
Improving Effective Bandwidth through
Compiler Enhancement of Global Cache Reuse

Chen Ding Ken Kennedy
Department of Computer Science Department of Computer Science

University of Rochester Rice University
Rochester, NY Houston, TX

Abstract

Reusing data in cache is critical to achieving high per-
formance on modern machines because it reduces the im-
pact of the latency and bandwidth limitations of direct mem-
ory access. To date, most studies of software memory hi-
erarchy management have focused on the latency problem.
However, today’s machines are increasingly limited by in-
sufficient memory bandwidth—on these machines, latency-
oriented techniques are inadequate because they do not
seek to minimize the total memory traffic over the whole
program. This paper explores the potential for addressing
bandwidth limitations by increasing global cache reuse—
that is, reusing data across whole program and over the en-
tire data collection. To this end, the paper explores a two-
step global strategy. The first step fuses computations on
the same data to enable the caching of repeated accesses.
The second step groups data used by the same computation
to bring about contiguous access to memory. While the first
step reduces the frequency of memory accesses, the second
step improves their efficiency. The paper demonstrates the
effectiveness of this strategy and shows how to automate it
in a production compiler.

1 Introduction

Although the problem of high memory latency in modern
processors has been widely recognized, less attention has
been paid to the effect of limited memory bandwidth. Over
the past twenty years, CPU speed has improved by a factor
of 6400, while memory bandwidth has increased by a fac-
tor of only 1501. Our earlier performance study found that
typical scientific applications demand 3 to 10 times as much
memory bandwidth as provided by a typical machine, and
consequently, these applications can achieve at most 10%
to 33% of peak CPU performance on average [11]. This in-
dicates that substantive performance gains can be made on
most applications if the memory bandwidth bottleneck can
be alleviated2.

1We derived this estimate from historical data about CPU speed, mem-
ory pin count, and pin-bandwidth increases compiled by Burger et al[6].

2Common latency-hiding techniques such as prefetching cannot help
with the bandwidth problem, because they do not reduce memory trafic.

The principal method used to reduce the volume of mem-
ory traffic and thus alleviate the bandwidth bottleneck is
data caching. Interestingly, although cache has been widely
used for many years, its full potential has not yet been re-
alized. The example in Figure 1 illustrates the opportunity
for additional cache reuse. Part (a) of Figure 1 shows a se-
quence of 7 accesses to 3 data elements. Assuming a single-
element cache with the LRU replacement, only the last ac-
cess to a will find a buffered copy in cache, in which case,
we credit the computation with a single cache reuse. On
a perfect machine that can foresee all future computations,
we could use the optimal replacement strategy, the Belady
policy, which always keeps the next used data element in
cache [5]. Belady would keep a in cache from the begin-
ning and achieve two cache reuses. Still, the majority of
memory access is not cached. Can this be improved upon?

In fact, the answer is “yes”. The optimality of Belady
policy is conditional: it assumes that the access sequence
cannot be changed. If we can reorder data accesses, we can
reuse data in a totally different manner. Part (b) of Fig-
ure 1 shows a reordered sequence where references to the
same data are grouped together. The improved sequence has
4 cache reuses on a one-element cache with LRU replace-
ment. This doubles the cache reuse achieved by Belady. In
fact, the new sequence achieves the best caching behavior
because each element is loaded only once.

In this paper, we seek improve data caching through pro-
gram reorganization as described above. Our strategy con-
sists of two steps. The first step, computation fusion, fuses
computations on the same data so that when a piece of data
is loaded in cache, we finish all its uses before evicting the
data from cache. The clustering used in Figure 1(b) is an ex-
ample of computation fusion. For caches with non-unit size
cache blocks, computation fusion alone is not sufficient be-
cause it does not address the problem of data layout. To
better utilize cache space, the second step, data regroup-
ing, gathers data used by the same computation so that we
populate cache exclusively with data used by that computa-

For example, when running a program with 10GB memory transfer on a
machine with 1GB/s memory bandwidth, the execution would take at least
10 seconds even with infinite CPU speed and perfect prefetching. This
time bound cannot be further reduced without first solving the bandwidth
problem.

1

da c... ...a d c a a c d

(a) example sequence (c) grouping data used together(b) fusing accesses on the same data

a a a d d c c
memory

layout

Figure 1. Example use of the two-step strategy

tion. Together, these two steps improve both the temporal
and spatial locality of a program. Figure 1(c) shows the
memory layout generated by data regrouping. The new ac-
cess sequence and its data layout result in the best possible
cache performance: not only are data elements loaded once
and only once, but also they are loaded from contiguous
memory locations.

The two-step strategy must be globally applied to en-
hance data reuse across the whole program. Computation
fusion must recombine all procedures in a program and data
grouping must re-shuffle the entire data layout. Since the
two transformations are tightly coupled, they should not be
manually applied because this would compromise the in-
dependence of procedures from their data layout. Existing
automatic techniques, however, are not adequate. For ex-
ample, loop blocking—a standard technique for increasing
reuse—is usually applied to a single loop nest and thus can-
not exploit data reuse among disjoint loops. Loop fusion
combines multiple loops, but existing fusion methods are
limited in their ability to fuse loops of different shape, such
as non-perfectly nested loops and nests with different levels
of nesting. Furthermore, previous fusion methods do not
adequately address the problem of spatial locality, which
becomes particularly difficult when a large amount of com-
putation is fused together.

In the rest of this paper, we present two new program
transformations that carry out the two-step strategy over the
whole program and all its data. The first is reuse-based loop
fusion, which fuses loops of different shapes. The second
is multi-level data regrouping, which reorganizes arrays at
various granularity. The next two sections describe these
methods and explore their properties. Section 4 presents
the implementation and evaluation of the combined strat-
egy. Finally, Section 5 discusses related work and Section 6
concludes the presentation.

