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ABSTRACT

Blind people often seek answers to their visual questions
from remote sources, however, the commonly adopted single-
image, single-response model does not always guarantee
enough bandwidth between users and sources. This is es-
pecially true when questions concern large sets of informa-
tion, or spatial layout, e.g., where is there to sit in this area,
what tools are on this work bench, or what do the buttons
on this machine do? Our RegionSpeak system addresses this
problem by providing an accessible way for blind users to (i)
combine visual information across multiple photographs via
image stitching, (ii) quickly collect labels from the crowd for
all relevant objects contained within the resulting large visual
area in parallel, and (iii) then interactively explore the spa-
tial layout of the objects that were labeled. The regions and
descriptions are displayed on an accessible touchscreen in-
terface, which allow blind users to interactively explore their
spatial layout. We demonstrate that workers from Amazon
Mechanical Turk are able to quickly and accurately identify
relevant regions, and that asking them to describe only one
region at a time results in more comprehensive descriptions
of complex images. RegionSpeak can be used to explore the
spatial layout of the regions identified. It also demonstrates
broad potential for helping blind users to answer difficult spa-
tial layout questions.
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INTRODUCTION

Crowdsourcing answers to visual questions can help blind
and low vision users better access the world around them [3,
4]. However, most current approaches only permit users to
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Figure 1. An example of a real image from a VizWiz user, submitted with
the question “What am I looking at that is in front of me?” Questions
like this burden crowd workers with lengthy answers, and are hard to
answer using text-based spacial descriptors alone. Our RegionSpeak
system allows workers to mark regions in an image and answer sub-sets
of the questions. This makes the task more approachable for workers,
and provides more and better information to end users, who can browse
answers using a touchscreen interface that allows them to get a sense of
the spacial orientation the corresponds to each label in the image.

take a single photograph [3], which can lead to several is-
sues: (i) users often have difficulties in framing the correct
information for their questions, (ii) workers do not give con-
sistent levels of details in responses —especially those which
are broad or open ended —which means that users get unpre-
dictable answers from the system (Figure 1), and (iii) because
question complexity cannot be automatically determined a
priori, it is hard to compensate crowd workers appropriately.

Systems such as VizWiz [3] struggle with these aspects be-
cause of their single-image, single-response model. Cho-
rus:View [16] overcomes many of these problems by engag-
ing users in continuous interactions with the crowd via voice
and video to help reduce the overhead associated with multi-
turn interaction. However, video-based approaches are ex-
pensive and difficult to scale. They can also be cumbersome
for end users who must actively wait (e.g., holding the camera
steady) while the crowd determines a response.

Our goal is to account for the large set of tasks that fall some-
where between the ideal case for single images in VizWiz,
and the continuously-engaged interaction of Chorus:View.
We analyze examples of 1,000 single-image visual questions
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Figure 2. A large image of a workbench formed of many individual pictures stitched together. The important objects/regions identified by crowd
workers within the first 2 minutes are shown. The limit is defined as a reasonable time blind users would wait for answers to most questions [6], along
with their description and the latency for receiving the description. By parallelizing description of different regions of the image, crowd workers can
describe the contents of large, complex images much more quickly. Blind users can explore the regions spatially to understand how their positions relate

to one another in space and to more easily find what they want.

collected from real blind users and find examples where these
problems rise in practice. Types of images where our ap-
proach can help include: exploratory questions (asking what
is in an unknown scene), search questions (asking if some-
thing, e.g. house keys, can be located from an image), and
questions that many have large or multi-part answers (asking
what is listed on a menu or bulletin board).

In this paper, we address these problems via two approaches:
(i) allowing users to capture more information per interaction
by stitching multiple images together, and (ii) asking individ-
ual crowd workers to focus on describing key aspects of part
of a scene, resulting in more information being marked col-
lectively. We then introduce RegionSpeak, a system that com-
bines these approaches to allow users to include and receive
more information during each interaction with the system.

BACKGROUND

Our work on reducing the overhead associated with getting
answers to visual questions from sighted workers relates to
crowdsourcing and access technology for blind users.

Crowdsourcing

Crowdsourcing allows computer systems to have on-demand
access to human intelligence, extending their capabilities be-
yond what can currently be done with fully automatic ap-
proaches. Human workers are given small tasks to complete,
and their individual contributions can then be combined and
used to complete more complex tasks. Crowd-powered sys-
tems such as the ESP Game [23] have asked workers to label

an image with tags that could be used to improve web acces-
sibility. Scribe [15] uses the crowd to provide audio captions
for deaf users within 4 seconds. Glance [14] divided tasks up
to multiple workers to make behavioral video coding quick
enough to be responsive to analysts (seconds instead of days).

