.

fp(w) ≡ 1

n− w + 1

n−w+1∑
i=1

WSS(i, w) (5)

For the rest of the paper, we will only refer to the average
footprint function.

 Datum | a a x b b y a a x b b y
 Reuse Dist | - 1 - - 1 - 4 1 4 4 1 4

Figure 3: An example trace with two reuse windows boxed.
Each of the reuse windows decreases every containing
window’s footprint due to the data redundancy.

Fill Time: The average footprint fp(c) is the average
number of distinct data in a window of length c (we use
c now because, as will soon be clear, it represents a cache
size). The fill time is defined as the expected number of
accesses it takes to touch a given amount of distinct data,
so an equivalent statement is that ft(fp(c)) = c. So we have
the relationship:

ft(c) = fp−1(c). (6)

Inter-Miss Time: The fill time for a cache of size c+1
is the fill time for a cache of size c plus the average time
until the next miss on the size c cache.

im(c) = ft(c+ 1)− ft(c) (7)

Miss Ratio: The miss ratio is the reciprocal of the inter-
miss time.

mr(c) =
1

im(c)
(8)

IV. MISS RATIO COMPOSITION THEORY

It is necessary to have a theory that can predict the miss
ratios of co-run programs using metrics measured only on
each program. For a scheduling problem with 20 programs
that need to be scheduled on 2 processors sharing a cache,
we would like to be able to predict cache performance based
on 20 metrics, not 20-choose-2 (and for 4 processors, this
becomes 20-choose-4, and so on). In addition to scheduling,
another possible application of this would be to monitor
performance on-line, and stall individual programs based
on the predicted benefit of doing so. For example, if two
programs are traversing different 60MB arrays while sharing
a 64MB cache, stalling one of them will prevent thrashing,
and they may both finish sooner this way.

As with the prior footprint composition method, we begin
with the following equation for fp(w), the average footprint
of a window of length w, given the access rates ar1 and ar2
of each program3:

Stretched Footprint: When the memory accesses of two
programs interleave, the result is a single trace of memory
accesses. Taken as a part of this whole, each program’s
footprint function is horizontally stretched based on the ratio

3The access rate is measured for each program as the length of its
memory access trace divided by the number of seconds the program ran
for.

of its accesses to the other programs’ accesses in any given
amount of time (i.e., ai

a1+a1
). The overall footprint is then the

sum of the individual stretched footprints. For two programs,
this is

fp(w, ar1, ar2) =fp1

(
w ∗ ar1

ar1 + ar2

)
+ fp2

(
w ∗ ar2

ar1 + ar2

)
.

(9)

To reiterate, this equation states that in an interleaved
memory access trace from two non-data-sharing programs,
the expected number of distinct memory addresses accessed
in w total accesses is the sum of the expected number
of distinct memory addresses accessed by each program.
The latter is calculated given each of their independently
measured average footprint functions and the number of
total accesses belonging to each, based on their access rates
(w ∗ ar1

ar1+ar2
and w ∗ ar2

ar1+ar2
).

What we are most interested in, the miss ratio, can be
derived from Equations the miss ratio can be calculated
using Equations 6, 7 and 8 [16]:

mr(c) = fp(w + 1)− c, (10)

where w is chosen so that fp(w) = c. In the scope of co-run
programs (using Equation 9), we rewrite this as

mr(c, ar1, ar2) =fp1

(
(w + 1) ∗ ar1

ar1 + ar2

)
+ fp2

(
(w + 1) ∗ ar2

ar1 + ar2

)
− c,

(11)

where w is still chosen so that fp(w) = fp1(w ∗ ar1
ar1+ar2

) +
fp2(w ∗ ar2

ar1+ar2
) = c. Since the footprint function is mono-

tonic, the appropriate w can be found in O(log(c)) time
using binary search. If both programs always had the same
miss ratio, then the above equation would be a sufficient
prediction of the miss ratio. However, since both programs’
access rates vary with time, and we cannot predict what they
will be at any given moment4, we must treat the access rates
as independent random variables.