2 Global computation fusion
In this paper, we pursue computation fusion using a

heuristic we call sequential greedy fusion—for every data
reference from the beginning to the end of a program, we
move it forward as far as possible toward the previous refer-
ence to the same data element. In a sense, this is the inverse
of the Belady strategy. While Belady evicts data that have
the furthest reuse, sequential greedy fusion executes the in-
struction that has the nearest reuse. In the next two sections,
we first measure the potential of this heuristic through ideal
simulation and describe a new source-level fusion transfor-
mation produces a reference pattern closer to the ideal.

2.1 Reuse-driven execution
Reuse-driven execution simulates sequential greedy fu-

sion by reordering run-time instructions. We use simu-

lation because it offers the maximal freedom in program
reordering—it knows precise dependences and it permits
transformations that are not restricted by source-level struc-
tures.

Given a program, we first instrument it to collect the ex-
ecution trace. Only source-level instructions and data refer-
ences are collected. Then we re-order instructions based on
their issuing cycle on an ideal parallel machine with an un-
bounded number of processors. Finally we carry out reuse-
driven execution following the algorithm in Figure 2. At
each step, reuse-driven execution gives priority to later in-
structions that reuse the data of the current instruction. It
employs a FIFO queue to sequentialize multiple reuse can-
didates.

function Main
for each instruction i in the ideal

parallel execution order
enqueue i to ReuseQueue
while ReuseQueue is not empty

dequeue i from ReuseQueue
if (i has not been executed)

ForceExecute(i)
end while

end for
end Main

function ForceExecute(instruction j)
while there exists un-executed instruction

i that produces operands for j
ForceExecute(i)

end while
execute j
for each data t used by j

find next instruction m that uses t
enqueue m into ReuseQueue

end for
end ForceExecute

Figure 2. Reuse-driven execution algorithm

To assess changes in program locality, we use a measure
called reuse distance [12]. In a sequential execution, the
reuse distance of a memory reference is the number of the
distinct data items that appear between the current reference
and the closest previous reference to the same data element.
For example, in Figure 1(a), the reuse distance of the second
access to d is two because two distinct data elements are
accessed between the two uses of d. With a fully associative
LRU cache, a memory reference hits in cache if and only if
its reuse distance is smaller than cache size. Although the
relation is not as definitive for a set-associative cache, it is
generally true that the longer the reuse distance, the less the
chance the cache reuse. We therefore measure the locality
of a program by the histogram of all its reuse distances. A

2

0 2 4 6 8 10 12 14 16 18
reuse distance (log scale, base 2)

0

30

60

90

120

nu
m

be
r

of
 r

ef
er

en
ce

s
(in

 th
ou

sa
nd

s)

ADI, 100x100

program order
reuse−driven execution

0 2 4 6 8 10 12 14 16 18 20 22
reuse distance (log scale, base 2)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

nu
m

be
r

of
 r

ef
er

en
ce

s
(in

 th
ou

sa
nd

s)

NAS/SP, 28x28x28

program order
reuse−driven execution

Figure 3. Effect of reuse-driven execution

detailed description of reuse distance and its measurement
can be found in our technical report [12].

The effect of reuse-driven execution is shown in Fig-
ure 3 for a kernel program ADI and an application bench-
mark NAS/SP (Serial version 2.3); the former has 8 loops
in 4 loop nests, and the latter has over 218 loops in 67 loop
nests. In each figure, a point at (x; y) indicates that y thou-
sands of memory references have a reuse distance between
[2(x�1); 2x). Note that the horizontal axis is in log scale.
The figure links discrete points into a curve to emphasize
the elevated hills, where large portions of the memory ref-
erences reside.

The two graphs in Figure 3 show that reuse-driven ex-
ecution achieves a significant reduction in the number of
long reuse distances. The reduction is approximately 30%
for ADI and 60% for SP. Assuming that memory refer-
ences with long reuse distances are the principal cause
of cache misses, sequential greedy fusion would reduce
the total number of misses by 30% to 60%. We also
tested other programs—a kernel, FFT, and a full applica-
tion, DOE/Sweep3D. Reuse-driven execution did not im-
prove FFT (a small percentage of reuse distances is actu-
ally lengthened), but it reduced the number of long reuse
distances by about 60% in DOE/Sweep3D. The complete
results and a more accurate characterization can be found in
our technical report [12].

In summary, reuse-driven execution demonstrates the ef-
fectiveness of sequential greedy fusion on programs with a
large number of loops such as NAS/SP and DOE/Sweep3D.
The next section shows how to approximate the effect of
sequential greedy fusion at the source level. The evaluation
section will compare the result of source-level fusion with
that of reuse-driven execution.

2.2 Reuse-based loop fusion
In many applications, especially scientific programs,

loops contain most of the data accesses and hence, most
of the opportunities data reuse. Applying sequential greedy
fusion means fusing each loop with the preceding loop with
which it shares data. Although loop fusion has been widely
studied, its use has been limited in real programs that con-
tain loops of different shapes, such as single statements
(loops with zero dimension), loops of a different number
of dimensions, and non-perfectly nested loops, because it
is not immediately obvious what it means to fuse loops of

different shapes.
Reuse-based fusion uses a general heuristic based on

data reuse: given two loops of arbitrary shape, we merge
the iterations that use the same data. The focus on data ac-
cess allows loop fusion to be based on the content of the
loop rather than on its control structure. Given two loops,
we categorize their data sharing into three cases and apply
transformations correspondingly as follows.

� Loop fusion and alignment, when data are shared be-
tween iterations of the candidate loops. We interleave
the iterations of the two loops and align them by either
shifting the iterations of the second loop down to pre-
serve data dependences, or, if data dependences per-
mit, shifting these iterations up to bring together data
reuse.

� Loop embedding, when data are shared between one
loop and an iteration of the other loop. We embed
the first loop as one iteration in the second loop. We
schedule the embedded iteration with its data-sharing
counterpart.

� Iteration reordering, when candidate loops are not
wholly fusible. We break the two loops into individ-
ual iterations and fuse those iterations that are fusible.
Examples of iteration reordering are loop splitting and
loop reversal.

