OverCode: Visualizing Variation in Student Solutions to Programming Problems at Scale

<table>
<thead>
<tr>
<th>Journal:</th>
<th>Transactions on Computer-Human Interaction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID:</td>
<td>TOCHI-2014-0078</td>
</tr>
<tr>
<td>Manuscript Type:</td>
<td>Online Learning at Scale Special Issue Submission</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>01-Jun-2014</td>
</tr>
</tbody>
</table>
| Complete List of Authors: | Glassman, Elena; MIT, CSAIL
Scott, Jeremy; MIT, CSAIL
Singh, Rishabh; MIT, CSAIL
Guo, Philip; MIT, CSAIL; University of Rochester, Computer Science
Miller, Robert; MIT, CSAIL |
| Computing Classification Systems: | H.5.m. Information Interfaces and Presentation (e.g. HCI)--Miscellaneous |
OverCode: Visualizing Variation in Student Solutions to Programming Problems at Scale

ELENA L. GLASSMAN, MIT CSAIL
JEREMY SCOTT, MIT CSAIL
RISHABH SINGH, MIT CSAIL
PHILIP J. GUO, MIT CSAIL and University of Rochester
ROBERT C. MILLER, MIT CSAIL

In MOOCs, a single programming exercise may produce thousands of solutions from learners. Understanding solution variation is important for providing appropriate feedback to students at scale. The wide variation among these solutions can be a source of pedagogically valuable examples, and can be used to refine the autograder for the exercise by exposing corner cases. We present OverCode, a system for visualizing and exploring thousands of programming solutions. OverCode uses both static and dynamic analysis to cluster similar solutions, and lets instructors further filter and cluster solutions based on different criteria. We evaluated OverCode against a non-clustering baseline in a within-subjects study with 24 teaching assistants, and found that the OverCode interface allows teachers to more quickly develop a high-level view of students’ understanding and misconceptions, and to provide feedback that is relevant to more students.

Categories and Subject Descriptors: H.5.m. [Information Interfaces and Presentation (e.g., HCI)]: Miscellaneous

1. INTRODUCTION

Intelligent tutoring systems (ITSes), Massive Open Online Courses (MOOCs), and websites like Khan Academy and Codecademy are now used to teach programming courses at a massive scale. In these courses, a single programming exercise may produce thousands of solutions from learners, which presents both an opportunity and a challenge. For teachers, the wide variation among these solutions can be a source of pedagogically valuable examples [Marton et al. 2013], and understanding this variation is important for providing appropriate, tailored feedback to students [Basu et al. 2013; Huang et al. 2013]. The variation can also be useful for refining evaluation rubrics, since it can expose corner cases in automatic grading tests.

Sifting through thousands of solutions to understand their variation and find pedagogically valuable examples is a daunting task, even if the programming exercises are simple and the solutions are only tens of lines of code long. Without tool support, a teacher may not read more than 50-100 of them before growing frustrated with the tedium of the task. Given this small sample size, teachers cannot be expected to develop a thorough understanding of the variety of strategies used to solve the problem, or produce instructive feedback that is relevant to a large proportion of learners, or find unexpected interesting solutions.

An information visualization approach would enable teachers to explore the variation in solutions at scale. Existing techniques [Gaudencio et al. 2014; Huang et al. 2013; Nguyen et al. 2014] use a combination of clustering to group solutions that are semantically similar, and graph visualization to show the variation between these clusters. These clustering algorithms perform pairwise comparisons that are quadratic in both the number of solutions and in the size of each solution, which scales poorly to thousands of solutions. Graph visualization also struggles with how to label the graph node for a cluster, because it has been formed by a complex combination of code features. Without meaningful labels for clusters in the graph, the rich information of the learners’ solutions is lost and the teacher’s ability to understand variation is weakened.

In this paper we present OverCode, a system for visualizing and exploring the variation in thousands of programming solutions. OverCode is designed to visualize correct solutions, in the sense that they pass the automatic grading tests typically used in a programming class at scale. OverCode uses a novel clustering technique that creates clusters of identical cleaned code, in time linear in both the number of solutions and the size of each solution. The cleaned code is readable, executable, and describes every solution in that cluster. The cleaned code is shown in a visualization that puts code front-and-center (Figure 1). In OverCode, the teacher reads through code solutions that each repre-
Fig. 1. The OverCode user interface. The top left panel shows the number of clusters, called stacks, and the total number of solutions visualized. The next panel down in the first column shows the largest stack, while the second column shows the remaining stacks. The third column shows the lines of code occurring in the cleaned solutions of the stacks together with their frequencies.

sent an entire cluster of solutions that look and act the same. The differences between clusters are highlighted to help instructors discover and understand the variations among submitted solutions. Clusters can be filtered by the lines of code within them. Clusters can also be merged together with rewrite rules that collapse variations that the teacher decides are unimportant.

A cluster in OverCode is a set of solutions that perform the same computations, but may use different variable names or statement order. OverCode uses a lightweight dynamic analysis to generate clusters, which scales linearly with the number of solutions. It clusters solutions whose variables take the same sequence of values when executed on test inputs and whose set of constituent lines of code are syntactically the same. An important component of this analysis is to rename variables that behave the same across different solutions. The renaming of variables serves three main purposes. First, it lets teachers create a mental mapping between variable names and their behavior which is consistent across the entire set of solutions. This may reduce the cognitive load for a teacher to understand different solutions. Second, it helps clustering by reducing variation between similar solutions. Finally, it also helps make the remaining differences between different solutions more salient.

In two user studies with a total of 24 participants, we compared the OverCode interface with a baseline interface that showed original unclustered solutions. When using OverCode, participants felt that they were able to develop a better high-level view of the students’ understandings and misconceptions. While participants didn’t necessarily read more lines of code in the OverCode interface than in the baseline, the code they did read came from clusters containing a greater percentage of all the submitted solutions. Participants also drafted mock class forum posts about common good and bad solutions that were relevant to more solutions (and the students who wrote them) when using OverCode as compared to the baseline.

The main contributions of this paper are:

- a novel visualization that shows similarity and variation among thousands of solutions, with cleaned code shown for each variant.
- an algorithm that uses the behavior of variables to help cluster solutions and generate the cleaned code for each cluster of solutions.
— two user studies that show this visualization is useful for giving instructors a birds-eye view of thousands of students’ solutions.

2. RELATED WORK

There is a growing body of work on both the frontend and backend required to manage and present the large volumes of solutions gathered from MOOCs, intelligent tutors, online learning platforms, and large residential classes. The backend necessary to analyze solutions expressed as code has followed from prior work in fields such as program analysis, compilers, and machine learning. A common goal of this prior work is to help teachers monitor the state of their class, or provide solution-specific feedback to many students. However, there has not been much work on developing interactive user interfaces that enable an instructor to navigate the large space of student solutions.

We first present here a brief review of the state of the art in the backend, specifically about analyzing code generated by students who are independently attempting to implement the same function. This will place our own backend in context. We then review the information visualization principles and systems that inspired our frontend contributions.

2.1. Related Work in Program Analysis

2.1.1. Canonicalization and Semantics-Preserving Transformations. When two pieces of code have different syntax, and therefore different abstract syntax trees (ASTs), they may still be semantically equivalent. A teacher viewing the code may want to see those syntactic differences, or may want to ignore them in order to focus on semantic differences. Semantics-preserving transformations can reduce or eliminate the syntactic differences between code. Applying semantics-preserving transformations, sometimes referred to as canonicalization or standardization, has been used for a variety of applications, including detecting clones [Baxter et al. 1998] and automatic “transform-based diagnosis” of bugs in students’ programs written in programming tutors [Xu and Chee 2003].

OverCode also canonicalizes solutions, using variable renaming. OverCode’s canonicalization is novel in that its design decisions were made to maximize human readability of the resulting code. As a side-effect, syntactic differences between answers are also reduced.