V. CACHE PARTITIONING

A. Natural Cache Partition

At a given time, each program sharing a cache will
have some quantity of data in the cache. This is called the
program’s cache occupancy, or ci for program i. In a warm
cache, the sum of the cache occupancies equals the size of
the cache (i.e., the cache is full). The footprint metric gives
us a way to predict the cache occupancies of each program
for a cache in a steady state; We call the ordered set of

4There may be some feedback between the two access rates via misses
and cache stalls, but we leave this to future work.

c1

c2
c

Total fp

Stretched fp1

window length (w)
Figure 4: The natural cache partition is defined by the
quantity of data in a cache expected to belong to each
program. For two programs, the figure shows that the cache
occupancy of each program can be predicted to be the
individual (stretched) footprint of that program where the
total footprint equals the cache size.

cache occupancies (c1, c2, · · ·) the Natural Cache Partition
(NCP).

The overall footprint and the stretched footprints of a set
of co-run programs can be used to determine the NCP. Of
course, the individual stretched footprints always add up
to the overall footprint. As illustrated in Figure 4, when
the overall footprint equals the cache size, each individual
footprint indicates that program’s cache occupancy.

For programs with no phase behavior, one might expect
that a shared cache would provide the same performance as a
“naturally” partitioned cache. We call this notion the Natural
Partition Assumption (NPA). Since the optimal partition is
at least as good as the natural partition (by the definition of
“optimal”), insofar as it is correct, the NPA indicates that
the optimal cache partition is at least as good as sharing.

If the NPA holds, then every partition-sharing scheme cor-
responds to some partitioning scheme. And that partitioning
scheme may not be the optimal one. Therefore, the optimal
partition scheme offers an upper-bound on the partition-
sharing options. This implies that if NPA is true, then we
should always partition when possible. If not, then partition-
sharing may be justifiable, as in the example in Figure 1.

The natural partition is derived using the HOTL theory
described in Section III. NPA holds if and only if the HOTL
prediction of the miss ratio is accurate. Previous studies have
shown that the prediction was accurate as compared to the
measurement from simulation and hardware performance
counters. We further discuss the validation of the NPA in
Section VII-C.

B. Optimal Partitioning

The idea of memory or cache partitioning has been around
for a while. In 1992, Stone, et al. proposed cache parti-
tioning as an improvement over sharing with LRU both for

single-threaded programs by partitioning the cache between
instructions and data, and for multiprogramming by giving
each process a partition [9].

In the way of optimizing their algorithm, they proved that
the average miss ratio for two or more uniformly interleaved
processes is minimized when the derivative (with respect to
partition size) of the miss ratio function for each process is
equal. The proof, for only two programs, is straightforward.
The total number of misses in some interval T is(

1

2
mr1(c1) +

1

2
mr2(C − c1)

)
∗ T. (12)

Assuming that each miss ratio function is convex and de-
creasing5, setting the derivative of this function, with respect
to program 1’s cache size, equal to zero gives

dmr1(c1)
dc1

= −dmr1(C − c1)

dc1

=
dmr2(c2)

dc2

∣∣∣∣
c2=C−c1

.
(13)

And it is easy to show for the more general case where
program i represents some fraction fi of the trace, that the
optimal partitioning exists when

f1 ∗
dmr1(c1)

dc1
= f2 ∗

dmr2(c2)
dc2

∣∣∣∣
c2=C−c1

. (14)

We call this the Stone, Thiebault, Turek, Wolf (STTW) Cache
Partitioning. The miss ratio derivatives are also equal when
there are more than two caches.

Optional Cache Partition Dynamic Programming Algo-
rithm: The optimal partitioning can be determined using a
dynamic programming algorithm. Given a set of programs
P and a cache of size C, and letting mci(ci) be the miss
count (that is, miss ratio times number of memory accesses)
of program Pi at a cache size of ci, the object is to determine
the set S of partition sizes so that

∑
i mci(ci) is minimized,

and
∑

i ci = C:

S , argmin
(c1,c2,···)

{∑
i

mci(ci)

∣∣∣∣∣ ∑
i

ci = C

}
(15)

The dynamic programming algorithm constructs S
program-by-program. When each program Pi is added, the
new program is assigned the ci that minimizes the sum of
its miss count and the miss count of the optimal partitioning
of the first i−1 programs with cache size of C−ci. Letting
Sk,i represent the sub-solution for the first i programs with