Using people to provide remote assistance is a well known
and well studied practice in the disability community [5]. It is
especially successful in solving visual access challenges un-
der specific settings, e.g. public transit [1, 13]. Our work at-
tempts to improve on existing crowd-powered blind question
answering approaches that use either single images or video,
by introducing more efficient ways for users to capture visual
content and better ways to elicit useful information from the
crowd workers who provide answers in order to support more
complex and general tasks.

VizWiz

VizWiz [3] is a system that allows blind users to take a pic-
ture, speak a question, and get an answer in nearly real time
(around 30 seconds on average). VizWiz was one of the first
crowd-powered applications to rapidly elicit responses from
the crowd to provide on-demand support to users.

When users open the mobile app, workers are recruited to
stand by. In the meantime, the user takes a picture of the ob-
jector setting they have a question about. After taking the pic-
ture, the user is prompted to record an audio question, which
is submitted with the picture to the crowd. Crowd workers are
directed to the waiting task and provide a text answer which



is read to the user via VoiceOver ! (on iOS) or TalkBack 2
(on Android). RegionSpeak is designed to run on and extend
existing question answering platforms such as VizWiz, which
has answered 70,000+ questions since May 201 1.

Chorus:View

VizWiz effectively answers self-contained visual questions,
but it struggles in settings where more context is needed than
can be provided in a single image, or where the information
needed is hard to locate when taking an image. Prior work
has shown that these types of questions make up 18% of the
questions asked to VizWiz [6], and that does not account for
all of the questions that users avoid asking because they have
learned the system does not address them well.

Chorus:View [16] is a system that addressed many of these
problems by engaging users and the crowd in a continuous
interaction by streaming video to workers and allowing chat-
style responses to be provided at any point workers felt was
appropriate. This more conversational interaction can answer
many questions users commonly have in a fraction of the time
of the original VizWiz system, and as a result, was strongly
preferred by most users in lab studies.

Chorus:View provides users with continuous, real-time feed-
back by keeping a group of workers around synchronously
with the user. It is best for tasks that require constant at-
tention, i.e., navigation. For tasks that benefit from asyn-
chronous assistance, i.e., the identification and description
questions frequently asked by blind users [6], Chorus:View
is too expensive and heavyweight. Since Chorus:View keeps
a group of workers active during the answering process, the
price is prohibitive (order of $1 per question [16]) for de-
ployment. RegionSpeak avoids these issues by collecting in-
formation upfront (instead of interactively), and presenting a
user interface in which a user can explore multiple answers
spatially. By combining image stitching and labeling, Re-
gionSpeak provides a tradeoff between the benefits of short
and cheap single-question services like VizWiz, and more
thorough but expensive services like Chorus:View. They are
useful in different settings.

Computer-aided photography

Using computer vision techniques to assist blind and low-
vision camera users has been widely studied and evaluated.
Prior work shows with appropriate interface and feedback,
quality of photos taken by the targeted users can be substan-
tially improved (over 50% in [8]). Those photography appli-
cations are also easy to learn and use, therefore almost always
preferred by study participants. [8, 22]. In addition, Kane, et.
al. also explored the possibilities of using computer vision to
assist screen reading and gained success[10].

Panoramic image stitching algorithms has been extensively
studies by computer vision researchers, various algorithms [7,
19, 21] excel in different performance aspects such as speed,
seamlessness and order invariance. Built-in camera applica-
tions on i0OS and Android both support panorama photoshoot-
ing. However, most commercially applied algorithms are not

Uhttp://www.apple.com/accessibility/ios/voiceover/
*http://goo.gl/zbdZsD

fully automatic, requiring human input or restrictions on the
image sequence in order to establish matching images. For
example, when using the built-in panorama interface on iOS,
the user has to move the camera towards one direction and
keep the vertical center line of view port steady. When us-
ing the equivalent interface on Android, the user has to move
camera center to several fixed points on the screen. Panorama
apps leverage these input constraints to yield high quality and
wide angle photographs, but it is difficult for blind users to
satisfy these constraints because available feedback has previ-
ously been visual. The algorithm used in RegionSpeak stitch-
ing interface is designed to be nearly-automatic, robust order
of input images, rotation and illumination, therefore puts min-
imal input restrictions on blind users.

CAPTURING ADDITIONAL VISUAL INFORMATION

We begin by addressing the information capture and image
framing problem faced by many blind users. Prior work has
explored how to help guide blind users to frame objects ap-
propriately in images [4, 8]. However, these approaches are
based on using computer vision to guide users to a specified
object, which does not take into account the specific informa-
tion that needs to be included to answer a given question. For
example, they may help a user to correctly frame a container
in an image (Figure 3), but cannot help a user know if the
usage instructions are visible to workers.