2.1.2. Abstract Syntax Tree-based Approaches. Huang et al. [2013] worked with short Matlab/Octave functions submitted online by students enrolled in a machine learning MOOC. The authors generate an AST for each solution to a problem, and calculate the tree edit distance between all pairs of ASTs, using the dynamic programming edit distance algorithm presented by Shasha et al. [1994]. Based on these computed edit distances, clusters of syntactically similar solutions are formed. The algorithm is quadratic in both the number of solutions and the size of the ASTs. Using a computing cluster, the Shasha algorithm was applied to just over a million solutions.

Codewebs [Nguyen et al. 2014] created an index of “code phrases” for over a million submissions from the same MOOC and semi-automatically identified equivalence classes across these phrases, using a data-driven, probabilistic approach. The Codewebs search engine accepts queries in the form of subtrees, subforests, and contexts that are subgraphs of an AST. A teacher labels a set of AST subtrees considered semantically meaningful, and then queries the search engine to extract all equivalent subtrees from the dataset.

Both Codewebs [Nguyen et al. 2014] and Huang et al. [2013] use unit test results and AST edit distance to identify clusters of submissions that could potentially receive the same feedback from a teacher. These are non-interactive systems that require hand-labeling in the case of Codewebs, or a computing cluster in the case of Huang et al. In contrast, OverCode’s pipeline does not require hand-labeling and runs in minutes on a laptop, then presents the results in an interactive user interface.

2.1.3. Supervised Machine Learning and Hierarchical Pairwise Comparison. Semantic equivalence is another way of saying that two solutions have the same schema. A schema, in the context of programming, is a high-level cognitive construct by which humans understand or generate code to solve problems [Soloway and Ehrlich 1984]. For example, two programs that implement bubble
sort have the same schema, bubble sort, even though they may have different low-level implementations. Taherkhani et al. [2012; 2013] used supervised machine learning methods to successfully identify which of several sorting algorithms a solution used. Each solution is represented by statistics about language constructs, measures of complexity, and detected roles of variables. The method can identify sorting algorithms that have already been analyzed and included in its training dataset. OverCode, in contrast, handles problems for which the algorithmic schema is not already known.

Luxton-Reilly et al. [2013] label types of variations as structural, syntactic, or presentation-related. The structural similarity between solutions in a dataset is captured by comparing their control flow graphs. If the control flow of two solutions is the same, then the syntactic variation within the blocks of code is compared by looking at the sequence of token classes. Presentation-based variation, such as variable names and spacing, is only examined when two solutions are structurally and syntactically the same. In contrast, our approach is not hierarchical, and uses dynamic information in addition to syntactic information.

2.1.4. Program Synthesis. There has also been work on analyzing each student solution individually to provide more precise feedback. Singh et al. [2013] use a constraint-based synthesis algorithm to find the minimal changes needed to make an incorrect solution functionally equivalent to a reference implementation. The changes are specified in terms of a problem-specific error model that captures the common mistakes students make on a particular problem.

Rivers and Koedinger [2013] propose a data-driven approach to create a solution space consisting of all possible ways to solve a problem. This solution space can then be used to locate the potential learning progression for a student submission and provide hints on how to correct their attempt. Instead of providing hints, the aim of our work is to help instructors navigate the space of correct solutions and therefore techniques based on checking only the functional correctness are not helpful in computing similarities and differences between such solutions.

2.2. Related Work in User Interfaces for Solution Visualization

Several user interfaces have been designed for providing grades or feedback to students at scale, and for browsing large collections in general, not just student solutions.

Basu et al. [2013] provide a novel user interface for powergrading short-answer questions. Powergrading means assigning grades or writing feedback to many similar answers at once. The backend uses machine learning that is trained to cluster answers, and the frontend allows teachers to read, grade or provide feedback to those groups of similar answers simultaneously. Teachers can also discover common misunderstandings. The value of the interface was verified in a study of 25 teachers looking at their visual interface with clustered answers. When compared against a baseline interface, the teachers assigned grades to students substantially faster, gave more feedback to students, and developed a “high-level view of students’ understanding and misconceptions” [Brooks et al. 2014].

At the intersection of information visualization and program analysis is Cody¹, an informal learning environment for the Matlab programming language. Cody does not have a teaching staff but does have a solution map visualization to help students discover alternative ways to solve a problem. A solution map plots each solution as a point against two axes: time of submission on the horizontal axis, and code size on the vertical axis, where code size is the number of nodes in the parse tree of the solution. Despite the simplicity of this metric, solution maps can provide quick and valuable insight when assessing large numbers of solutions [Glassman et al. 2013].

OverCode has also been inspired by information visualization projects like WordSeer [Muralidharan and Hearst 2013; Muralidharan et al. 2013] and CrowdScape [Rzeszotarski and Kittur 2012]. WordSeer helps literary analysts navigate and explore texts, using query words and phrases [Muralidharan and Hearst 2011]. CrowdScape gives users an overview of crowd-workers’ performance

¹mathworks.com/matlabcentral/cody
on tasks. An overview of crowd-workers each performing on a task, and an overview of submitted
code, each executing a test case, are not so different, from an information presentation point of view.

3. OVERCODE

We now describe the OverCode user interface. OverCode is an information visualization application
for teachers to explore student program solutions. The OverCode interface allows the user to scroll,
filter, and stack solutions. OverCode uses the metaphor of stacks to denote collections of similar
solutions, where each stack shows a cleaned solution from the corresponding collection of identical
cleaned solutions it represents. These cleaned solutions have strategically renamed variables and can
be filtered by the cleaned lines of code they contain. Cleaned solutions can also be rewritten when
users compose and apply a rewrite rule, which can eliminate differences between cleaned solutions
and therefore combine stacks of cleaned solutions that have become identical.

We iteratively designed and developed the OverCode interface based on continuous evaluation
by authors, feedback from instructors and peers, and by consulting principles from the information
visualization literature. A screenshot of OverCode visualizing iterPower, one of the problems
from our dataset, is shown in Figure 1. In this section, we describe the intended use cases and the
user interface. In Section 4, the backend program analysis pipeline is described in detail.

3.1. Target Users and Context

The target users of OverCode are teaching staff of programming courses. Teaching staff may be
undergraduate lab assistants who help students debug their code; graduate students who grade ass-
ignments, help students debug, and manage recitations and course forums; and lecturing profes-
sors who also compose the major course assessments. Teachers using OverCode may be looking for
common misconceptions, creating a grading rubric, or choosing pedagogically valuable examples
to review with students in a future lesson.

3.1.1. Misconceptions and Holes in Students' Knowledge. Students just starting to learn pro-
gramming can have a difficult time understanding the language constructs and different API methods.
They may use them suboptimally, or in non-standard ways. OverCode may help instructors identify
these common misconceptions and holes in knowledge, by highlighting the differences between
stacks of solutions. Since the visualized solutions have already been tested and found correct by an
autograder, these highlighted differences between cleaned solutions may be variations in construct
usage and API method choices that expose misconceptions.

3.1.2. Grading Rubrics. It is a difficult task to create grading rubrics for checking properties such
as design and style of solutions. Therefore most autograders resort to checking only functional
correctness of solutions by testing them against a test suite of input-output pairs. OverCode enables
instructors to identify the variation in both style and structure within correct solutions, as well as
the frequency of these variations. Unlike traditional ways of creating a grading rubric, where an
instructor may go through a set of solutions, revising the rubric along the way, instructors can
use OverCode to first get a high-level overview of the variations before designing a corresponding
rubric.

3.1.3. Pedagogically Valuable Examples. There can be a variety of ways to solve a given problem
and express it in code. OverCode helps instructors filter through cleaned solutions to find different
examples of solutions to the same problem, which may be pedagogically valuable according to
Variation Theory [Marton et al. 2013]. According to Variation Theory, students can learn through
concrete examples of these multiple solutions, which vary along various conceptual dimensions.