5The convexity assumption is something like the law of diminishing
returns; the larger the cache, the less a program benefits by adding another
byte to the cache. However, miss ratio curves often have drop-offs where
a particular working set fits into the cache. The imperfection of this
assumption is addressed by Thiébaut et al. (1992) [11]. The assumption that
the miss ratio curve is non-increasing is because of the inclusion property
of LRU caches.

cache size k and mc(Sk,i) represent the total miss count for
that sub-solution, each step of the algorithm is

ci = argmin
ci

{mc(SC−ci,i−1) + mci(ci)}

SC,i = SC−ci,i−1 + (ci).
(16)

The time-complexity of this algorithm is O(PC2). The
space complexity is O(PC).

VI. BASELINE OPTIMIZATION

In this section, we consider the optimization of fair cache
sharing. In order to allow some group miss rate reduction
without compromising fairness, we define two different
types of baseline optimization, in which the above dynamic
programming algorithm can be used, but with an added
constraint at each step:

Equal Baseline: The group’s miss ratio is minimized
under the constraint that no single program has a higher miss
ratio than it would with an equal partition of the cache.

Natural Baseline: The group’s miss ratio is minimized
under the constraint that no single program has a higher miss
ratio than it would with the natural cache partitioning.

Fairness in cache has been studied extensively. There are
many definitions. One may define it by sharing incentive,
i.e., how the actual performance compares to equal partition.
Alternatively, one may define it by interference, i.e., how the
actual performance compares to having the full cache. The
difference may seem artificial as in the proverbial question
whether a glass is half empty or half full. However, the
interference is more complex to define, i.e., how much
increase in the miss ratio is too much, and whether we
count the increase or the relative increase. In this work,
we define fairness by the sharing incentive and will use the
optimization technique described in Section V to optimize
the performance of fair cache sharing.

VII. EXPERIMENTAL DESIGN

In this section, we first describe the methods of evaluation,
then evaluate the effect of optimal cache sharing, and finally
discuss the issues of validation.

A. Methodology

Following the methodology of Wang et al. [12], we
randomly choose 16 programs from SPEC 2006: perlbench,
bzip2, mcf, zeusmp, namd, dealII, soplex, povray, hmmer,
sjeng, h264ref, tonto, lbm,omnetpp, wrf, sphinx3 and use
the first reference input. The selection is representative, and
the number of co-run groups is not too many to visualize.
We enumerate all 4-program subsets, which gives us 1820
groups. We model their co-run miss ratio in the 8MB shared
cache. The shared cache is partitioned by the unit of 128
cache blocks (8KB). There are a total of 1024 units.

For each set of 4 programs, the total number of parti-
tions is

(
1026
3

)
or ≈ 180 million (from Equation 3). The

complexity of dynamic programming is O(PC2), where
P = 4, C2 = 10242. PC2 calculates to about 4 million. The
granularity of 8KB is chosen to reduce the cost of dynamic
programming, which is 1282 = 16384 times smaller when
partitioning in 8KB units than in 64-byte cache blocks.

Among the solutions of cache sharing in each group, we
model the performance of six solutions:

• Equal: each program has 2MB cache.
• Natural: the performance when the four programs share

the 8MB cache.
• Equal Baseline: Group optimization with individual

baselines set at the equal partition’s performance.
• Natural Baseline: Group optimization with individual

baselines set at the natural partition’s performance.
• Optimal: the solution with the lowest group miss ratio.
• STTW: the classic solution to minimize the group miss

ratio.
Many studies in the past have examined some but not

all solutions of cache sharing. Using the terminology of
Xie and Loh, Natural is the same as the capitalist cache
sharing, and Equal the same as the socialist sharing [17]. The
capitalist miss ratio depends on peers (market condition),
but the socialist miss ratio is guaranteed at all times. In this
study, we are the first to examine the entire solution space
of partition sharing.

We show results for all 4-program groups. The exhaustive
evaluation is important, since a random subset from these
1,840 groups can mislead since the subset result may differ
significantly from other subsets and from the whole set.
There is no sure way to choosing a representative subset
unless we have evaluated the whole set. The exhaustive
evaluation is possible because of the techniques developed
in this paper.