Stitching Images to Increase Context

To benefit from the additional information workers are able to
see when answering a question using video, without adding
the additional delay, we introduce image stitching.

Image stitching can increase information conveyed by blind
users as objects captured in multiple images are sent to work-
ers who have a better chance to locate essential information
to answer the question in a quick, light-weight dialog turn.

Interface Details

RegionSpeak does not require aesthetically appealing pho-
tographs, but does need to have an accessible interface.
Therefore, we employed a nearly-automatic and the least de-
manding stitching algorithm in OpenCV? which is similar to
[7]. Our experiments show that even when results are not
seamless (Figure 2), our algorithm is able to create satisfac-
tory panorama without loss of visual information.

Combining the automatic stitching algorithm and Zhong et.
al’s key frame extraction algorithm [24], we created an
panorama interface for RegionSpeak which has no restriction
that needs visual inspection. Users of RegionSpeak can move
the camera in any direction, and the key frame extraction al-
gorithm will detect substantial changes in view port and alert
users to hold their position to capture a new image. Region-
Speak then takes a photo automatically when the view port
is stabilized and gives users an audio cue to move on. Users
can stop exploring after three photos are taken. A pilot study
showed that some users would continue to take photos if not
given a limit, so we added a limit of six photos to automate

3http://opencyv.org
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Figure 3. A sequence of questions asked to VizWiz. The user has trouble framing the entire bottle in a single image while still being close enough to allow
workers to read the instruction text. Worse, because each image is sent to a potentially different worker, different parts of the text that are captured are
out of context for the worker trying to answer the question for each image. RegionSpeak allows users to capture more information in a single image by
adding image stitching to VizWiz. In this instance, the first two images can be stitched as well as the other three.

the process. Six photos was derived as a limit of latency tol-
erance from observation of the pilot users experience.

All the photos are then sent to our server which stitches them
together. While the stitching algorithm could be performed
locally on mobile devices, speed became an issue. The stitch-
ing algorithm can stitch four 640x480 images in 4-5 seconds
on a desktop with 1.3 GHz i5 CPU, but the same task takes
approximately 20 seconds to finish on an iPhone 4S (which
clocks at 800MHz). Remote stitching keeps users from hav-
ing to wait for the process to complete on their devices, keep-
ing the total time of the question-asking interaction low.

Evaluation

To evaluate the usfeulness of stitching, we needed to see if
blind people would be able to learn and use this new inter-
face, as it requires a certain level of camera skill. To explore
the effectiveness and usability of the stitching interface, we
conducted a study with 10 blind people (9 male, 1 female)
to compare it with single picture approaches. The study was
conducted remotely from the blind participants’ home using
their own iPhones. The phones used were iPhone 4S (2),
iPhone 5 (3), and iPhone 5S (5). Participants were recruited
via mailing lists from previous studies and Twitter announce-
ments, they were each paid $10, consented online, and are not
otherwise affiliated with this project.

In order to fairly compare stitching with the single photo in-
terface, we developed an experimental application which re-
places the single photo interface of VizWiz with the stitching
interface to compare both. All of our participants had used
VizWiz before the study and reported experiences of having
trouble capturing enough information with VizWiz to get an
answer. Before the study, participants were briefed on how
to use the stitching interface with a ~5 minute introduction
session. Then we allowed the participant to familiarize him-
self with the stitching interface by asking a random question

about a stitched image of immediately surrounding environ-
ment, followed by a controlled experiment to compare the
stitching interface with conventional single photo interface.
At the end of each session, a questionnaire was issued to col-
lect preference data. Each session lasted 30-50 minutes de-
pending on individual camera skills.

The experiment was a 2x3 within-subjects factorial design.
The first factor was the capturing interface: single photo ver-
sus stitching. The second factor was three tasks:

e Printed document: Asking for the author of a book.
e Screen: Reading user name off a faked log in window.
e Description: Getting description of on-table objects.

We chose these three tasks because reading information and
getting descriptions are documented visual challenges blind
people face everyday [6]. Additionally, these objects tend
to have wide flat surfaces which users often find difficult to
capture. In order to limit interactions to a reasonable length,
we set a maximum task time of 10 minutes, as was done in
[16]. Trial duration was recorded with second timestamps.
If the correct information was not found by the time limit,
the task was considered incomplete. For these tasks, the user
expects an answer immediately, e.g., the user wouldn’t want
to wait spend more than 10 minutes to find out a user name
(classified as “urgent* in [6]).

In order to evaluate performance, task completion time was
measured as mean trial duration, calculated as the elapsed
time from the opening of application to reception of a sat-
isfiable answer (including time taken to capture photos). If a
trial timed out, the task completion time is undefined and ex-
cluded from analysis. Iterations were defined as the number
of times the participant had to repeat the process of question
asking before the task was completed or timed out.
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Figure 4. Mean target completion times and iteration numbers show the
stitching interface outperformed the single photo interface.