3.2. User Interface

The OverCode user interface is divided into three columns. The top-left panel in the first column
shows the problem name, the done progress bar, the number of stacks, the number of visualized
stacks given the current filters and rewrite rules, and the total number of solutions those visualized
stacks contain. The panel below shows the largest stack that represents the most common solution. Side by side with the largest stack, the remaining solution stacks appear in the second panel. Through scrolling, any stack can be horizontally aligned with the largest stack for easier comparison. The third panel has three different tabs that provide static and dynamic information about the solutions, and the ability to filter and combine stacks.

As shown in Figure 1, the default tab shows a list of lines of code that occur in different cleaned solutions together with their corresponding frequencies. The stacks can be filtered based on the occurrence of one or more lines (Filter tab). The column also has tabs for Rewrite and Legend. The Rewrite tab allows an instructor to provide rewrite rules to collapse different stacks with small differences into a larger single stack. The Legend tab shows the dynamic values that different program variables take during the execution of programs over a test case. We now describe different features of OverCode in more detail.

3.2.1. Stacks. A stack in OverCode denotes a set of similar solutions that are grouped together based on a similarity criterion defined in Section 4. For example, a stack for the iterPower problem is shown in Figure 2(a). Each stack is associated with a numeric count, which is shown in a pill at the top-left corner of the stack. The count denotes how many solutions are in the stack, and can also be referred to as the stack size. The solution on the top of the stack is a cleaned solution that describes all the solutions in the stack. See Section 4 for details on the cleaning process.

Each stack can also be clicked. After clicking a stack, the border color of the stack changes and the done progress bar is updated to reflect the percentage of total solutions clicked, as shown in Figure 2(b). This feature is intended to help users remember which stacks they have already read or analyzed, and keep track of their progress. Clicking on a large stack, which represents a significant fraction of the total solutions, is reflected by a large change in the done progress bar.

![Fig. 2](image_url)

(a) A stack consisting of 1534 similar iterPower solutions. (b) After clicking a stack, the border color of the stack changes and the done progress bar denotes the corresponding fraction of solutions that have been checked.

3.2.2. Showing Differences between Stacks. OverCode allows instructors to compare smaller stacks, shown in the second column, with the largest stack, shown in the first column. The lines of code in the second column that also appear in the set of lines in the largest stack are dimmed so that only the differences between the smaller stacks and the largest stack are apparent. For example, Figure 3 shows the differences between the cleaned solutions of the two largest stacks.

3.2.3. Filtering Stacks by Lines of Code. The third column of OverCode shows the list of lines of code occurring in the solutions together with their frequencies (numbered pills). The interface has a slider that can be used to change the threshold value, which denotes the number of solutions in which a line should appear for it to be included in the list. For example, by dragging the slider to...
Similar lines of code between two stacks are dimmed out such that only differences between the two stacks are apparent. Figure 4(a), OverCode only shows lines of code that are present in at least 200 solutions. Furthermore, users can filter the stacks by selecting one or more lines of code from the list. After each selection, only stacks whose cleaned solutions have those selected lines of code are shown. Figure 4(b) shows a filtering of stacks that have a for loop, specifically the line of code for i in range(expB), and that assign 1 to the variable result.

3.2.4. Rewrite Rules. There are often small differences between the cleaned solutions that can lead to a large number of stacks for an instructor to review. OverCode provides rewrite rules by which users can collapse these differences. A rewrite rule is described with a left hand side and a right hand side as shown in Figure 5(a). The semantics of a rewrite rule is to replace all occurrences of the left hand side expression in the cleaned solutions with the corresponding right hand side. As the rewrite rules are entered, OverCode presents a preview of the changes in the cleaned solutions as shown in Figure 5(b). After the application of the rewrite rules, OverCode collapses stacks that now have the same cleaned solutions because of the rewrites. For example, after the application of the rewrite rule in Figure 5(a), OverCode collapses the two biggest iterPower stacks from Figure 1 of sizes 1534 and 374, respectively, into a single stack of size 1908. Other pairs of stacks whose
differences have now been removed by the rewrite rule are also collapsed into single stacks. As shown in Figure 6(a), the number of stacks now drop from 862 to 814.

![Rewrite Rule Example](image)

Fig. 5. (a) An example rewrite rule to replace all occurrences of statement `result = base * result` with `result *= base`. (b) The preview of the changes in the cleaned solutions because of the application of the rewrite rule.

![Variable Legend Example](image)

Fig. 6. (a) The merging of stacks after application of the rewrite rule shown in Figure 5. (b) The variable legend shows the sequence of dynamic values that all program variables in cleaned solutions take over the course of execution on a given test case.

3.2.5. **Variable Legends.** OverCode also shows the sequence of values that variables in the cleaned solutions take on, over the course of their execution on a test case. As described in Section 4, a variable is identified by the sequence of values it takes on during the execution of the test case. Figure 6(b) shows a snapshot of the variable values for the `iterPower` problem. The goal of presenting this dynamic information associated with common variable names is to help users understand the behavior of each cleaned solution, and further explore the variations among solutions that do not have the same common variables.

4. **IMPLEMENTATION**

The OverCode user interface depends on an analysis pipeline that canonicalizes solutions in a manner designed for human readability, referred to here as **cleaning**. The pipeline then creates stacks of solutions that have become identical through the cleaning process. The pipeline accepts, as input, a set of solutions, expressed as function definitions for `f(a, ...)`, and one test case `f(a1, ...)`. We refer to the solutions that enter the pipeline as `raw`, and the solutions that exit the pipeline as `clean`. To illustrate this pipeline, we will have a few running examples, beginning with `iterPower`.
4.1. Analysis Pipeline

OverCode is currently implemented for Python, but the pipeline steps described below could be readily generalized to other languages commonly used to teach programming.

1. **Reformat solutions.** For a consistent appearance, the solutions are reformatted\(^2\) to have consistent line indentation and token spacing. Comments and empty lines are also removed. These steps not only make solutions more readable, but also allow exact string matches between solutions, after additional cleaning steps later in the pipeline.

 The following example illustrates the effect of this reformatting:

 Student A Raw Code

   ```python
   def iterPower(base, exp):
       '''
       base: int or float.
       exp: int >= 0
       returns: int or float, base^exp
       '''
       result = 1
       for i in range(exp):
           result *= base
       return result
   ```

 Student A Reformatted

   ```python
   def iterPower(base, exp):
       result = 1
       for i in range(exp):
           result *= base
       return result
   ```

2. **Execute solutions.** Each solution is executed once, using the same test case. During each step of the execution, the names and values of local and global variables, and also return values from functions, are recorded as a program trace. There is one program trace per solution. For the purposes of illustrating this pipeline, we will use the example of executing definitions of \texttt{iterPower} on a base of 5.0 and an \texttt{exp} of 3.

 Student Code with Test Case

   ```python
   def iterPower(base, exp):
       # student code here
   iterPower(5.0, 3)
   ```

3. **Extract variable sequences.** During the previous step, the Python execution logger [Guo 2013] records the values of all in-scope variables after every statement execution in the Python program. The resulting log is referred to as the program trace. For each variable in a program trace, we extract the sequence of values it takes on, without considering how many statements were executed.

\(^2\)We used the PythonTidy package, by Charles Curtis Rhode. \url{https://pypi.python.org/pypi/PythonTidy/} Since our datasets are in Python, we use a Python-specific reformatting script. However, our approach is not language-specific.
before the variable’s value changed.

Student A Code with Test Case

```python
def iterPower(base, exp):
    result = 1
    for i in range(exp):
        result *= base
    return result
```

Program Trace for Student A Code

```
iterPower(5.0, 3)
base : 5.0, exp : 3
result=1
for i in range(exp):
    base : 5.0, exp : 3, result : 1
    result*=base
    base : 5.0, exp : 3, result : 5.0, i : 0
for i in range(exp):
    base : 5.0, exp : 3, result : 25.0, i : 1
    result*=base
    base : 5.0, exp : 3, result : 125.0, i : 2
return result
value returned: 125.0
```

Variable Sequences for Student A Code

| base: 5.0 | exp: 3 | result: 1, 5.0, 25.0, 125.0 | i: 0, 1, 2 |

4. Identify common variables. We analyze all program traces, identifying which variables’ sequences are identical. We define a *common variable* to denote those variables that have identical sequences across two or more program traces. Variables which occur in only one program trace are called *unique variables*.