Figure 4 gives the basic algorithm for single-level fusion.
For each statement p, the algorithm finds the closest prede-
cessor q that shares data access with p. It then examines the
data reuse to determine the proper use of loop fusion, loop
alignment, loop embedding and iteration reordering. Once
two loops are fused, the fusion process is re-applied to the
fused loop because it now accesses a larger set of data and
may require further fusion with its predecessors. Although
not shown in Figure 4, the actual algorithm has provisions
to control the cost of recursive fusion. The implementation
of this algorithm will be discussed in more detail in Sec-
tion 4.1, including the handling of branches and procedures.

SingleLevelFusion
for each statement p in program order

find latest preceding loop q that
shares data with p

if (p share data w/ an iteration of q)
embed p into q by loop embedding

else begin
find the smallest alignment factor
that satisfies data dependences

apply iteration reordering if necessary
if (legal alignment is found)
fuse p into q by loop alignment
recursively apply fusion on q

end if
end if

end for

Figure 4. Single-level fusion algorithm

The example in Figure 5 illustrates reuse-based loop fu-
sion. The code on the left-hand side of Figure 5 is a pro-

3

gram with two loops that both access array A. They can-
not be fused directly because two intervening statements
also access parts of A. The fusion algorithm examines each
statement in program order and embeds the two single state-
ments into the first loop. After loop embedding, two loops
are still not fusible because A[1] is assigned by the last it-
eration of the first loop but used by the first iteration of the
second loop. Therefore, iteration reordering is applied to
peel off the first iteration of the second loop so that the re-
maining iterations can be fused with the first loop. Finally,
loop alignment shifts up the iterations of the second loop so
that they can directly reuse A[i� 1]. The fused program is
shown in the right-hand side of Figure 5.

for i=2, N
 A[i]=f(A[i-1])
end for

A[1]=A[N]
A[2]=0.0

for i=3, N
 B[i]=g(A[i-2])
end for

for i=2, N
 A[i]=f(A[i-1])
 if (i==3)
 A[2]=0.0
 else if (i==N)
 A[1]=A[N]
 end if
 if (i>2 and i<N)
 B[i+1]=g(A[i-1])
 end if
end for
B[3]=g(A[1])

Figure 5. Examples of reuse-based fusion

Reuse-based loop fusion adds significant instruction
overhead because of the branch statements it inserts. For
programs that already use cache well, this overhead may de-
grade performance, particularly on processors with limited
branching capability. However, on programs whose perfor-
mance is seriously limited by memory hierarchy, the over-
head of branching is likely to be hidden because the CPU
spends most of its time waiting for memory. In addition,
future processor generations will be better equipped to deal
with branches because of advanced features such as pred-
icated execution. The evaluation section will measure the
overall effect of reuse-based fusion on a real machine.

2.3 Properties of reuse-based fusion
Pair-wise fusion This property is important because

avoids the exponential cost of the fusion legality test. The
problem is illustrated by the example program in Figure 6.
The two loops shown cannot be fused because all iterations
of the second loop depend on all iterations of the first loop
due to the intervening statement. If we view the statement
as a loop with zero dimension, then this is an example where
any two of the three loops are fusible, but the group is not.
Therefore, the fusion legality test is not transitive. Finding
all fusible sets requires testing all loop groups and incurs
a cost that is exponential in the number of loops. Reuse-
based fusion, however, fuses loops incrementally. At each
step, it examines only the closest pair of data-sharing loops
and thus avoids legality test for arbitrary sets of loops, al-
though it may miss some opportunities for fusion.

Bounded reuse distance In a fused loop, the reuse dis-
tance of all loop-variant accesses does not increase as the
input size grows, that is, the fused loop can be cached

for i=2, N
A[i] = f(A[i-1])

end for
A[1] = A[N]
for i=2, N

A[i] = g(A[i-1])
end for

Figure 6. Loops that are not fusible

by constant-size cache regardless the volume of the input
data. The upper bound on reuse distance is O(Narrays �
Nloops), where Nloops is the number of loops that are
fused, and Narrays is the number of arrays accessed in the
fused loop. This upper bound is tight because a worst-
case example can be constructed as follows: the body of
the first loop is B(i)=A(i+1), next are N loops with
a body B(i)=B(i+1), finally is a loop with the body
A(i)=B(i). Since the two accesses to A(i) must be sep-
arated by N iterations, the reuse distance can be no less
than N . Therefore, the fusion algorithm achieves the tight-
est asymptotic upper bound on the length of reuse distances
in fused loops.

Fast algorithm Assuming loop splitting at boundary el-
ements is the only form of iteration reordering, the fusion
algorithm in Figure 4 runs in O(N � N 0 � A), where N
is the number of program statements before fusion, N 0 is
the number of loops after fusion, and A is the number of
data arrays in the program. We expect that the number of
program statements is much larger than the number of fused
loops and program arrays. Furthermore, the latter two quan-
tities probably do not grow in proportion to the number of
statements. Therefore, the time complexity of reuse-based
fusion in practice should be nearly linear in the in the size
of the program. Other types of iteration reordering may add
higher time complexity to the algorithm. However, bound-
ary splitting is sufficient for test programs used in Section 4.

2.4 Multi-level fusion
For programs with multi-dimensional loops and arrays,

the one-level fusion algorithm can be applied level by level
as long as we first determine the nesting order. Figure 7
gives the algorithm for multi-level fusion, which seeks to
minimize the number of fused loops at outer levels.

While all data structures and loop levels are used to de-
termine the correctness of fusion, only large data structures
are considered in determining the profitability of fusion. In
multi-level fusion, the term data dimension denotes a data
dimension of a large array, and the term loop level refers to
only loops that iterate over a data dimension of a large array.