The Implementation and the Cost of Analysis: The
implementation of dynamic programming is in C++. The
scripting is by Ruby. To test the speed, we use a machine
with 1.7GHz Intel Core i5-3317U (11 inch MacBook Air,
power cord unplugged). For all 1820 groups, it takes 4
minutes 20 seconds real time for optimal partitioning, 5
minutes 8 seconds for natural baseline optimization, and
4 minutes 3 seconds for equal baseline. For each group,
the optimizer reads 4 footprints from 4 files. There are
16 footprint files for the 16 programs. The size ranges
between 242KB and 375KB. The file size can be made
smaller by storing in binary rather than ASCII format. The
implementation has not been optimized for speed, but it is
fast enough — on average it takes less than 0.21 second to
optimize a program group. In comparison, it takes STTW 3
minutes 38 seconds for 1820 groups or 0.11s per group.

The footprint measurement we use is the same as the
implementation by Xiang et al. [16] and Wang et al. [12]
Xiang et al. reported on average 23 times slowdown from
the full-trace footprint analysis. Wang et al. developed a
sampling method called adaptive bursty footprint (ABF)

profiling, which takes on average 0.09 second per program.
To have reproducible results, our implementation uses the
full-trace footprint.

B. Optimization Results

The Effect of Cache Sharing — Natural vs Equal: In a
co-run group, we call a program a gainer if its miss ratio in
the shared cache is lower than in the equal partition, and a
loser if the opposite is true. Because of the natural-partition
assumption, the comparison can be made between Natural
and Equal, as shown in Figure 5.

In lbm and sphinx3, Natural is nearly always lower than
Equal. Hence, the two programs mostly gain from sharing
the cache. In perlbench and sjeng, Natural is almost never
lower than Equal. The latter two programs almost never gain
from sharing. All programs can have a large relative change
in the miss ratio due to cache sharing, although the absolute
change may be small if the miss ratio is small to start with.

Sharing has a harmonizing effect to narrow the difference
between program miss ratios. The plots in Figure 5 are
ordered by the decreasing miss ratio of Equal. A tendency
for programs with a high miss ratio (whose plots are at the
front of the page) to gain from sharing and programs with
a low miss ratio to lose by sharing. The division line is
roughly 1.35%. However, the tendency is not strict. The
program perlbench always loses by sharing, but its miss
ratio is higher than two programs, hmmer and tonto, where
sharing is mostly beneficial.

The large variation within a plot and between plots means
that it is difficult to classify programs by its behavior in
the shared cache. For example, 12 of the 16 programs have
mixed gains and losses due to sharing. Classification by the
miss ratio is also not effective, since the relative portions
of gaining and losing cases do not strictly correlate with
the miss ratio. In addition, classification does not solved the
problem of deciding which cases gain or lose and by how
much.

Effect of Optimization: Table I shows the improvement
by Optimal over all the other methods. Optimal improves
Natural by 26% on average. It is at least 10% better for 58%
of the groups and 20% better for 45% of the groups. The
improvement is greater for Equal. The average improvement
in all groups is 125%, and 77% and 58% of the groups are
improved by at least 10% and 20% respectively.

Unfairness of Optimization: While Optimal makes a
group much better overall, it may be unfair and makes a
member program worse. Consider the miss ratio of Natural
or Equal as the baseline. Optimal is unfair if it increases
the miss ratio of a program compared to its baseline.
Individually, we see clear evidence of unfairness in Figure 5
— Optimal makes a program worse as often as it makes it
better. This is true regardless which baseline we examine.

We may classify a program by how likely it gains or
loses ground in Optimal. For example, sphinx3 is almost

0 100 200 300 400

0
.0

0
0

.0
5

0
.1

0
0

.1
5

mcf

m
c
f
m

is
s
 r

a
tio

natural
equal
Pareto natural
Pareto equal
optimal

0 100 200 300 400
0.

00
0.

01
0.

02
0.

03
0.

04
0.

05
0.

06

lbm

0 100 200 300 400

0.
00

0.
01

0.
02

0.
03

0.
04

sphinx3

0 100 200 300 400

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

perlbench

0 100 200 300 400

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

hmmer

0 100 200 300 400

0.
00

00
0.

00
05

0.
00

10
0.

00
15

sjeng

0 100 200 300 400

0.
00

0
0.