Student B Code with Test Case

```python
def iterPower(base, exp):
    r = 1
    for k in xrange(exp):
        r *= base
    return r
```

Variable Sequences for Student B Code

| base: 5.0 | exp: 3 | r: 1, 5.0, 25.0, 125.0 | k: 0, 1, 2 |

Student C Code with Test Case

```python
def iterPower(base, exp):
    result = 1
    while exp > 0:
        result *= base
        exp -= 1
    return result
```

Variable Sequences for Student C Code

| base: 5.0 | exp: 3 | result: 1, 5.0, 25.0, 125.0 | exp: 3, 2, 1, 0 |

For example, in Student A’s code and Student B’s code, `i` and `k` take on the same sequence of values: 0, 1, 2. They are therefore considered the same *common variable*.
5. Rename common and unique variables. A common variable may have a different name in each program trace. The name given to each common variable is the variable name that is given most often to that common variable across all program traces.

There are exceptions made to avoid three types of name collisions described in Section 4.2 that follows. In the running example, the unique variable's original name, exp, has a double underscore appended to it as a modifier to resolve a name collision with the common variable of the same name, referred to here as a Unique/Common Collision.

- **Common Variables, Named**
 - base: 5.0
 - exp: 3
 - result: 1, 5.0, 25.0, 125.0
 - i: 0, 1, 2 (common name tie broken by random choice)

- **Unique Variables, Named**
 - exp__: 3, 2, 1, 0

After common and unique variables in the solutions are renamed, the solutions are now called clean.

Clean Student A Code (After Renaming)
```python
def iterPower(base, exp):
    result = 1
    for i in range(exp):
        result *= base
    return result
```

Clean Student B Code (After Renaming)
```python
def iterPower(base, exp):
    result = 1
    for i in xrange(exp):
        result = result * base
    return result
```

Clean Student C Code (After Renaming)
```python
def iterPower(base, exp__):
    result = 1
    while exp__ > 0:
        result *= base
        exp__ -= 1
    return result
```

6. Make stacks. We iterate through the clean solutions, making stacks of solutions that share an identical set of lines of code. We compare sets of lines of code because then solutions with arbitrarily ordered lines that do not depend on each other can still fall into the same stack. (Recall that the variables in these lines of code have already been renamed based on their dynamic behavior, and all the solutions have already been marked input-output correct by an autograder, prior to this pipeline.) The solution that represents the stack is randomly chosen from within the stack, because all the clean solutions within the stack are identical, with the possible exception of the order of their statements.

In the examples below, the clean C and D solutions have the exact same set of lines, and both provide correct output, with respect to the autograder. Therefore, we assume that the difference in order of the statements between the two solutions does not need to be communicated to the user. The
For Peer Review

A:12
two solutions are put in the same stack, with one solution arbitrarily chosen as the visible cleaned
code. However, since Student A and Student B use different functions, i.e., \texttt{xrange} vs. \texttt{range},
and different operators, i.e., \texttt{*= vs. =, *}, the pipeline puts them in separate stacks.

\begin{tabular}{ll}
\textbf{Stack 1} Clean Student A (After Renaming) & \textbf{Stack 2} Clean Student B (After Renaming) \\
\begin{verbatim}
def iterPower(base,exp):
 result=1
 for i in range(exp):
 result*=base
 return result
\end{verbatim} & \begin{verbatim}
def iterPower(base,exp):
 result=1
 for i in xrange(exp):
 result=result*base
 return result
\end{verbatim} \\
\textbf{Stack 3} Clean Student C (After Renaming) & \textbf{Stack 3} Clean Student D (After Renaming) \\
\begin{verbatim}
def iterPower(base,exp__):
 result=1
 while exp__>0:
 result=result*base
 exp__-=1
 return result
\end{verbatim} & \begin{verbatim}
def iterPower(base,exp__):
 result=1
 while exp__>0:
 exp__-=1
 result=result*base
 return result
\end{verbatim} \\
\end{tabular}

Even though all the solutions we process in this pipeline have already been marked correct by
an autograder, the program tracing [Guo 2013] and renaming scripts occasionally generate errors
while processing a solution. For example, the script may not have code to handle a particular but
rare Python construct. Errors thrown by the scripts drive their development and are helpful for de-
bugging. When errors occur while processing a particular solution, we exclude the solution from our
analysis. Less than five percent of the solutions in each of our three problem datasets are excluded.

4.2. Variable Renaming Details and Limitations

There are three distinct types of name collisions possible when renaming variables to be consis-
tent across multiple solutions. The first, which we refer to as a \textit{common/common} collision, occurs
when two common variables (with different variable sequences) have the same common name. The
second, referred to here as a \textit{multiple instances} collision, occurs when there are multiple different
instances of the same common variable in a solution. The third and final collision, referred to as a
\textit{unique/common} collision, occurs when a unique variable’s name collides with a common variable’s
name.

\textbf{Common/common collision.} If common variables cv_1 and cv_2 are both most frequently named i
across all program traces, we append a modifier to the name of the less frequently used common
variable. For example, if 500 program traces have an instance of cv_1 and only 250 program traces
have an instance of cv_2, cv_1 will be named i and cv_2 will be named iB.

This is illustrated below. Across all thousand of \texttt{iterPower} definitions in our dataset, a subset
of them created a variable that iterated through the values generated by \texttt{range}(exp). Student A’s
code is an example. A smaller subset created a variable that iterated through the values generated
by \texttt{range}(1,exp+1), as seen in Student E’s code. These are two separate common variables in
our pipeline, due to their differing value sequences. The \textit{common/common} name collision arises be-
cause both common variables are most frequently named i across all solutions to \texttt{iterPower}. To
preserve the one-to-one mapping of variable name to value sequence across the entire \texttt{iterPower}
problem dataset, the pipeline appends a modifier, B, to the common variable i found in fewer
\texttt{iterPower} solutions. A common variable, also most commonly named i, which is found in even
fewer \texttt{iterPower} definitions, will have a C appended, etc.
Student A (Represents 500 Solutions)

```python
def iterPower(base, exp):
    result = 1
    for i in range(exp):
        result *= base
    return result
```

Clean Student A (After Renaming)

(unchanged)

Student E (Represents 250 Solutions)

```python
def iterPower(base, exp):
    result = 1
    for i in range(1, exp + 1):
        result *= base
    return result
```

Clean Student E (After Renaming)

(unchanged)

Multiple-instances collision. We identify variables by their sequence of values (excluding consecutive duplicates), not by their given name in any particular solution. However, without considering the timing of variables’ transitions between values, relative to other variables in scope at each step of a function execution, it is not possible to differentiate between multiple instances of a common variable within a single solution.

Rather than injecting a name collision into an otherwise correct solution, we chose to preserve the author’s variable name choice for all the instances of that common variable in that solution. If an author’s preserved variable name collides with any common variable name in any program trace and does not share that common variable’s sequence of values, the pipeline appends a double underscore to the authors preserved variable name, so that the interface, and the human reader, do not conflate them.

In the following example, the solution’s author made a copy of the `exp` variable, called it `exp1`, and modified neither. Both map to the same common variable, `expB`. Therefore, both have had their author-given names preserved, with an underscore appended to the local `exp` so it does not look like common variable `exp`.