For each loop level starting from the outermost, Multi-
LevelFusion determines loop fusion at a given level, L, in
three steps. The first step examines all data dimensions that
are iterated by loops of this or deeper levels. For each data
dimension, the algorithm performs hypothetical fusion and
measures the number of loops after fusion. Then the second
step picks the data dimension that yields the smallest num-
ber of fused loops. The actual transformation of interchange
and fusion at level L happens at this step. Finally, the third

4

step recursively applies MultiLevelFusion at the next loop
level. Note that not all level-L loops iterate the same data
dimension. Since loop interchange at the first step may not
always succeed, some level-L loops may access a different
data dimension. These loops will also be fused if they iter-
ate the same data dimension. So the dimension s in the third
step is not always the dimension s0 found in the second step.

MultiFusion(S: data dimensions, L: current level)
// 1. find the best data dimension for level L
for each dimension s, test hypothetically

LoopInterchange(s, L)
apply SingleLevelFusion
count the number of fused loops

end for
chose dimensiont s’ with the fewest fused loops
// 2. fuse loops for level L on dimension s’
LoopInterchange(s’, L)
apply SingleLevelFusion at level L
// 3. continue fusion at level L+1
for each loop nest at level L

MultiFusion(S-{s},L+1), where s is the
data dimension iterated by the level-

L loop
end for

end MultiFusion

LoopInterchange(s: data dimension, L: loop level)
for each loop nest

if (level t (>=L) iterates data dim s)
interchange level t to L if possible

end for
end LoopInterchange

Figure 7. Multi-level fusion algorithm

3 Global data regrouping
Although loop fusion reorders computations, it does not

change data layout. Indeed, a fused loop usually includes
a large volume of data access, which often causes wasted
space within cache blocks and excessive interference among
cache blocks. In this section, we overcome this problem by
a method called data regrouping, which clusters data used
by the same loop into adjacent memory locations. We first
introduce our earlier work on single-level data regrouping
and then extend it to grouping data of multiple granularity.

3.1 Single-level regrouping
To improve spatial reuse among global arrays, we pre-

viously introduced inter-array data regrouping [10], which
works as follows. It first partitions a program into a se-
quence of computation phases, each of which accesses a
data set that is larger than cache. Then, it classifies all data
arrays into compatible groups based on their size and data
access order. Arrays with small, constant size dimensions
are split into multiple arrays.

Data regrouping is applied for each compatible array
group. Two arrays are grouped if and only if they are always
accessed together. The profitability is guaranteed because
no useless data is introduced into cache blocks. In fact, this
regrouping scheme achieves the best machine-independent

for i
 for j
 g(A[j,i],B[j,i])
 end for
 for j
 t(C[j,i])
 end for
end for

for i
 for j
 g(D[1,j,1,i],D[2,j,1,i])
 end for
 for j
 t(D[j,2,i])
 end for
end for

(a) Original program (b) Transformed program
(assuming column-major order)

Figure 8. Example of multi-level regrouping

data layout [10]. A limitation, however, is that it regroups
data only at a single level. Here we extend regrouping to
data of multiple granularities.

3.2 Multi-level regrouping
In many programs, especially after aggressive fusion,

loops are not perfectly nested. Since data of varied granu-
larity are used together, single-level array regrouping is not
adequate to fully exploit spatial reuse among related data.
Multi-level regrouping overcomes this limitation by group-
ing not only array elements but also array segments. The
additional grouping at larger granularity can further reduce
cache interference as well as the page-table working set.

Figure 8(a) gives an example of multi-level data regroup-
ing. The program has an outer loop enclosing two inner
loops. Elements of array A and B are used together in
the first inner loop, and the columns of all three arrays are
used together in iterations of the outer loop. Single-level re-
grouping cannot exploit these two levels of spatial reuse at
the same time. To overcome this limitation, we group data
at different granularities. In part (b), multi-level regrouping
uses a new array D, which combines the first two arrays by
their elements and all three arrays by their columns. Af-
ter multi-level regrouping, the data access is contiguous in
each iteration of the two inner loops (accessing D[�; j; 1; i]
and D[j; 2; i]) and each iteration of the outer loop (access-
ing D[�; i]), even though the loops are not perfectly nested.

It should be noted that programming languages like For-
tran do not allow arrays of non-uniform dimensions like
those of array D. In addition, the new array indexing cre-
ated by source-level regrouping may confuse the back-end
compiler and negatively affect its register allocation. How-
ever, both problems disappear when regrouping is applied,
as it should be, by a back-end compiler.

The algorithm for multi-level regrouping is shown in
Figure 9. The first step of MultiLevelRegrouping collects
data accesses at all array dimensions. Two criteria are used
to identify the set of arrays accessed at a given dimension.
The first is necessary for the algorithm to be correct. The
second does not affect correctness, but ensures that the al-
gorithm counts only those memory references that represent
significant data access volumes, that is, accessing the whole
array. For each data dimension, the algorithm finds the set
of accessed arrays in each computation phase. The second
step of the algorithm applies one-level regrouping for each
data dimension. The correctness of multi-level regrouping
is stated in the following theorem, which is proved in Ding’s

5

MutiLevelRegrouping
// 1. find the arrays accessed in loops
for each loop i and each array ref a

for each data dimension d of a, find
the set of arrays s such that

1. each array in s is accessed at all
dimensions higher than or equal to d
by loop i and its outer loops, and

2. each array of s is accessed at all
other dimensions by inner loops of i

end for
// 2. partition ar-

rays for each data dimension
for each data dimension d

let S be the sets found in Step 1 for d
let A be the set of all arrays
OneLevelRegrouping(A, S, d)

end for
end MultiLevelRegrouping

OneLevelRegrouping(A: all arrays, S: sub-
sets of A, d: current dimension)

let N be the size of A
// 1. construct a bit vector for each subset
for each subset s in S

construct a bit vector b of length N
for i from 1 to N

if (array a is in s) b[a]=1
else b[a]=0

end for; end for
// 2. partition arrays
sort all bit vectors using radix sort
group arrays with the same bit vec-

tor at dim d
end OneLevelRegrouping

Figure 9. Multi-level regrouping algorithm

dissertation [9]. The proof shows that the grouping decision
at a lower level (e.g., grouping array a with b) does not con-
tradict the decision at a higher level (e.g., separating a and
b).