Task completion time data were logarithmically transformed
to correct for violations of normality as common practice. We
analyzed the time data using ANOVA, with interface and task
type modeled as fixed effects.

Results

All participants completed the tasks using the stitching in-
terface within the 10 minute limit, with an average time of
121.1 seconds, while VizWiz failed 1 of the user name read-
ing tasks, with an average time of 187.4 seconds. The dif-
ference was significant, F; 51 = 8.424, p< .01. The average
number of Q&A iterations it took for stitching (mean = 1.48)
to yield right answers was also significantly lower than single
photo interface (mean = 2.24), Iy 50 = 7.04, p= .01. The
results confirmed that with the stitching interface blind users
were likely to capture more visual information in each dialog
turn and save time (by 35.4%) and iterations (by at least 1 on
average) in subsequent interactions, detailed means of time
and iteration numbers are shown in Figure 4. There were no
interaction effects found on either task completion time or
number of iterations required.

When the stitching algorithm fails to produce a panorama (be-
cause of insufficient overlap between input images), the ap-
plication sends all captured images and shows them together
to web workers. The success rate of our stitching algorithm
during experiments was 83.3%, suggesting most blind peo-
ple’s camera skill is enough to operate the stitching interface.

User Feedback

Participants were asked to answer a survey about the stitch-
ing app and to provide their feedback after the experiments.
All of them expressed that stitching is easy to understand,
learn and use. The participants also all preferred using the
stitching interface when taking photos for all task types in
our study. Although we did not quantify objects identified
in the description tasks, it was noted by multiple participants
that with stitching interface they received more comprehen-
sive descriptions of the content of the images. All partici-
pants also showed desire to continue using stitching interface
after the experiments and “look forward to seeing it released
to the general public”. The feature participants liked most in
the stitching interface was the audio guidance which allows
“easy identifying of many things” and really helps with blind
people’s photo taking troubles, especially when looking for a
specific but small piece of information. It was also mentioned
that the fact our stitching interface “cleverly put different im-
ages together figures out the orientation of them” gave them
more freedom of interaction.

Discussion

As seen in both related work [24] and our experiments, blind
people usually have worse phototography skills than sighted
people, so an accessible camera interface with few restric-
tions and rich guidance is crucial to help them take better
photos. Existing camera interfaces often fail to provide assis-
tance, resulting in poor performance of photo-based assistive
applications. We observed that when users of a single-photo
interface followed crowd workers’ instructions to adjust the
camera, they often overdid the adjustments, having to retake
photos for several times until they succeeded. With the stitch-
ing interface, however, users felt much easier and less stress-
ful to follow framing instructions.

Several further improvements to the stitching interface were
directly derived from participants’ feedback. One suggestion
from the participants was to include a a button or gesture to
pause and resume the stitching process, to make the interac-
tion more natural. Another technical limitation discovered in
the experiments was the application’s difficulty with stitching
photos of non-flat surfaces, e.g., cylinders.

While participants appreciated the stitching interface, and
preferred it for all tasks in the study, they suggested that
stitching should not replace the existing single photo cam-
era interface, but should exist as an option that can be used
when needed, especially for those blind users whose camera
skill is good enough to capture visual information most of the
time without using assistive technology.

ELICITING COMPLETE VISUAL DESCRIPTIONS

Image stitching allows users to capture more context to show
to workers, while still maintaining a lightweight interaction.
However, additional visual information is not useful unless
sighted workers describe it completely back to the blind user.
To improve the question-asking interaction further and in-
crease bandwidth of visual information in Q&A interations,
we focus on how to elicit more detailed responses and spatial
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Figure 5. Images used to evaluate both iterative and parallel labeling approaches, which cover a range of scenarios observed in VizWiz usage.

information from the crowd, while being able to accurately
compensate them for their efforts.

Queries are defined by users, and thus have a wide range of
variance. For example, an image of a menu could be associ-
ated with the question “how much does the 6 Turkey Breast
sandwich cost?” (to which the answer could be “$4.99”) or
with the question “What does this board say?” (to which the
best answer likely involves transcribing the entire menu from
the image). Because it is not possible to reliably classify the
amount of information required or provided for a given query
automatically, both VizWiz and Chorus:View pay a standard-
ized fee for each answer, and do not have a means of scaling
payments to match worker effort. In the long term, this could
lead to disincentivizing the available workforce.