Code with Multiple Instances of a Common Variable

```python
def iterPower(base, exp):
    result = 1
    exp1 = abs(exp)
    for i in range(exp1):
        result *= base
    if exp < 0:
        return 1.0 / float(result)
    return result
```

IterPower(5.0, 3)

| Both exp and exp1 map to common variable expB: 3 | exp: 3
| exp: 3 |

| All other variables map to common variables of same name base: 5.0 |
| i: 0, 1, 2 |
| result: 1, 5.0, 25.0, 125.0 |

Code with Multiple Instances Collision Resolved

```python
def iterPower(base, exp__):
    result = 1
    exp1 = abs(exp__)
    for i in range(exp1):
        result *= base
    if exp__ < 0:
        return 1.0 / float(result)
    return result
```

IterPower(5.0, 3)

Unique/common collision. Unique variables, as defined before, take on a sequence of values that is unique across all program traces. If a unique variable’s name collides with any common variable

name in any program trace, the pipeline appends a double underscore to the unique variable name, so that the interface, and the human reader, do not conflate them.

In addition to the example of this collision in the description of common and variable naming in the previous section, we provide the example below. In this solution, the student added 1 to the exponent variable before entering a while loop. No other students did this. To indicate that the exp variable is unique and does not share the same behavior as the common variable also named exp, our pipeline appends double underscores to exp in this one solution.

```python
def iterPower(base,exp__):
    result=1
    exp__+=1
    while exp__>1:
        result*=base
        exp__-=1
    return result
```

4.3. Complexity of the Analysis Pipeline

Unlike previous pairwise AST edit distance-based clustering approaches that have quadratic complexity both in the number of solutions and the size of the ASTs [Huang et al. 2013], our analysis pipeline has linear complexity in the number of solutions and in the size of the ASTs. The Reformat step performs a single pass over each solution for removing extra spaces, comments, and empty lines. Since we only consider correct solutions, we assume that each solution can be executed within a constant time that is independent of the number of solutions. The executions performed by the autograder for checking correctness could also be instrumented to obtain the program traces, so code is not unnecessarily re-executed. The identification of all common variables and unique variables across the program traces takes linear time as we can hash the corresponding variable sequences and then check for occurrences of identical sequences. The Renaming step, which includes handling name collisions, also performs a single pass over each solution. Finally, the Stacking step creates stacks of similar solutions by performing set-based equality of lines of code that can also be performed in linear time by hashing the set of lines of code.

5. DATASET

For evaluating both the analysis pipeline and the user interface of OverCode, we use a dataset of solutions from 6.00x, an introductory programming course in Python that was offered on edX in fall 2012. We chose Python solutions from three exercise problems, and this dataset consists of student solutions submitted within two weeks of the posting of those three problems. We obtained thousands of submissions to these problems, from which we selected all correct solutions (tested over a set of test cases) for our analysis. The number of solutions analyzed for each problem is shown in Figure 7.

- **iterPower** The iterPower problem asks students to write a function to compute the exponential base\(^{exp}\) iteratively using successive multiplications. This was an in-lecture exercise for the lecture on teaching iteration. See Figure 8 for examples.

- **hangman** The hangman problem takes a string secretWord and a list of characters lettersGuessed as input, and asks students to write a function that returns a string where all letters in secretWord that are not present in the list lettersGuessed are replaced with an underscore. This was a part of the third week of problem set exercises. See Figure 9 for examples.

- **compDeriv** The compDeriv problem requires students to write a Python function to compute the derivative of a polynomial, where the coefficients of the polynomial are represented as a python list. This was also a part of the third week of problem set exercises. See Figure 10 for examples.
Table 1. Number of solutions for the three problems in our 6.00x dataset.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Total Submissions</th>
<th>Correct Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>iterPower</td>
<td>8940</td>
<td>3875</td>
</tr>
<tr>
<td>hangman</td>
<td>1746</td>
<td>1118</td>
</tr>
<tr>
<td>compDeriv</td>
<td>3013</td>
<td>1433</td>
</tr>
</tbody>
</table>

Fig. 7. Number of solutions for the three problems in our 6.00x dataset.

IterPower Examples

```python
def iterPower(base, exp):
    result = 1
    for i in range(exp):
        result *= base
    return result
```

```python
def iterPower(base, exp):
    result = 1
    for i in range(exp):
        result *= base
    return result
```

```python
def iterPower(base, exp):
    x = base
    if exp == 0:
        return 1
    else:
        while exp > 1:
            x *= base
            exp -= 1
        return x
```

```python
def iterPower(base, exp):
    x = 1
    for n in [base] * exp:
        x *= n
    return x
```

Fig. 8. Example solutions for the iterPower problem in our 6.00x dataset.

Hangman Examples

```python
def getGuessedWord(secretWord, lettersGuessed):
    guessedWord = ''
    guessed = False
    for e in secretWord:
        for idx in range(len(lettersGuessed)):
            if (e == lettersGuessed[idx]):
                guessed = True
                break
                # guessed = isWordGuessed(e, lettersGuessed)
        if (guessed == True):
            guessedWord = guessedWord + e
        else:
            guessedWord = guessedWord + '_ '
    guessed = False
    return guessedWord
```

```python
def getGuessedWord(secretWord, lettersGuessed):
    if len(secretWord) == 0:
        return ''
    else:
        if lettersGuessed.count(secretWord[0]) > 0:
            return secretWord[0] + '' + getGuessedWord(secretWord[1:],
                lettersGuessed)
        else:
            return '_ ' + getGuessedWord(secretWord[1:], lettersGuessed)
```

Fig. 9. Example solutions for the hangman problem in our 6.00x dataset.
CompDeriv Examples

def computeDeriv(poly):
 der = []
 for i in range(len(poly)):
 if i > 0:
 der.append(float(poly[i] * i))
 if len(der) == 0:
 der.append(0.0)
 return der

def computeDeriv(poly):
 if len(poly) == 1:
 return [0.0]
 fp = poly[1:]
 b = 1
 for a in poly[1:]:
 fp[b - 1] = 1.0 * a * b
 b += 1
 return fp

def computeDeriv(poly):
 if len(poly) < 2:
 return [0.0]
 poly.pop(0)
 for power, value in enumerate(poly):
 poly[power] = value * (power + 1)
 return poly

def computeDeriv(poly):
 index = 1
 polyLen = len(poly)
 result = []
 while (index < polyLen):
 result.append(float(poly[index] * index))
 index += 1
 if (len(result) == 0):
 result = [0.0]
 return result

Fig. 10. Example solutions for the compDeriv problem in our 6.00x dataset.

6. OVERCODE ANALYSIS PIPELINE EVALUATION

We now present the evaluation of OverCode’s analysis pipeline implementation on our Python dataset. We first present the running time of our algorithm and show that it can generate stacks within few minutes for each problem on a laptop. We then present the distribution of initial stack sizes generated by the pipeline. Finally, we present some examples of the common variables identified by the pipeline and report on the number of cases where name collisions are handled during the cleaning process. The evaluation was performed on a Macbook Pro 2.6GHz Intel Core i7 with 16GB of RAM.

Running Time The complexity of the pipeline that generates stacks of solutions grows linearly in the number of solutions as described in Section 4.3. Figure 11 reports the running time of the pipeline on the problems in the dataset as well as the number of stacks and the number of common variables found across each of the problems. As can be seen from the Figure, the pipeline is able to clean thousands of student solutions and generate stacks within few minutes for each problem.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Correct Solutions</th>
<th>Running Time</th>
<th>Initial Stacks</th>
<th>Common Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>iterPower</td>
<td>3875</td>
<td>15m 28s</td>
<td>862</td>
<td>38</td>
</tr>
<tr>
<td>hangman</td>
<td>1118</td>
<td>8m 6s</td>
<td>552</td>
<td>106</td>
</tr>
<tr>
<td>compDeriv</td>
<td>1433</td>
<td>10m 20s</td>
<td>1109</td>
<td>50</td>
</tr>
</tbody>
</table>

Fig. 11. Running time, and the number of stacks and common variables generated by the OverCode backend implementation on our dataset problems.

