Infrastructure and Methodology for Mobile SoC Modeling

Yuhao Zhu

University of Rochester <u>http://yuhaozhu.com</u> @yzhu88

Today's mobile systems are a collection of segregated sub-systems, each specialized for a domain.

Today's mobile systems are a collection of segregated sub-systems, each specialized for a domain.

Today's mobile systems are a collection of segregated sub-systems, each specialized for a domain.

Emerging Applications Integrate All Components

Emerging Applications Integrate All Components

Emerging Applications Integrate All Components

Co-Optimize/Design Different Computing Domains Across the Entire SoC

Nvidia TX2 SoC

You can't fix what you can't measure

Architecture Modeling Infrastructure

Target	Tool
CPU	Gem5/Marss86
GPU	GPGPUSim/GPUWattch
DRAM	DRAMSim2
DNN Accelerator	SCALESim/RTL
SoC	PARADE/GemDroid

Architecture Modeling Infrastructure

Target	Tool
CPU	Gem5/Marss86
GPU	GPGPUSim/GPUWattch
DRAM	DRAMSim2
DNN Accelerator	SCALESim/RTL
SoC	PARADE/GemDroid

Why Do We Need Another SoC Modeling Tool?

Requirements for SoC-Level Modeling

- Do we need cycle-accurate CPU models in SoC Simulation?
- ► Do we need cycle-accurate GPU models in SoC Simulation?
- ► At what granularity should we model the SoC?
- ► What are evaluation metrics should we care about?
- What IP blocks should we support, and how do we support new IP blocks?
- First-order bottleneck analysis vs. detailed perf. model

Different Modeling Levels and Strategies

- Hardware Modeling
 - ▷Analytical Model
 - Simulation Model
- Task-level Modeling
 - ▷SoC-level tasks (case-study: continuous vision)
 - ▷IP-level tasks (case-study: DNN accelerator)

Rest of the Agenda

Introduction and Welcome (Yuhao Zhu, Rochester)

- Mobile Computing and SoC Analytical Modeling (VJ, Harvard)
- Platform Architecture Modeling Tutorial (Jun Qi, Synopsys)
- Platform Architecture Simulation Model of Gables (Xiaoyang Li, Synopsys)
- Task-level Modeling: A Continuous Vision Case-Study (Yiming Gan, Rochester)
- Joint Optimization of Hardware and Compiler -- Modeling Al Accelerators using Platform Architect (Xiaoyang Li, Synopsys)