Below, we first describe the set of 5 images used to test Re-
gionSpeak, and initial worker responses to them. Then, we
present two methods to increase the amount of detail in an-
swers without overloading any one worker: an iterative work-
flow so that workers can build on one another’s responses [2],
and a parallelized workflow where users can focus on small
portions of the image at once.

Methodology and Initial Responses

We analyzed ~1,000 questions VizWiz couldnt answer be-
cause the single photo submitted with the question did not
contain enough information or had too much information for
a single worker. Five representative photos were created to
simulate those questions (Figure 5): a set of five packages of
food (simulation of Figure 1), a simple diagram on a white-
board, a set of buttons on a microwave, a menu from a restau-
rant, and a picture of an outdoor scene in a commercial area.

We began by asking workers on Mechanical Turk to describe
five different images (Figure 5) with general questions such as
“Can you describe what you see in this image?” We sampled
a broad set of workers by running experiments with minimum
qualification and during various periods of the day.

We collected responses from ten workers for each of these im-
ages (for a total of 50 data points). We began by counting the
character length of answers, to provide a quantitative measure
of answer detail. To measure the content more accurately than
using answer length alone, we also had 2 researchers code the
answers for all images. The following attributes were coded
for, and the Cohen’s Kappa scores for 50% (25 answers) of
the initial dataset are shown beside each:

e Validity: If an object is described as being in the image,
is it actually shown? Answers could be completely cor-

rect (no incorrect element named in the answer), partially
correct (at least one correct and one incorrect element), or
incorrect (no correct elements). Cohen’s kappa of 0.95.

e Minimalist: Does the answer appear to be the answer re-
quiring the least effort, even if valid (e.g., answering “can”
when describing a can of Del Monte green beans)? Co-
hen’s kappa of 0.69.

® Distinct Items: How many distinct items are named in the
answer? Cohen’s kappa of 0.85.

e Details: How many explanatory details provided beyond
the core description (e.g., answering “mug” counts as 0 ad-
ditional details, answering “a green mug that doesn’t have
any liquid” counts as two additional details details)? Co-
hen’s kappa of 0.88.

e Spatial Information: How many spatial cues are provided
in the answer? Cues can be either object locations or rela-
tive layouts, i.e., a cup on the table would yield one spatial
descriptor. Cohen’s kappa of 0.8.

Results

For our initial examination of the 5-image dataset, answers
had an average length of 53.7 characters (median 33, o =
53.0), with a minimum of 3 characters and a maximum of
217. The crowd’s answers yielded 37 valid answers, 5 partial
answers, and 8 invalid; 13 were minimal; an average of 2.69
objects described (median 2, 0 = 2.18); an average of 1.4
detailed descriptions (median 0, o = 2.28); and an average
of 0.46 pieces of spatial information (median 0, 0 = 1.13).

Iterative Responses

Our most complex scene (the outdoor image, Figure 5(e)) had
a minimum length of 3 characters (“car”), a maximum length
of 44 characters, and an average of 21.4 characters (median
23.5, 0 = 15.1). We used this image and these descriptions
to explore increasing the descriptive level of the answers.

In initial responses, workers tended towards shorter, more
generic initial answers due to the complexity of describing
any more detailed version of the image. In this study, we
seeded workers with the 10 initial responses about Figure
5(e), then had workers iteratively improve the last worker’s
answer (with questions like “Can you improve the descrip-
tion of this image?”). Each of the 10 initial responses was
iterated on 3 times, for a total of 30 additional data points.

In a pilot version of this tool, we showed workers the prior
results from other workers and asked them to write a more de-
scriptive version of the answer. Unfortunately, because work-
ers had to take the extra step of copying or rewriting the initial



answer, the resulting responses were often even more brief
than the original, or simply did not build off of the prior con-
tent. For our final version of the iterative response tool, we
pre-populated the prior answer into the response area so that
workers could more easily expand on the existing responses.

Results

We found that when responses were pre-populated into the
answer field, workers provided strictly more detail in each it-
eration. In terms of length, there was a monotonic increase in
the length of the descriptions (Figure 6). Interestingly, while
the relative length of each sequential iteration of a descrip-
tion was correlated with the length of the prior step (average
pairwise R? = 0.74, 0 = .096), the final length after 3 ad-
ditional iterations was not meaningfully correlated with the
initial length (R? = .099).

For our outdoor scene, the initial answers yielded 9 valid an-
swers and 1 invalid; 3 minimal answers; an average of 1.95
objects described (median 1.5, 0 = 1.46); an average of 0.3
detailed descriptions (median 0, o = .95); and an average of
0.3 pieces of spatial information (median 0, 0 = .48). In-
terestingly, despite being our most complex image, this scene
resulted in a much lower number of objects described and
less detailed descriptions than the rest of the set. These dif-
ferences were not significant, but the reduction in the number
of descriptive details was near-significant (p = .088).