Distribution of Stacks The distribution of initial stack sizes generated by the analysis pipeline for different problems is shown in Figure 12. Note that the two axes of the graph corresponding to the size and the number of stacks are shown on a logarithmic scale. For each problem, we observe that there are a few large stacks and a lot of smaller stacks (particularly of size 1). The largest stack for iterPower problem consists of 1534 solutions, whereas the largest stacks for hangman and compDeriv consists of 97 and 22 solutions respectively. The number of stacks consisting of a single solution for iterPower, hangman, and compDeriv are 684, 452, and 959 respectively.
The two largest stacks with the corresponding cleaned solutions for each problem are shown in Figure 13.

Common Variables There exists a large variation among the variable names used by students to denote variables that compute the same set of values. The Variable Renaming step of the analysis renames these equivalent variables with the most frequently chosen variable name so that a teacher can easily recognize the role of variables in a given solution. The number of common variables found by the pipeline on the dataset problems is shown in Figure 11 and some examples of these common variable names are shown in Figure 14. Figure 14 also presents the number of times such a variable occurs across the solutions of a given problem, the corresponding variable sequence value on a given test input, and a subset of the original variable names used in the student solutions.

Collisions in Variable Renaming The number of Common/Common, Multiple Instances, and Unique/Common collisions discovered and resolved while performing variable renaming is shown in Figure 15. A large majority of the collisions were Common/Common Collisions. For example, Figure 14 shows the common variable name \(exp \) for two different sequence values \([3, 2, 1, 0]\) and \([3]\) for the \texttt{iterPower} problem. Similarly, the common variable name \(i \) corresponds to sequences \([-13.9, 0.0, 17.5, 3.0, 1.0]\) and \([0, 1, 2, 3, 4, 5]\) for the \texttt{compDeriv} problem. There were also a few Multiple Instances collisions and Unique/Common collisions found: 1.5% for \texttt{iterPower}, 3% for \texttt{compDeriv}, and 10% for \texttt{hangman}.

7. **USER STUDY 1: WRITING A CLASS FORUM POST**

Our goal was to design a system that allows teachers to develop a better understanding of the variation in student solutions, and give feedback that is relevant to more students. We designed two user studies to evaluate our progress in two ways: (1) user interface satisfaction and (2) how many solutions users could view and give feedback on.

The first study was a 12-person within-subjects evaluation of interface satisfaction when using OverCode for a realistic, relatively unstructured task. Using either OverCode or a baseline interface, subjects were asked to browse student solutions to the programming problems in our dataset and...
then write a class forum post on the good and bad ways students solved the problem. Through this study, we sought to test our first hypothesis:

— **H1 Interface Satisfaction**: Subjects will find OverCode easier to use, more helpful and less overwhelming for browsing thousands of solutions, compared to the baseline.

7.1. OverCode and Baseline Interfaces

We designed two interfaces, referred to here as OverCode and the baseline. The OverCode interface and backend are described in detail in Section 3. The baseline interface was a single webpage with all student solutions concatenated in a random order into a flat list (Figure 16, left). We chose this design to emulate existing methods of reviewing solutions, and to draw out differences between browsing stacked and unstacked solutions. In the baseline, solutions appeared visually similar to those in the OverCode interface (boxed, syntax-highlighted code), but the solutions were raw, in the sense that they were not normalized for whitespace or variable naming differences. As in the OverCode condition, subjects were able to use standard web-browser features, such as the within-page *find* action.

Fig. 13. The two largest stacks generated by the OverCode backend algorithm for the (a) *iterPower*, (b) *hangman*, and (c) *compDeriv* problems.
Fig. 14
Some examples of common variables found by our analysis across the problems in the dataset. The table also shows the frequency of occurrence of these variables, the common sequence values of these variables on a given test case, and a subset of the original variable names used by students.

<table>
<thead>
<tr>
<th>Common Variable Name</th>
<th>Occurrence Count</th>
<th>Sequence Value</th>
<th>Original Variable Names</th>
</tr>
</thead>
<tbody>
<tr>
<td>iterPower</td>
<td>3081</td>
<td>[1, 5.0, 25.0, 125.0]</td>
<td>result, wynik, out, total, ans, acum, num, mult, output, ...</td>
</tr>
<tr>
<td>exp</td>
<td>2744</td>
<td>[3, 2, 1, 0]</td>
<td>exp, iterator, app, i, num, iterations, times, ch, b, i, ...</td>
</tr>
<tr>
<td>i</td>
<td>266</td>
<td>[0, 1, 2]</td>
<td>i, a, count, c, b, iterValue, iter, n, y, inc, x, times, ...</td>
</tr>
</tbody>
</table>

hangman	817	[t, h, g, e, r]	letter, char, item, i, letS, ch, c, lett, ...
	291	[r, e, l, i, c]	result, guessedWord, ans, stri, ansa, guessed, string, ...
	185	[0, 1, 2, 3, 4]	i, x, each, b, n, counter, idx, pos, ...
found	76	[0, 1, 0, 1, 0]	found, n, letterGussed, contains, k, checker, test, ...

compDeriv	1186	[0.0, 35.0, 9.0, 4.0]	result, output, poly_deriv, res, deriv, resultPoly, ...
	284	[1.3, 3.0, 1.0]	i, each, a, elem, number, value, num, ...
	263	[0.1, 2, 3, 4, 5]	i, power, index, ch, x, count, per, counter, ...
length	304	[5]	length, nmax, polyLen, ipoly, lenpoly, 2, 1, n, ...

Fig. 15. The number of common/common, multiple instances, and unique/common collisions discovered by our algorithm while renaming the variables to common names.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Correct Solutions</th>
<th>Common/Common Collisions</th>
<th>Multiple Instances Collisions</th>
<th>Unique/Common Collisions</th>
</tr>
</thead>
<tbody>
<tr>
<td>iterPower</td>
<td>3875</td>
<td>1298</td>
<td>25</td>
<td>32</td>
</tr>
<tr>
<td>hangman</td>
<td>1118</td>
<td>672</td>
<td>62</td>
<td>49</td>
</tr>
<tr>
<td>compDeriv</td>
<td>1433</td>
<td>928</td>
<td>21</td>
<td>23</td>
</tr>
</tbody>
</table>

Fig. 16. The baseline interface used in the Forum Post study (left) and the Coverage study (right).

7.2. Participants
We recruited participants by reaching out to past and present programming course staff, and advertising on an academic computer science research lab’s email list. These individuals were qualified...
to participate in our study because they met at least one of the following requirements: (1) were current teaching staff of a computer science course (2) had graded Python code before, or (3) had significant Python programming experience, making them potential future teaching staff.

Information about the subjects’ backgrounds was collected during recruitment and again at the beginning of their one hour in-lab user study session. 12 people (7 male) participated, with a mean age of 23.5 (σ = 3.8). Subjects had a mean 4 years of Python programming experience (σ = 1.8), and 75% of participants had graded student solutions written in Python before. Half of the participants were graduate students, and other half were undergraduates.

7.3. Apparatus

Each subject was given $20 to participate in a 60 minute session with an experimenter, in an on-campus academic lab conference room. They used laptops running MacOS and Linux with screen sizes ranging from 12.5 to 15.6 inches, and viewed the OverCode and baseline interfaces in either Safari or Chrome. Data was recorded with Google Docs and Google Forms filled out by participants.

7.4. Conditions

Subjects performed the main task of browsing solutions and writing a class forum post twice, once in each interface condition, focusing on one of the three problems in our dataset (Section 5) each time. For each participant, the third remaining problem was used during training, to reduce learning effects when performing the two main tasks. The pairing and ordering of interface and problem conditions were fully counterbalanced, resulting in 12 total conditions. The twelve participants were randomly assigned to one of the 12 conditions, such that all conditions were tested.

7.5. Procedure

7.5.1. Prompt. The experimenter began by reading the following prompt, to give the participant context for the tasks they would be performing:

We want to help TAs give feedback to students in programming classes at scale. For each of three problems, we have a large set of students’ submissions (> 1000). All the submissions are correct, in terms of input and output behavior. We’re going to ask you to browse the submissions and produce feedback for students in the class. You’ll do this primarily in the form of a class forum post.