Theorem 3.1 If the algorithm in Figure 9 merges two ar-
rays at data dimension d, the algorithm must also group
these two arrays at all dimensions higher than d.

4 Evaluation

4.1 Implementation
We have implemented computation fusion and data re-

grouping in a version of the D Compiler System at Rice
University. The compiler performs whole program compi-
lation given all source files of an input program. It uses
a powerful value-numbering package to handle symbolic
variables and expressions inside each subroutine and pa-
rameter passing between subroutines. It has a standard set
of loop and dependence analysis, data flow analysis and in-
terprocedural analysis.

Our compiler models the computation and data accesses
of the input program in the following way. We restrict the
accuracy of the model to ensure the fast time bound (given

in Section 2.3) so that global fusion is practical for large
programs.

� A program is a list of loop and non-loop statements, so
is the body of each loop. A structured branch is treated
as one meta-statement. A function call is either inlined
or assumed to access all data.

� Each subscript position of an array reference is in one
of the two forms: A[i+t] andA[t], whereA is the vari-
able name, i is a loop index, and t is a loop-invariant
constant, otherwise we assume the subscript ranges
over the whole data dimension.

For data access that does not conform to our simplified
model, we use conservative approximations to guarantee the
correctness of the transformation. More accurate represen-
tations such as affine array subscripts can be used, although
at the expense of a slower algorithm. Regardless of the rep-
resentation, our fusion algorithm using loop alignment, em-
bedding and splitting is still applicable.

For each loop, the compiler summarizes its data access
by its data footprint. For each dimension of an array, a data
footprint describes whether the loop accesses the whole di-
mension, a number of elements on the border, or a loop-
variant section (a range enclosing the loop index variable).
Data dependence is tested by the intersection of footprints.
The range information is also used to calculate the minimal
alignment factor between loops.

An input program is processed by four preliminary trans-
formations before applying loop fusion. The first is pro-
cedure inlining, which brings all computation loops into
a single procedure. The next includes array splitting and
loop unrolling, which expand data dimensions of a small
constant size and loops that iterate those dimensions. The
third step is loop distribution. Finally, the last step prop-
agates constants into loop statements. Our compiler per-
forms loop unrolling and constant propagation automati-
cally. Currently, array splitting requires a user to specify the
names, and inlining is done by hand; however, both trans-
formations can be automated with additional implementa-
tion effort.

Loop fusion is carried out by applying the fusion al-
gorithm in Figure 4 level by level from outermost to in-
nermost. The current implementation calculates data foot-
prints, aligns loops and schedules non-loop statements. It-
eration reordering is not yet implemented but the compiler
identifies the places where it is needed. Only one program,
Swim, required splitting, which was done by hand.

For multi-dimensional loops, loop fusion reorders loop
levels to maximize the benefit of outer-level fusion, follow-
ing the algorithm in Figure 7. In our experiment, how-
ever, loop ordering was largely unnecessary, as computa-
tions were mostly symmetric. One exception was Tomcatv,
where loop ordering (loop interchange) was performed by
hand.

Code generation is based on mappings from the old iter-
ation space to the fused iteration space. Currently, the code
is generated by the Omega library [20], which has been in-
tegrated into the D compiler system [1]. Omega worked

6

name source input size lines/loops/arrays
Swim SPEC95 513x513 429/8/15
Tomcatv SPEC95 513x513 221/18/7
ADI self-written 2Kx2K 108/8/3
SP NAS/NPB class B, 1141/218/15

Serial v2.3 3 iterations
Sweep3D DOE 150x150x150 2105/67/6

Table 1. Description of test programs

well for small programs, where the compilation time was
under one minute for all kernels. For the full application
SP, however, code generation took four minutes for one-
level fusion but one hour and a half for three-level fusion.
In contrast, the fusion analysis took about two minutes for
one-level fusion and four minutes for full fusion. A direct
code generation scheme, given by Allen and Kennedy [4],
is linear in the number of loop levels, there is currently no
implementation in the D System.

The analysis for data regrouping is trivial with data foot-
prints. After fusion, data regrouping is applied level by
level on fused loops using the algorithm in Figure 9, with
two modifications. First, SGI’s compiler does a poor job
when arrays are interleaved at the innermost data dimen-
sion. So the compiler groups arrays up to the second inner-
most dimension. This restriction may result in grouping in
the less desired dimension, as in Tomcatv. The other restric-
tion is due to the limitation of Fortran language, which does
not allow non-uniform array dimensions. When multi-level
regrouping produced non-uniform arrays, manual changes
were made to disable regrouping at outer data dimensions.

4.2 Experimental design

All programs are measured on an SGI Origin2000 with
R12K processors and an SGI O2 with a single R10K proces-
sor. The SGI O2 is included for a direct comparison with an
earlier work by another group. Both the R12K and R10K
provide hardware counters that measure cache misses and
other hardware events with high accuracy. All machines
have two caches: L1 uses 32-byte cache lines and is 32KB
in size, L2 uses 128-byte cache lines, and the size of L2 is
1MB for O2 and 4MB for Origin2000. Both caches are two-
way set associative. Both processors achieve good latency
hiding as a result of dynamic, out-of-order instruction is-
sue and compiler-directed prefetching. All applications are
compiled with the highest optimization flag and prefetching
on (f77 -n32 -mips4 -Ofast), except for Sweep3D, on which
we use -O2 because it is 2% (23 seconds) faster than -Ofast
for the original program (the performance improvement is
similar at both optimization levels). The SGI compiler used
is MIPSpro Version 7.30.

The five test applications are described in Table 1. They
are benchmark programs from SPEC, NASA and DOE, ex-
cept for ADI, which is a self-written program with separate
loops processing boundary conditions. Since all programs
use iterative algorithms, only the loops inside the time step

were timed. However, the number of cache and TLB misses
was measured for the entire execution.