After 3 iterations on the initial answer, all 10 responses were
rated as valid; there were no minimal answers; an average of
8.3 distinct objects described (median 8.5, o = 2.71); an av-
erage of 6.3 detailed descriptions (median 6, c = 3.02); and
an average of 6.5 pieces of spatial information (median 6.5,
o = 2.12). This indicates a significant increase in the number
of objects described (p < .001), details provided (p < .001),
and spatial information provided (p < .0001) (Table 1). The
reduction in the number of minimal answers was also near-
significant (p = .081), but the sample size was too small to
confirm this with higher confidence.
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Figure 6. Response length increases as answers are sequentially iterated
on and converges after the third iteration. An example path is shown.

Objects Details Spatial cues
Before 1.95 0.3 0.3
After 8.3 6.3 6.5

Table 1. Means of response codings before and after 3 iterations.

Limitations of Iteration

Our results show that iteration is an effective way to more
consistently get reliable answers in terms of validity and
avoiding minimalist answers (which is backed up by the
crowdsourcing literature on such workflows), but is also a
good way to increase the number of details and amount of
spatial layout information provided by workers. Unfortu-
nately, because iteration on these responses cannot be par-
allelized, there is a necessary decrease in response speed. To
reach the point of any of our final results, we would have had
to recruit a total of four consecutive workers, meaning the
response would take roughly 4 x as long to return.

In addition to time costs, using an iterative workflow to ex-
pand the details of a scene can result in lengthy descriptions
that are unwieldy for users to listen to. In our test, the longest
answer was 708 characters. Tracking this much information
from a text description can put extra cognitive strain on a user
trying to understand what is in a scene and how it is laid out.
Furthermore, the ability for users to scan quickly through ob-
jects in a space is severely limited if presented in a manner
where they must listen to audio sequentially.

In practice, the workload provided to each worker in an it-
erative approach can also be hard to predict - initial workers
may be provided with a simple image (such as Figure 5(a)),
and not have many objects to describe, or a complex image
(such as Figure 5(e)) and have to write a detailed descrip-
tion of many objects. Additionally, each subsequent workers’
workload depends on what work has been done - if a previ-
ous worker did not describe the image well, the subsequent
worker may have a lot more work to complete than if the pre-
vious worker had done a good job. This inequality in work-
load makes fairly compensating workers difficult, and may
lead to frustration from workers if they cannot accurately es-
timate the hourly rate they will make from a task [17].

Parallelized Responses

Based on the results from our evaluation of the iterative ap-
proach, we wanted to find a way to elicit more complete, de-
tailed, and spatially informative answers from workers, while
also more fairly compensating them for the work they con-
tribute. To do so we implemented a parallelizable approach
that simultaneously collects multiple answers from workers,
with each answer concretely grounded to be associated with
a specific region of the image.

As shown in Figure 7, when crowd workers first begin a task,
they select a region of the image that they will provide a la-
bel for. The goal is to have this be a region that contains
an important object. Workers are left to select this region on
their own, just as they would be left to choose what level of
description to give in a typical VizWiz task. Previously la-
beled regions are also shown to the current worker to prevent



Click and drag to select part of the image to select an an area, then
describe your select for a blind user in the text box below the image.
And remember to click "Submit HIT" button when you are done,

Please describe the area you selected:
An empty red glass bottle with wooden cork.

Figure 7. The parallelized crowd worker interface of RegionSpeak.
Workers select a key region of the image with a bounding box, then pro-
vide a label for that region. Each region and label is aimed at helping to
answer the user’s question, which is provided just as in VizWiz.

duplications. The worker interface uses a Javascript plug-in,
JCrop®, to support region selection.

Our selection process is similar to LabelMe [ 18], which asked
crowd workers to carefully select objects and areas in an im-
age by outlining them. LabelMe’s goal was to train a com-
puter vision system to recognize objects in a scene — as such,
its boundary precision needed to be much higher than to get
general layout information. Our parallelized approach uses
simple rectangles to simplify the task for workers.

The rectangular regions that we get from workers can be av-
eraged and combined by clustering the rectangles and using
approaches such as the Generalized Intersection Over Maxi-
mum metric. This metric was initially introduced for use in
ShareCam [20], a collaboratively controlled webcam that let
multiple viewers select their preferred viewing area and then
found an optimal region based on that input. However, in
practice, high levels of redundancy are often not possible or
not practical due to cost and latency constraints. VizWiz also
successfully uses an unfiltered response model, where users
are able to evaluate the plausibility of answers themselves and
determine if they should wait for additional responses.