00
1

0.
00

2
0.

00
3

0.
00

4
0.

00
5

tonto

0 100 200 300 400

0e
+

00
4e

−
04

8e
−

04

namd

Figure 5: The miss ratio of individual programs running with different peer groups, under natural, equal, natural baseline,
equal baseline, and optimal cache partition. Programs are sorted by the (constant) miss ratio in the equal partition. Under
the other four schemes, the miss ratios vary with the peer group. Baseline optimization is at least as good as the baseline.
Optimal may improve or degrade the individual miss ratio. The group miss ratios are shown in Figure 6 and summarized
in Table I. Due to space limitations, we only show 8 representative programs out of the 16 tested. The others have similar
behaviors.

always made better in Optimal, and namd is almost always
made worse. Overall, Figure 5 shows that the optimization
attempts to reduce the high miss ratios more than it increases
the low miss ratios. However, there are plenty of exceptions.
For example, two programs, hmmer and tonto, have very low
miss ratios but gain rather lose from the optimization in most
of their co-run groups. In almost all programs, whether to
gain or lose depends on its co-run group, so is the degree
of gain or loss.

Baseline Optimization: Baseline optimization is more
effective for Equal than for Natural. As shown in the
individual results in Figure 5 and the group results in
Figure 6, Natural Baseline improves upon Natural in only a
few cases. Table I shows similar improvements and a similar
distribution of improvements for Optimal over Natural and
over Natural Baseline. On the other hand, Baseline Equal
improves upon Equal in far more cases for both the in-
dividual and the group miss ratio. On average, Baseline
Equal is better than Equal by nearly 30%. The different
improvements from the two baselines make a clear contrast.
It shows that there is much more under-utilized cache space
in equal partitions than in natural partitions.

To use the terminology of Xie and Loh [17], there is more
resource under utilization in the socialist allocation than in
the capitalist allocation. Note that this conclusion cannot be
made without baseline optimization, which is only possible
because of the techniques developed in this paper.

Sampling is Unscientific: The shape and the range of
Natural miss ratios in all groups cannot be predicted by
taking a few random points. It is almost guaranteed that
differently sampled groups have few results in common. If a
program always or never gains by cache sharing, sampling
can recognize these cases. However, the amount of gains
and losses is consistently inconsistent and cannot be fully
analyzed by sampling.

Stone-Thiebaut-Turek-Wolf (STTW): The classic solu-
tion of Stone et al. minimizes the group miss ratio through
convex optimization. We show the group-by-group com-
parison between STTW and optimal in Figure 7 and the
statistical comparison in the bottom row in Table I labeled
STTW.

When the convexity assumption holds, STTW is as good
as optimal. However, as shown in Table I, in 34% of co-run
groups, STTW is at least 10% worse than optimal, showing
that the convexity assumption does not hold at least for

Methods of Improvement by Optimal Improved by at least
partitioning Max Avg Median 10% 20%

Equal 4746.43% 125.25% 26.48% 77.08% 57.80%
Equal baseline 2954.52% 97.75% 22.50% 70.27% 52.69%

Natural 266.78% 26.35% 14.51% 57.80% 45.16%
Natural baseline 266.78% 26.21% 14.29% 56.81% 45.10%

STTW 306.55% 33.68% 2.50% 34.39% 33.02%

Table I: The improvement of group performance by Optimal partition over five other partitioning
methods. The last two columns show the percent groups that are improved by at least 10% and
20% respectively.

0 500 1000 1500

0.
00

0.
02

0.
04

0.
06

0.
08

4−program co−run groups (sorted by Optimal miss ratio)

m
is

s
ra

tio

Natural
Equal
Natural baseline
Equal baseline
Optimal

Figure 6: The group miss ratio of the five partitioning
methods.

0 500 1000 1500

0.
00

0.
02

0.
04

0.
06

0.
08

4−programs co−run groups(sorted by Optimal miss ratio)

m
is

s
ra

tio

Stone−Thiebaut−Turek−Wolf
Optimal

Figure 7: The group miss ratio of Optimal and STTW.

these cases. In most of these groups, STTW is at least 20%
worse. For these groups, STTW is actually worse than the
natural partition, shown by the higher average improvement
of Optimal over STTW (34%) than over Natural (26%).