To make the task more concrete, participants were given an example of a class forum post that used examples taken from student solutions to explain different strategies for solving a Python problem. They were also given print-outs of the prompts for each of the three problems in our dataset, to reference when looking at solutions.

7.5.2. Training. Given the subjects’ extensive experience with web-browsers, training for the baseline interface was minimal. Prior to using the OverCode interface, subjects watched a 3-4 minute long training video demonstrating the features of OverCode, and were given an opportunity to become familiar with the interface and ask questions. The training session focused on the problem that would not be used in the main tasks, in order to avoid learning effects.

7.5.3. Tasks. Subjects then performed the main tasks twice, once in each interface, focusing on a different programming problem each time.

— Feedback for Students (15 minutes) Subjects were asked to write a class forum post on the good and bad ways students solved the problem. The fifteen minute period included both browsing and writing time, as subjects were free to paste in code examples and write comments as they browsed the solutions.

Our example was drawn from the blog “Practice Python: 30-minute weekly Python exercises for beginners,” posted on Thursday, April 24, 2014, and titled “SOLUTION Exercise 11: Check Primality and Functions.” (http://practicepython.blogspot.com)
Fig. 17. **H1: Interface satisfaction** Mean Likert scale ratings (with standard error) for OverCode and baseline interfaces, after subjects used both to perform the forum post writing task.

— *Autograder Bugs* (2 min) Although the datasets of student solutions were marked as correct by an autograder, there may be holes in the autograder’s test cases. Some solutions may deviate from the problem prompt, and therefore be considered incorrect by teachers, e.g., recursive solutions to *iterPower* when its prompt explicitly calls for an iterative solution. As a secondary task, we asked subjects to write down any bugs in the autograder they came across while browsing solutions. This was often performed concurrently with the primary task by the subject.

7.5.4. **Surveys.** Subjects filled out a post-interface condition survey about their experience using the interface. This was a short-answer survey, where they wrote about what they liked, what they did not like, and what they would like to see in a future version of the interface. At the end of the study, subjects rated agreement (on a 7-point Likert scale) with statements about their satisfaction with each interface.

7.6. **Results**

H1 is supported by ratings from the post-study survey (see Figure 17). Statistical significance was computed using the Wilcoxon Signed Rank test, pairing users’ ratings of each interface. After using both interfaces to view thousands of solutions, subjects found OverCode easier to use ($W=52$, $Z=2.41$, $p<0.05$, $r=0.70$) and less overwhelming ($W=0$, $Z=-2.86$, $p<0.005$, $r=0.83$) than the baseline interface. Finally, participants felt that OverCode “helped me get a better sense of my students’ understanding” than the baseline did ($W=66$, $Z=3.04$, $p<0.001$, $r=0.88$).

From the surveys conducted after subjects completed each interface condition, we found that subjects found stacking and the ability to rewrite code to be useful and enjoyable features of OverCode:

— Stacking is an awesome feature. Rewrite tool is fantastic. Done feature is very rewarding—feels much less overwhelming. "Lines that appear in x submissions" also awesome.

— Really liked the clever approach for variable normalization. Also liked the fact that stacks showed numbers, so I’d know I’m focusing on the highest-impact submissions. Impressed by the rewrite ability... it cut down on work so much!
I liked having solutions collapsed (not having to deal with variable names, etc), and having rules to allow me to collapse even further. This made it easy to see the "plurality" of solutions right away; I spent most of the time looking at the solutions that only had a few instances.

When asked for suggestions, participants gave many suggestions on stacks, filtering, and rewrite rules, such as:

- Enable the user to change the main stack that is being compared against the others.
- Suggest possible rewrite rules, based on what the user has already written, and will not affect the answers on the test case.
- Create a filter that shows all stacks that do not have a particular statement.

8. USER STUDY 2: COVERAGE

We designed a second 12-person study, similar in structure to the forum post study, but focused on measuring the coverage achieved by subjects when browsing and producing feedback on a large number of student solutions. The second study’s task was more constrained than the first: instead of writing a freeform post, subjects were asked to identify the five most frequent strategies used by students and rate their confidence that these strategies occurred frequently in the student solutions. These changes to the task, as well as modifications to the OverCode and baseline interfaces, enabled us to measure coverage in terms of solutions read, the relevance of written feedback and the subject’s perceived coverage. We sought to test the following hypotheses:

- **H2 Read coverage and speed** Subjects are able to read code that represents more student solutions at a higher rate using OverCode than with the baseline.
- **H3 Feedback coverage** Feedback produced when using OverCode is relevant to more student solutions than when feedback is produced using the baseline.
- **H4 Perceived coverage** Subjects feel that they develop a better high-level view of students’ understanding and misconceptions, and provide more relevant feedback using OverCode than with the baseline.

8.1. Participants, Apparatus, Conditions

The coverage study shared the same methods for recruiting participants, apparatus and conditions as the forum post study. 12 new participants (11 male) participated in the second study (mean age = 25.4, σ = 6.9). Across those 12 participants, the mean years of Python programming experience was 4.9 (σ = 3.0) and 9 of them had previously graded code (5 had graded Python code). There were 5 graduate students, 6 undergraduates, and 1 independent computer software professional.

8.2. Interface Modifications

Prior to the second study, both the OverCode and baseline interfaces were slightly modified (see differences in Figure 16) in order to enable measurements of read coverage, feedback coverage and perceived coverage.

- Clicking on stacks or solutions caused the box of code to be outlined in blue. This enabled the subject to mark them as read⁴ and enabled us to measure read coverage.
- Stacks and solutions were all marked with an identifier, which subjects were asked to include with each piece of feedback they produced. This enabled us to more easily compute feedback coverage, which will be explained further in Section 8.4.
- All interface interactions were logged in the browser console, allowing us to track both the subject’s read coverage over time, as well as their usage of other features, such as the creation of rewrite rules to merge stacks.
- Where it differed slightly before, we changed the styling of code in the baseline condition to exactly match the code in the OverCode condition.

⁴In the OverCode condition, this replaced the done checkboxes, in that clicking stacks caused the progress bar to update.
8.3. Procedure

8.3.1. Prompt. In the coverage study, the prompt was similar to the one used in the forum post study, explaining that the subjects would be tackling the problem of producing feedback for students at scale. The language was modified to shift the focus towards finding frequent strategies used by students, rather than any example of good or bad code used by a student.

8.3.2. Training. As before, subjects were shown a training video and given time to practice using OverCode’s features prior to their trial in the OverCode condition.

8.3.3. Task. The coverage study’s task consisted of a more constrained feedback task. Given 15 minutes with either the OverCode or baseline interface, subjects were asked to fill out a table, identifying the 5 most frequent strategies used by students to solve the problem. For each strategy they identified, they were asked to fill in the following fields in the table:

— A code example taken from the solution or stack.
— The identifier of the solution or stack.
— A short (1 sentence) annotation of what was good or bad about the strategy.
— Their confidence, on a scale of 1-7, that the strategy frequently occurred in the student solutions.

Importantly, subjects were also asked to mark solutions or stacks as read by clicking on them after they had ‘processed’ them, even if they weren’t choosing them as representative strategies. Combined with interaction logging done by the system, this enabled us to measure read coverage.

8.3.4. Surveys. Although we measured interface satisfaction for a realistic task in the forum post study, we also measured interface satisfaction through surveys for this more constrained, coverage-focused task. Subjects filled out a post-interface condition survey in which they rated agreement (on a 7-point Likert scale) with positive and negative adjectives about their experience using the interface, and reflected on task difficulty. At the end of the study, subjects were asked to rate their agreement with statements about the usefulness of specific features of both the OverCode and baseline interfaces, and responded to the same interface satisfaction 7-point Likert scale statements used in the first study.