Evaluation

We ran our evaluation of the parallized approach on all five
images collected before (Figure 5). For each of the five
images, we collected region tags and descriptions from five
unique workers in one session. We repeated each session five
times to obtain five different sets of responses, for a total of
125 data points. We coded the same five features as before
(validity, minimalism, number of objects identified, num-
ber of details given, and number of spatial cues provided).
For number of objects identified and number of spatial cues,

*http://deepliquid.com/content/Jcrop.html

bounding boxes were counted as both object identifiers (as-
suming they contained a valid label for a subsumed portion
of the image). Additional object and details could be identi-
fied within the tag as well (for instance, a label for a section
of a menu may identify multiple entrées).

We also added one additional feature, bound tightness, to de-
termine how well workers did when selecting the appropri-
ate region for a given label. We redundantly coded all 125
marked segments with two coders. There was a strong inter-
rater agreement on a subset of 25 images (Cohen’s kappa .74).

Results

The combined answer lengths for each of the 25 sessions were
higher than in the iterative approach, with an average of 305.2
characters (median 149, ¢ = 282.3), a minimum of 50 and
maximum of 935. Overall, these tasks resulted in no minimal
answers; an average of 5.0 distinct items marked per session
(median 5, 0 = 1.81); an average of 4.8 descriptive details
(median 6, 0 = 2.07); and an average of 4.6 spatial cues
(median 5, 0 = 1.63). Additionally, 72% of the 125 segments
marked by workers were rated as being a “tight bound” on
the object they were framing, 18% were considered a “loose
bound”, and just 10% (12 marking) was rated as incorrect.

However, because the validity of tags was marked per-image,
as would be the case with a single description from a worker
in our baseline labeling example, just 44% of our images were
rated as containing a completely valid label set, with the re-
maining 56% being rated partially correct. None of the label
sets were entirely wrong. This highlights an important as-
pect of aggregating answers from the crowd: by using aggre-
gated answers, it is more likely the some error is introduced,
but the chances of an answer containing entirely errors falls
similarly. In our case, “partially correct” ratings were almost
always small errors in one or two labels.

Using parallelization also resulted in more evenly distributed
workload for the crowd workers completing the tasks. We
analyzed the length of the 125 individual image descriptions
from the paralellized workflow, and compared them to the
descriptions from the iterative workflow using Levenshtein
edit distance’. The initial response’s distance was the length
of the answer, and each subsequent response’s distance was
the number of edits made. A homogeneity of variance test
revealed that the standard deviation of parallelized responses
(o = 70.19) was signficantly less than the standard devation
of iterative responses (o = 106.13), with a Levene’s statistic
of W (1,163) = 11.867,p = .001. By giving workers small
portions of the image to focus on, their workloads were more
fair and resulted in less variance in response length.

While individual answers in a parallelized session might have
lower validity than iterative answers, the speed at which re-
sponses were collected is much improved since each object
descripiton requires only one worker, and descriptions can be
collected in parallel. Additionally, asking users to select a
bounding box containing the object they are describing pro-
vides spatial information that can be used separately.

>The Levenshtein edit distance is the number of character additions,
deletions, or modifications in a piece of text.
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Figure 8. Interaction flow of a common RegionSpeak dialog turn.

REGIONSPEAK

By combining the image stitching algorithm and the paral-
lelized object description presented in previous sections, we
are able to create a tool which allows for quick but thorough
visual descriptions of complex images. We applied these
methods to create RegionSpeak, a mobile application that al-
lows blind users to compose panoramic images to accompany
a question, and then perform spatial exploration of the space.

Workers are given the panoramic images and asked to de-
scribe objects in them as described above. When the answers
are forwarded back to users, they can explore the the space
by sliding their finger over the regions and having the system
speak the label. By doing this, users can get a better sense of
where objects in a scene are located relative to one another.
This also reduces the search space that users have to process
and preserves spatial information, which has the potential to
reduce cognitive load [12]. Since this interaction is similar
to established screen reader behavior on touch screen mobile
devices, which users are already familiar with, it is easier to
learn and more acceptable for blind people [11].

Implementation and User Interface

A dialog turn of RegionSpeak interaction has three steps (Fig-
ure 8). First, the user begin by opening the RegionSpeak app
and either taking a single photo or a stitched image with the
RegionSpeak stitching interface. The user then sets the phone
down and waits for responses from crowd workers. When
the first response comes back, RegionSpeak notifies the user
to launch RegionSpeak which opens up the real-time camera
view port and starts aligning regions marked by workers in
the view port. This functionality is supported by an existing
real-time object tracking algorithm (OpenTLD [9]).