These results show that the convexity assumption is
flawed to the extent that STTW optimization has the worse
average performance than the simple free-for-all cache shar-
ing. The problem is exacerbated when more programs share
the cache, since a larger group increases the chance of the
violation of the assumption by one or more members. In
addition, STTW cannot optimize for fairness. The problems
of STTW have been solved by our new algorithm, which
improves the maximal performance by 34% on average over
STTW and enables baseline optimization of fairness.

C. Validation

Previous work has measured the accuracy of the HOTL
theory. Xiang et al. compared the prediction for two-program
pairs [16]. They tested all 190 pair combinations. For each

pair, they repeatedly ran each program so the co-run effect
was stable from one test to another,6 and measured the miss
ratio for each program using three hardware counters:

OFFCORE_RESPONSE_0.DATA_IN.LOCAL_DRAM
MEM_INST_RETIRED.LOADS
MEM_INST_RETIRED.STORES

The first is the miss count, and the sum of the last two is
the access count. Their ratio is the miss ratio. Xiang et al.
compared the 380 measured miss ratios with the prediction
and showed the results in Figure 9 in [16]. The prediction
was accurate or nearly accurate for all but two miss ratios.
From their results, we draw the conclusion that the natural
partition assumption is largely true.

We do not simulate system performance for several
reasons. First, our purpose and expertise both lie in pro-

6The stable result avoids the problem of performance variation, which
can be modeled using Sandberg et al. [5]

gram analysis and optimization, not hardware cache design.
Second, our goal is not to maximize performance, which
depends on more factors than we can rigorously study in
one paper. By focusing on cache and the slowdown-free miss
rate, the achieved optimality is actually CPU independent,
i.e., optimal regardless of the CPU design.

A simulator, especially for a multicore system, has many
parameters. We are not confident that we can produce the
same accuracy that we can with locality modeling. Finally,
simulation is slow. Most computer architecture studies sim-
ulate a small fraction of a program. For example, Hsu et al.
used a cache simulator called CASPER to measure the miss
ratio curves from cache sizes 16KB to 1024KB in increments
of 16KB [1]. They noted that “miss rate errors would have
been unacceptably high with larger cache sizes” because
they “were limited by the lengths of some of the traces.”
Our analysis considers all data accesses in an execution.

VIII. DISCUSSION ON OPTIMALITY

The nature cache partition as we have derived in Section V
implies that optimal cache partition is the optimal solution
for partition sharing. This optimality requires a number of
assumptions, which we enumerate and discuss here.

HOTL Theory Correctness: The HOTL theory assumes
the reuse window hypothesis, which means that the footprint
distribution in reuse windows is the same as the footprint
distribution in all windows [16]. When the hypothesis holds,
the HOTL prediction is accurate for fully associative LRU
cache. The correctness has been evaluated and validated
for solo-use cache, including the two initial studies of the
footprint theory [15], [16]. Independent validation can be
found in the use of the footprint theory in optimal program
symbiosis in shared cache [12], optimal memory allocation
in Memcached [2], and a study from the OS community on
server cache performance for disk access traces [13].

Random Phase Interaction: We assume that programs
interact in their average behavior. Programs may have
phases, but their phases align randomly rather than determin-
istically. An example of synchronized phase interaction is
shown at the beginning of the paper in Figure 1. The natural
partition does not exist since no cache partition can give
the performance of cache sharing. However, synchronized
phase interaction is unlikely for independent applications. It
is unlikely that they have the same-length phases, and one
program always finishes a phase just when a peer program
starts another phase. We assume that the phase interaction is
random. This assumption is implicit and implicitly validated
in Xiang et al., who tested 20 SPEC programs and found
that HOTL is acceptable in 99.5% of cases of

(
20
2

)
possible

paired running [16].
Fully Associative LRU Cache: The locality theory

is partly mathematical, and the mathematics is critical in
establishing the formal connection between program- and
machine-level concepts, e.g., from the reuse time to the miss

ratio. In comparison, the real cache is set-associative, and
not all cache sizes are possible. In addition, the replacement
policy may be an approximation or improvement of LRU.
Past work has validated the theory result by measuring the
actual miss ratio (using the hardware counters) on a real
system. Xiang et al. showed accurate prediction by the
HOTL theory for all three levels of cache on a test machine
(Figure 6 in [16]). In addition, the HOTL theory can derive
the reuse distance, which can be used to statistically estimate
the effect of associativity [8], and as Sen and Wood recently
showed, the performance of non-LRU policies [7].