We also examined other SPEC95fp applications, but
failed to optimize them with the current compiler imple-
mentation because of two problems. The first is due to pro-
cedural abstraction in these programs where similar compu-
tations are represented by the same code but with different
parameters. To fully expose the computation and data ac-
cess, we need not only procedure inlining but an aggressive
form of loop unrolling. We expect to extend our compiler
implementation and optimize tur3d, su2cor and hydro2d.
Sweep3d from DOE has the same problem, but we manu-
ally unrolled the outermost loops and then fused them. The
second limitation is that the current implementation cannot
transform programs where different layouts are used for the
same region of memory, as in mgrid.

4.3 Effect of transformations

The effect of optimizations is shown in Figure 10. All
results were collected on Origin2000 with R12K processors
except for Swim, which was measured on SGI O2. Each
graph shows three sets of bars: the original performance
(normalized to 1), the effect of loop fusion, and the effect
of loop fusion plus data regrouping. The figure also shows
the execution time and original miss rate; however, compar-
isons are made on the number of misses, not on the miss
rate.

Loop fusion and data grouping improved the two SPEC
programs by 12% and 16%. ADI used a much larger data
input than SPEC programs and saw a speedup of 2.33. The
largest application, Sweep3D, was improved by a factor of
1.9 in overall performance. The rest of the section will con-
sider SP in detail.

Program changes for SP SP is a full application bench-
mark and deserves special attention in evaluating the global
strategy. The main computation subroutine, adi, uses 15
global data arrays in 218 loops, organized in 67 nests (after
inlining). Loop distribution and loop unrolling result in 482
loops at three levels—157 loops at the first level, 161 at the
second, and 164 at the third. Array splitting results in 42
arrays.

Loop fusion merges the whole program into 8 loops
at the first level, 13 at the second and 17 at the third
level. Data regrouping combines 42 arrays into 17
new ones. The choice of regrouping is very different
from the initial arrays defined by the programmer. For
example, the third new array consists of four original arrays:
fainv(N;N;N); us(N;N;N); qs(N;N;N); u(N;N;N; 1�
5)g, and the 15th new array includes two disjoint sections of
an original array: flhs(N;N;N; 6�8); lhs(N;N;N; 11�
13)g.

Loop fusion eliminates almost a half of the L2 misses
(49%). However, it packs too much data access into the

7

exe. time L1 L2 TLB
0.00

0.20

0.40

0.60

0.80

1.00

1.20

no
rm

al
iz

ed
 s

ca
le

Swim 513 x 513

 original
+ computation fusion
+ data regrouping

564s 11.2%
0.12%4.64%

exe. time L1 L2 TLB
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

no
rm

al
iz

ed
 s

ca
le

Tomcatv 513 x 513

 original
+ computation fusion
+ data regrouping

15.9s 24.3% 2.15% 0.029%

exe. time L1 L2 TLB
0.00

0.20

0.40

0.60

0.80

1.00

1.20

no
rm

al
iz

ed
 s

ca
le

ADI 2K x 2K

 original
+ computation fusion
+ data regrouping

3.47s 14.0%
3.32% 0.029%

exe. time L1 L2 TLB
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

no
rm

al
iz

ed
 s

ca
le

DOE/Sweep3D, 150x150x150

original
+ computation fusion
+ data grouping

1143s 9.4% 1.5% 0.25%

exe. time L1 L2 TLB
0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

1.60

no
rm

al
iz

ed
 s

ca
le

NAS/SP class B, 3 iterations

original
+ computation fusion
+ data grouping

41.3s 11.1% 2.15% 0.93%

2.32x 8.81x

0 2 4 6 8 10 12 14 16 18 20 22
reuse distance (log scale, base 2)

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

nu
m

be
r

of
 r

ef
er

en
ce

s
(in

 th
ou

sa
nd

s)

NAS/SP, 28x28x28

program order
reuse−based fusion
reuse−driven execution

Figure 10. Effect of transformations

fused loop and causes 8 times more TLB misses, slowing
the performance by a factor of 2.3. Data regrouping, how-
ever, merges related data in contiguous memory and reduces
L1 misses by 20%, L2 by 51% and TLB by 39%. The ex-
ecution time is shortened by one third (33%), a speedup of
1.5 (from 64.5 Mf/s to 96.2 Mf/s).

Next we compare the source-level loop fusion with trace-
based reuse-driven execution, which was described in Sec-
tion 2.1. As before, we use reuse distance to measure pro-
gram locality. The lower rightmost graph in Figure 10
compares three versions of SP: the original program or-
der, reuse-driven execution order, and the order after reuse-
based loop fusion. Reuse-based fusion reduces the number
of long reusd disntances by 45%, which is not as good as the
63% reduction by reuse-driven execution. However, loop
fusion does realize a fairly large portion of the potential.
Furthermore, the reduction on long reuse distances (45%) is
very close to the reduction of L2 misses on the Origin2000
(51%), indicating that the measurement of reuse distance
closely matches L2 cache performance on that machine.

4.4 Summary
The combined strategy of loop fusion and data regroup-

ing is extremely effective for the benchmark programs
tested, improving overall speed by between 14% and a fac-
tor of 2.33 for kernels and factors of 1.5 and 1.9 for the two
full applications. The improvement can be obtained solely
through automatic source-to-source compiler optimization.
The success especially underscores the following three im-
portant contributions:

� Aggressive loop fusion. Reuse-based fusion can fuse
loops of different shapes and therefore find more fu-
sion opportunities. In NAS/SP, over one hundred loops

were fused into a single loop.

� Conservative multi-level data regrouping. Data re-
grouping improves performance in all but one case,
which can be corrected if the data transformation is
applied by the back-end compiler. Since most fused
loops are imperfectly nested, multi-level regrouping is
necessary to maximize spatial locality. For example,
tomcatv sees no chance of single-level regrouping, but
multi-level regrouping improves performance by 16%.