When a region labeled by the crowd is recognized, it is added
as an overlay on the camera view port and tracked in real time
as the camera is being re-framed. A region can be re-detected
if it was lost and reappears, this way RegionSpeak can keep
the interaction light weight by allowing users to leave and
resume. Given the single object limitation of the OpenTLD
algorithm, if there are multiple regions returned, we use the
largest region as our tracking target and apply the transforma-
tion of primary target to other region overlays. To help ensure
that regions are not subject to occlusion by other regions, we
filter smaller regions to the top layer.

In addition to projecting overlays on real time view port, we
also give users the option to explore multiple regions and la-
bels in the initial static frame they captured in the very be-
ginning of each dialog turn. The advantage of exploring in
live camera view port is that users can find the direction of

objects marked by crowd by pointing at the corresponding re-
gion. Audio and haptic feedback are both provided, when the
user moves a finger into a labeled area the phone vibrates and
reads out the description provided by web workers. This kind
of single-finger scan interaction in exploratory interface has
been studied in prior projects and proven successful [4, 11].

Timing and Live Trial

Following our main trials, we then ran another trial to see how
a “real” run would look. We captured a stitched image of a
long workbench that contained multiple tools (Figure 2), then
recruited workers to mark regions. While workers were in-
tended to be recruited in parallel, we did not explicitly accel-
erate recruitment, and if workers joined the task after others
had finished, they were able to see the marked regions.

For this live trial, we also measured the time it took workers to
mark regions and to provide descriptions. The time workers
took to complete the task ranged from 0:38 seconds to 1:58
minutes. On average, the task completion time was 1:05 min-
utes. For perspective, this is on the same order of the speed at
which VizWiz gets responses during live usage (~133.3s for
the first answer [3, 6]).

Regarding the quality of the ten responses collected in the
live trial, the total length was 566 characters; no description
of regions was minimal or invalid; 11 distinct objects were
described with 11 descriptive details and 12 spatial cues pro-
vided; 7 of the bounding boxes drawn by web workers were
tight while the other 3 were loose and none was incorrect.

Limitations of RegionSpeak

While, unlike iterative response generation, RegionSpeak is
able to elicit answers from workers in parallel, there is the
chance that workers will provide overlapping or redundant
answers (as we saw cases of in our experiments). This is
especially problematic in situations where there may be one
or a small set of very salient objects in a scene (for example,
a bookshelf with a television on it may attract many workers’
attention to label the television first and ignore other objects
on the shelf or the shelf itself).

While this is typically not harmful and did not happen fre-
quently in our experiments as RegionSpeak shows previous
labels, it does waste worker effort and complicates responses.
Although RegionSpeak shows workers the entire set of ob-
jects that others have labeled up to that point, this approach
does not guarantee prevention of duplication unless tasks are
run in series. However, as with the iterative answer case, this
leads to significantly increased latency. A more sophisticated
way to avoid these issues within the context of a synchronous
task is to maintain a shared state of each task so that work-
ers can see what others are annotating in real time. Future
versions of RegionSpeak will include this functionality.

DISCUSSION

Our results suggest that the responses we get from Region-
Speak are much more closely aligned with our intended out-
comes: we get shorter responses that contain more details
and information about the spatial layout of objects, and can
be run in parallel to avoid high latency. Workers generally



did a great job correctly framing their labels, and the interac-
tion with the task was simple enough that workers were able
to complete it in roughly the same amount of time as a more
traditional labeling task. Although the iterative approach was
proven unsuitable for RegionSpeak, it could be useful in less
time-sensitive context in which longer descriptive responses
are favored. For instance, when transcribing or summarizing
reading materials for later review, it could be viable.

By focusing on a specific region, RegionSpeak elicits more
fine-grained information from web workers, without the po-
tentially problematically long responses that resulted from
multiple iterations. Because the spatial information is con-
tained in a non-text portion of the response, workers can focus
on describing the object, and users are able to get information
through two channels: audio from the screen reader, as well
as location from the object’s on-screen position.

Our results show that RegionSpeak’s image stitching provides
a faster and easier means for blind users to capture visual in-
formation, and that spatial region labeling encourages crowd
workers to provide more descriptive results than traditional
labeling. In the future, we plan to integrate RegionSpeak into
the existing crowd-powered question answering platforms so
that blind users have access to these features. We will also
explore additional functionality suggested in user feedback
from our image stitching study.

CONCLUSION

In this paper, we describe our accessible image stitching
application and parallelized visual description workflows,
then we introduce how we combine them to create Region-
Speak. RegionSpeak fills an important role between ex-
isting lightweight visual question answering tools such as
VizWiz, which use a single photo and elicit individual re-
sponses from workers, and conversational approaches such
as Chorus:View, which engage users in longer conversational
interactions for questions that require maintaining context
across multiple questions. RegionSpeak allows users to send
and receive more information with the crowd with each inter-
action, significantly reducing the number of interactions and
the total time spent finding answers.
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