Locality-performance Correlation: A recent study by
Wang et al. shows that the HOTL-based miss ratio prediction
has a linear relationship between execution time, with a
coefficient of 0.938 [12]. They measure execution times and
miss ratios of all 1820 4-programs co-run groups from a set
of 16 SPEC programs. Thus, reducing execution time can
be achieved though reducing same portion of miss ratio.

Practicality: The profiled metrics are average footprint,
total number of memory accesses, and solo-run time for
each program. Xiang et al. reported on average 23 times
slowdown from the full-trace footprint analysis [16]. Wang
et al. developed a sampling method called adaptive bursty
footprint (ABF) profiling, which takes on average 0.09
second per program [12]. To have reproducible results, our
implementation uses the full-trace footprint. We assume that
in practice, the data can be collected in real time.

While these assumptions do not always hold, they have
been carefully studied and validated through experiments on
actual systems. Sections VII-C and IX give more details
on some of these studies. In this paper, we use these
assumptions to develop optimal partition sharing for general
programs on any size cache. For hardware cache design,
these assumptions may not be adequate, and careful simula-
tion may be necessary. However, our objective here is narrow
and specific, which is a machine-independent strategy for
program co-run optimization for cache performance.

IX. RELATED WORK

The Footprint Theory: Optimization must be built on
theory, which in this case is the higher-order theory of
locality (HOTL) [16]. As a metric, footprint quantifies the
active data usage in all time scales. Because the footprint
is composable, it can be used to predict the performance of
cache sharing. In this paper, we show a consequence of the
HOTL theory: the performance of shared cache equals to a
particular solution of cache partitioning called the natural
partition, which we then use to optimize not just cache
sharing, but also cache partitioning and partition sharing.

Three recent studies provide fresh evidence on the accu-
racy of the footprint analysis in modeling fully-associative
LRU cache. Wang et al. tested the analysis on program
execution traces for CPU cache [12], Hu et al. on key-
value access traces for Memcached [2], and Wires et al.

on disk access traces for server cache [13]. The three
studies re-implemented the footprint analysis independently
and reported high accuracy through extensive testing. Hu et
al. tested the speed of convergence, i.e., how quickly the
memory allocation stablizes under a steadystate workload,
and found that optimal partition converges 4 times faster
than free-for-all sharing [2]. Finally, Wang et al. showed
strong correlation (coefficient 0.938) between the predicted
miss ratio and measured co-run speed [12]. The correlation
means that if we minimize the miss ratio in shared cache,
we minimize the execution time of co-run programs.

Cache Partitioning: Cache partitioning is an effective
solution to improve performance, which has been shown by
many studies including the following two on optimal cache
partitioning. Stone et al. gave a greedy solution to allocate
cache among N processes, which allocates the next cache
block to the process with the highest miss-rate derivative.
The allocation is optimal if the miss-rate derivatives are as
equal as possible [9]. The optimality depends on several
assumptions. One is that the miss-rate derivative must be
monotonic. In other words, the MRC must be convex. Suh
et al. gave a solution which divides MRC between non-
convex points but concluded that the solution “may be too
expensive” [10].

The previous optimization is limited to cache partitioning.
Here we optimize for both partitioning and sharing. Further-
more, our solution does not depend on any assumption of
the MRC curve. It can use any cost function. The generality
is useful when optimizing with constraints or for multiple
objectives, e.g., both throughput and fairness in elastic cache
utility optimization [18].

Concurrent Reuse Distance: Simulation of shared
cache is costly, and the result is specific to the cache
being simulated. More general solutions are based on the
concept of concurrent reuse distance (CRD), which shows
the performance of both partitioned and shared cache for
all cache sizes [3], [6], [14]. However, CRD is for a given
set of programs and must be measured again when the set
changes. It cannot derive the optimal grouping of programs,
which is needed for partition sharing.