� Combining strategies. When individually applied,
loop fusion may significantly degrade performance
without data regrouping, and data regrouping may see
little opportunity without loop fusion3. It is the combi-
nation that gives us a consistently effective strategy for
global optimization.

5 Related work

Many researchers have studied loop fusion. Early work
was carried out by Wolfe[22], and Allen and Kennedy[3].
Combining loop fusion with distribution was originally dis-
cussed by Allen et al [2]. To improve reuse of vector regis-
ters, Allen and Kennedy fused loops with identical bounds,
no fusion-preventing dependences, and no true dependences
with intervening statements. Callahan developed a greedy
fusion that maximizes coarse-grain parallelism [7]. His
method may fuse loops of no data sharing.

The importance of global data reuse was shown by re-
cent simulation studies. McKinley and Temam observed

3In NAS/SP, for example, data regrouping merged only two arrays in
the absence of loop fusion, and improved performance by 8%. We tested
data regrouping without loop fusion and reported the results in Ding’s dis-
sertation [9].

8

that most misses in SPEC and Perfect benchmarks are due
to inter-nest temporal reuse [18]. Our reuse-driven execu-
tion complements their results by showing how much of the
inter-nest reuse can be converted to cache reuse by program
reordering. Although we used a particular heuristic, simi-
lar measurement can be used to evaluate other program re-
ordering schemes.

Carr et al. implemented loop fusion for cache reuse [8].
They followed the same fusion constraints as Allen and
Kennedy and fused on average 6% of tested loops. Fusion-
preventing dependences can be avoided by peel-and-jam,
introduced by Porterfield [19]. Peel-and-jam is a limited
form of our loop alignment because peel-and-jam can only
shift the first loop up (or the second loop down), but not the
reverse. So it does not always bring together data reuses in
fused loops. Loop alignment was originally used by Allen
et al. to assist parallelization [2]. Manjikian and Abdelrah-
man used peel-and-jam to fuse loops possibly with different
iteration bounds but with the same shape across the fused
levels [17]. They found more opportunities for fusion. Still,
at most 8 original loops could be fused into a single loop.
Our fusion algorithm fused loops of different shapes and
achieved higher degree of fusion. For example, about 500
loops in NAS/SP were fused into 8 loop nests.

Global loop fusion can be formulated as a graph-
partitioning problem, which was studied independently by
Gao et al. [13] and by Kennedy and McKinley [15]. They
model loops as nodes and data reuse as weighted edges be-
tween pairs of loop nodes. Ding and Kennedy extended the
formulation to base it on hyper-graphs where an edge (data
sharing) connects an arbitrary number of loop nodes [11].
Recently, Kennedy developed a fast algorithm that always
fuses along the heaviest edge and supports both models of
reuse [14]. Graph-based methods have more freedom than
the sequential scheme used in our work. Regardless of the
heuristic used, global fusion must address three problems:
how to fuse loops of different shapes, how to optimize data
layout after fusion, and how to bound the potentially ex-
ponential cost of legality test. The solutions developed by
this work—fusion-enabling transformations, data regroup-
ing, and pair-wise fusion—are equally applicable to other
fusion methods.

Some recent techniques reorganize loops completely
based on their data access. Kodukula et al. blocked data
and “shackled” computations on each data tile [16]. Simi-
larly, Pugh and Rosser sliced loop iterations on each data el-
ement or data block [21]. Yi et al. improved iteration slicing
and used it to convert loops into recursive functions [23].
Since these methods reorganize runtime instances of loop
statements, they can fuse loops of different shapes at the
same granularity as loop distribution and iteration reorder-
ing used in our work. However, questions remain on how to
choose between fusion candidates, efficiently compute all-

to-all transitive dependence, and optimize data layout after
fusion. Although the above techniques have been success-
fully used to block single loop nests or small programs, they
have not been tried on programs with a large number of
(possibly not all fusible) loops. Pugh and Rosser tested iter-
ation slicing on programs of multiple loop nests and found
mixed results. On SGI Octane, Swim was improved by 10%
but the transformation on Tomcatv “interacted poorly with
the SGI compiler” [21].

Loop fusion may cause poor spatial locality due to the in-
creased data access in fused loops. McKinley et al. reported
that fusion improved hit rate in four programs but reduced
the performance for another three programs [8]. Manjikian
and Abdelrahman used a form of array padding (called
cache partitioning) and found satisfactory result [17]. Array
padding is a restricted form of data transformation because
it reorganizes data only at coarse granularity. In addition,
Manjikian and Abdelrahman did not address the problem
where different loops require different data layouts. In com-
parison, array regrouping combines data at fine granularity
with guaranteed profitability for the whole program [10].
In this work, we extend the regrouping to data of multiple
granularity and use it in conjunction with loop fusion.

We are not aware of any published work that performs
global computation fusion and data grouping either by hand
or by hardware or operating systems. Such transformations
should not be attempted by a programmer. They conflict
with the modularity of the program because the proper data
layout depends on computation organization. Hardware or
operating systems are not well suited either because they
have limited scope and incur runtime overhead.

6 Conclusion

This work has developed a global compiler strategy to
alleviate the bandwidth limitations of modern machines by
improving reuse of data from cache. The strategy includes
reuse-based loop fusion and multi-level data regrouping.
The former distributes and re-fuses all loops of different
shapes; the latter splits and regroups all arrays at multiple
granularity. Together they produce to date the most aggres-
sive form of global yet fine-grained strategy for improving
global cache reuse in large applications.