X. SUMMARY

In this paper we presented partition-sharing as a general
problem for assigning cache space to programs running on
multi-core architectures. We enumerated the search spaces
for 5 different sub-problems of partition-sharing, used the
Higher Order Theory of Locality to show that the best
partitioning-only solution must be the optimal partition-
sharing solution, and presented a new algorithm for attaining
optimal partitioning solution. In addition, we defined two
resource-efficient fairness conditions, equal baseline and
natural baseline, and used a modified algorithm to optimize
performance under each one. Experiments show that the

baseline optimization can significantly improve equal parti-
tioning but not free-for-all sharing. Each optimization result
is obtained from a very large solution space for different
ways to share the cache.

This paper is subtitled with a quote from Robert Frost:
“Don’t ever take a fence down until you know why it was
put up”. We argue that despite there being a vast number
of options for allocating shared cache among programs, the
best option is usually to assign a partition to each program. If
we are to trust the great American poet, as well as the now-
established Higher Order Theory of Locality, we’d better
default to leaving up fences between our co-run programs.

REFERENCES

[1] L. R. Hsu, S. K. Reinhardt, R. R. Iyer, and S. Makineni. Com-
munist, utilitarian, and capitalist cache policies on CMPs:
caches as a shared resource. In PACT, pages 13–22, 2006.

[2] X. Hu, X. Wang, Y. Li, L. Zhou, Y. Luo, C. Ding, S. Jiang,
and Z. Wang. LAMA: Optimized locality-aware memory
allocation for key-value cache. In Proceedings of USENIX
ATC, 2015.

[3] Y. Jiang, E. Z. Zhang, K. Tian, and X. Shen. Is reuse distance
applicable to data locality analysis on chip multiprocessors?
In Proceedings of CC, pages 264–282, 2010.

[4] R. Parihar, J. Brock, C. Ding, and M. C. Huang. Protection
and utilization in shared cache through rationing. In Proceed-
ings of PACT, pages 487–488, 2014. short paper.

[5] A. Sandberg, A. Sembrant, E. Hagersten, and D. Black-
Schaffer. Modeling performance variation due to cache
sharing. In Proceedings of HPCA, pages 155–166, 2013.

[6] D. L. Schuff, M. Kulkarni, and V. S. Pai. Accelerating multi-
core reuse distance analysis with sampling and parallelization.
In Proceedings of PACT, pages 53–64, 2010.

[7] R. Sen and D. A. Wood. Reuse-based online models for
caches. In Proceedings of SIGMETRICS, pages 279–292,
2013.

[8] A. J. Smith. On the effectiveness of set associative page
mapping and its applications in main memory management.
In Proceedings of ICSE, 1976.

[9] H. S. Stone, J. Turek, and J. L. Wolf. Optimal partition-
ing of cache memory. IEEE Transactions on Computers,
41(9):1054–1068, 1992.

[10] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic partitioning
of shared cache memory. The Journal of Supercomputing,
28(1):7–26, 2004.

[11] D. Thiébaut and H. S. Stone. Improving disk cache hit-ratios
through cache partitioning. IEEE Transactions on Computers,
41(6):665–676, 1992.

[12] Wang et al. Optimal program symbiosis in shared cache. In
Proceedings of CCGrid, June 2015.

[13] J. Wires, S. Ingram, Z. Drudi, N. J. Harvey, A. Warfield,
and C. Data. Characterizing storage workloads with counter
stacks. In Proceedings of OSDI, pages 335–349. USENIX
Association, 2014.

[14] M. Wu and D. Yeung. Efficient reuse distance analysis of
multicore scaling for loop-based parallel programs. ACM
Trans. Comput. Syst., 31(1):1, 2013.

[15] X. Xiang, B. Bao, C. Ding, and Y. Gao. Linear-time modeling
of program working set in shared cache. In Proceedings of
PACT, pages 350–360, 2011.

[16] X. Xiang, C. Ding, H. Luo, and B. Bao. HOTL: a higher
order theory of locality. In Proceedings of ASPLOS, pages
343–356, 2013.

[17] Y. Xie and G. H. Loh. Dynamic classication of program
memory behaviors in CMPs. In CMP-MSI Workshop, 2008.

[18] C. Ye, J. Brock, C. Ding, and H. Jin. RECU: Rochester elastic
cache utility. In Proceedings of NPC, 2015.