The implementation and evaluation have verified that the
new global strategy can achieve dramatic reductions in the
volume of data transferred for the programs studied. The
table in Table 2 compares the amount of data transferred for
versions of each program with no optimization, with opti-
mizations provided by the SGI compiler, and after trans-
formation via the strategy developed in this paper. If we
compare the average reduction in misses due to compiler
techniques, the new strategy, labeled by column New, does
better than the SGI compiler by factors of 8 for L1 misses,
5 for L2 misses, 2.5 for TLB misses, and 1.6 for perfor-

9

program L1 misses L2 misses TLB misses Speedup
NoOpt SGI New NoOpt SGI New NoOpt SGI New over SGI

Swim 1.00 1.26 1.15 1.00 1.10 0.94 1.00 1.60 1.05 1.14
Tomcatv 1.00 1.02 0.97 1.00 0.49 0.39 1.00 0.010 0.010 1.17
ADI 1.00 0.66 0.40 1.00 0.94 0.53 1.00 0.011 0.005 2.33
DOE/Sweep 1.00 1.00 0.92 1.00 0.99 0.16 1.00 1.00 0.04 1.93
NAS/SP 1.00 0.97 0.77 1.00 1.00 0.49 1.00 1.09 0.67 1.49
average 1.00 0.98 0.84 1.00 0.90 0.50 1.00 0.74 0.35 1.61

Table 2. Overall Comparison

mance. In addition, the figures of the last two applications
show that SGI compiler is not very effective in optimizing
the two large applications, while the new strategy works es-
pecially well. Thus, the global strategy we propose has a
clear advantage over the more local strategies employed by
an excellent commercial compiler, especially for large pro-
grams with huge data sets.

Acknowledgment The implementation of this work is
based on the D System of Rice University. We also thank
anonymous referees for helpful comments on the early
drafts of this paper.

References

[1] V. Adve and J. Mellor-Crummey. Using Integer Sets for
Data-Parallel Program Analysis and Optimization. In Pro-
ceedings of the SIGPLAN ’98 Conference on Programming
Language Design and Implementation, Montreal, Canada,
June 1998.

[2] J. R. Allen, D. Callahan, and K. Kennedy. Automatic de-
composition of scientific programs for parallel execution.
In Proceedings of the Fourteenth Annual ACM Symposium
on the Principles of Programming Languages, Munich, Ger-
many, Jan. 1987.

[3] J. R. Allen and K. Kennedy. Vector register allocation. IEEE
Transactions on Computers, 41(10):1290–1317, Oct. 1992.

[4] R. Allen and K. Kennedy. Advanced Compilation for High
Performance Computers. Morgan Kauffman. to be pub-
lished October 2000.

[5] L. Belady. A study of replacment algorithms for a virtual-
storage computer. IBM Systems Journal, 5(2):78–101, 1966.

[6] D. C. Burger, J. R. Goodman, and A. Kagi. Memory band-
width limitations of future microprocessors. In Proceedings
of the 23th International Symposium on Computer Architec-
ture, Philadelphia, PA, May 1996.

[7] D. Callahan. A Global Approach to Detection of Parallelism.
PhD thesis, Dept. of Computer Science, Rice University,
Mar. 1987.

[8] S. Carr, K. S. McKinley, and C.-W. Tseng. Compiler opti-
mizations for improving data locality. In Proceedings of the
Sixth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS-
VI), San Jose, CA, Oct. 1994.

[9] C. Ding. Improving Effective Bandwidth through Compiler
Enhancement of Global and Dynamic Cache Reuse. PhD
thesis, Dept. of Computer Science, Rice University, January
2000.

[10] C. Ding and K. Kennedy. Inter-array data regrouping. In
Proceedings of The 12th International Workshop on Lan-
guages and Compilers for Parallel Computing, La Jolla,
California, August 1999.

[11] C. Ding and K. Kennedy. Memory bandwidth bottleneck
and its amelioration by a compiler. In Proceedings of 2000
International Parallel and Distribute Processing Symposium
(IPDPS), Cancun, Mexico, May 2000.

[12] C. Ding and Y. Zhong. Reuse distance analysis. Technical
Report UR-CS-TR-741, University of Rochester, Feburary
2001.

[13] G. Gao, R. Olsen, V. Sarkar, and R. Thekkath. Collective
loop fusion for array contraction. In Proceedings of the Fifth
Workshop on Languages and Compilers for Parallel Com-
puting, New Haven, CT, Aug. 1992.

[14] K. Kennedy. Fast greedy weighted fusion. In Proceedings
of the 2000 International Conference on Supercomputing,
Santa Fe, NM, May 2000.

[15] K. Kennedy and K. S. McKinley. Typed fusion with appli-
cations to parallel and sequential code generation. Technical
Report TR93-208, Dept. of Computer Science, Rice Univer-
sity, Aug. 1993. (also available as CRPC-TR94370).

[16] I. Kodukula, N. Ahmed, and K. Pingali. Data-centric multi-
level blocking. In Proceedings of the SIGPLAN ’97 Con-
ference on Programming Language Design and Implemen-
tation, Las Vegas, NV, June 1997.

[17] N. Manjikian and T. Abdelrahman. Fusion of loops for par-
allelism and locality. IEEE Transactions on Parallel and
Distributed Systems, 8, 1997.

[18] K. S. McKinley and O. Temam. Quantifying loop nest lo-
cality using SPEC’95 and the perfect benchmarks. ACM
Transactions on Computer Systems, 17(4):288–336, 1999.

[19] A. Porterfield. Software Methods for Improvement of Cache
Performance. PhD thesis, Dept. of Computer Science, Rice
University, May 1989.

[20] W. Pugh. A practical algorithm for exact array dependence
analysis. Communications of the ACM, 35(8):102–114, Aug.
1992.

[21] W. Pugh and E. Rosser. Iteration space slicing for locality.
In Proceedings of the Twelfth Workshop on Languages and
Compilers for Parallel Computing, August 1999.

[22] M. J. Wolfe. Optimizing Supercompilers for Supercomput-
ers. PhD thesis, Dept. of Computer Science, University of
Illinois at Urbana-Champaign, Oct. 1982.

[23] Q. Yi, V. Adve, and K. Kennedy. Transforming loops to re-
cursion for multi-level memory hierarchies. In Proceedings
of ACM SIGPLAN Conference on Programming Language
Design and Implementation, Vancouver, Canada, June 2000.

10