![Fig. 18.](image)

Fig. 18. In (a), we plot the mean number of cleaned solutions representing stacks read in OverCode over time versus the number of raw solutions read in the baseline interface over time while performing the 15 minute long Coverage Study task. In (b), we replace the mean number of cleaned solutions with the mean number of solutions (the size of the stacks) they represent. These are shown for each of the three problems in our dataset.

8.4. Results

8.4.1. H2: Read coverage and speed. This hypothesis is supported by our measurements of read coverage from this study. For each problem, subjects were able to view more cleaned and stacked solutions by the end of the 15 minute long main task using OverCode than raw solutions when using the baseline interface (Mann–Whitney U = 16, n1 = n2 = 4, p<0.05). Figure 18 shows the mean number of solutions read over time for each interface and each problem in our dataset. The curves show that subjects were able to read code that represented more raw solutions at a higher rate due to the stacking of similar solutions.

8.4.2. H2: Feedback coverage. Each subject reported on the 5 most frequent strategies in a set of solutions, by copying both a code example and the identifier of the solution (baseline) or stack (OverCode) that it came from. We define feedback coverage as the number of students for which the quoted code is relevant, in the sense that they wrote the same lines of code, ignoring differences in whitespace or variable names. We computed the coverage for each example using the following process:

— Reduce the quoted code down to only the lines referred to in the annotation. Often, the subject’s annotation would focus on a specific feature of the quoted code, which sometimes had additional lines that were unrelated to the subject’s feedback. For example, comments about iterating over a range function, while also quoting the contents of the for loop. This step meant we would be calculating the coverage of a more general (smaller) set of lines.
— Find the source stack that the quoted code comes from. This is trivial in the OverCode condition, where the stack ID is included in the subject’s post. In the baseline, we used the solution ID included in the subject’s post to find the stack that it was merged into by the backend pipeline.
— Find the cleaned version of each quoted line. The quoted lines of code may be raw code if they come from the baseline condition. By comparing the quoted code with the cleaned code of its source stack, we found the cleaned version of each line, with variable names and whitespace normalized.
— Find the raw solutions that include the set of cleaned lines, using a map from stacks to raw solutions provided by the backend pipeline.

Figure 19 shows the mean coverage of a set of feedback produced by a single subject, across problems and interface conditions. The feedback coverage is shown as the mean percentage of raw solutions.

![Figure 19: Mean feedback coverage (percentage of raw solutions) per trial during the coverage study for each problem, in the OverCode and baseline interfaces.](image-url)
solutions for which the feedback was relevant. When giving feedback on the iterPower and hangman problems, there was not a statistically significant difference in the feedback coverage between interface conditions. However, on compDeriv, the problem with the most complex solutions, subjects using OverCode were able to achieve significantly more coverage of student solutions than when using the baseline interface (Mann–Whitney U = 0, n1 = n2 = 4, p < 0.05).

8.4.3. H3: Perceived coverage. Immediately after using each interface, we asked participants how strongly they agreed with the statement ‘This interface helped me develop a high-level view of students’ understanding and misconceptions,’ which quotes the first part of our third hypothesis. Participants agreed with this statement after using OverCode significantly more than when using the baseline interface (W = 63, Z = 2.70, p < 0.01, r = 0.81). Statistical significance was computed using the Wilcoxon Signed Rank test, pairing users’ ratings of each interface. The analysis was done on 11 participants’ data, as one participant’s data was lost. The mean rating (with standard error) for the responses is shown in Figure 20(a).

For each strategy identified by subjects, we asked them to rate their confidence, on a scale of 1-7, that the strategy was frequently used by students in the dataset. Mean confidence ratings on a per-problem basis are shown in Figure 20(b). We found that for compDeriv, subjects using OverCode were significantly more confident that their annotations were relevant to many students, compared to the baseline (Mann–Whitney U = 260.5, n1 = 18 n2 = 16, p < 0.0001).

8.4.4. H1: Interface satisfaction. Interface satisfaction was measured through multiple surveys, (1) immediately after using each interface and (2) after using both interfaces. Statistical significance was computed using the Wilcoxon Signed Rank test, pairing users’ ratings of each interface.

Immediately after finishing the assigned tasks with an interface, participants rated their agreement with statements about the appropriateness of various adjectives to describe the interface they just used, on a 7-point Likert scale. While participants found the baseline to be significantly more simple (W = 2.5, Z = -2.60, p < 0.01, r = 0.78), they found OverCode to be significantly more flexible (W = 45, Z = 2.84, p < 0.005, r = 0.86), less tedious (W = 3.5, Z = -2.41, p < 0.05, r = 0.73), more interesting (W = 66, Z = 2.96, p < 0.001, r = 0.89), and more enjoyable (W = 45, Z = 2.83, p < 0.005, r = 0.85). The analysis was

Fig. 20. (a) Post-condition perception of coverage (excluding one participant) and (b) Confidence ratings that identified strategies frequently occurred (1-7 scale).

A.26

![Interface Satisfaction](image)

Fig. 21. H4: Interface satisfaction Mean Likert scale ratings (with standard error) for OverCode and baseline, (a) immediately after using the interface for the Coverage Study task, and (b) after using both interfaces.

done on 11 participants’ data, as one participant’s data was lost. The mean ratings (with standard error) for the responses is shown in Figure 21.

After the completion of the Coverage Study, participants were asked again to rate their agreement with statements about each interface on a 7-point Likert scale. After using both interfaces to view thousands of solutions, there were no significant differences between how overwhelming or easy to use each interface was. However, participants did feel that OverCode “helped me get a sense of my students’ understanding” more than the baseline (W=62.5, Z=-2.69, p<0.01, r=0.78). The mean ratings (with standard error) for the responses is shown in Figure 21.

In the second part of this post-study survey, participants rated their agreement with statements about the helpfulness of various interface features on a 7-point Likert scale. There were only two features to ask about in the baseline interface, and the statements associated with each was mixed in with the statements about features in the OverCode interface. The OverCode feature of stacking equivalent solutions was found more helpful than the baseline’s features of in-browser find (W=41, Z=2.07, p<0.05, r=0.60) and viewing raw students’ solutions, comments included (W=45, Z=2.87, p<0.005, r=0.83). The OverCode feature of variable renaming and previewing rewrite rules were also both found significantly more helpful than seeing students’ raw code (W=65.5, Z=-2.09, p<0.05, r=0.61 and W=56.5, Z=2.14, p<0.05, r=0.62, respectively). The mean ratings (with standard error) for the responses is shown in Figure 22.

9. DISCUSSION

Our three-part evaluation of OverCode’s backend and user interface demonstrates its usability and usefulness in a realistic teaching scenario.

9.1. Read coverage

First, we observed that subjects were able to effectively read less in order to cover more ground (H1, read coverage). This is expected, because in OverCode each read stack represented tens or hundreds of raw solutions, while there was only a 1-to-1 mapping between read solutions and raw solutions in the baseline condition. OverCode’s backend makes it possible to produce a single cleaned piece of code that represents many raw solutions, reducing the normally high cognitive load of processing all the raw solutions, with their variation in formatting and variable naming.

Figure 18(a) shows that in some cases, subjects were able to read nearly as many (hangman) or more (iterPower) function definitions in the baseline as in OverCode. In the case of iterPower, the raw solutions are repetitive because of the simplicity of the problem and the relatively small amounts of variation demonstrated by student solutions. This can explain the sub-
Fig. 22. Mean Likert scale ratings (with standard error) for the usefulness of features of OverCode and baseline. “Find” is the web browser’s built-in find, which appears twice because users rated its usefulness for each condition.

Subjects’ ability to move quickly through the set of solutions, reading as many as 90 solutions in 15 minutes.

Figure 18(b) shows the effective number of raw solutions read, when accounting for the number of solutions represented by each stack in the OverCode condition. In the case of *iterPower*, subjects can say they have effectively read more than 30% of student solutions after reading the first stack. A similar statement can be made for *hangman*, where the largest stack represents roughly 10% of solutions. In the case of *compDeriv*, the small size of its largest stack (22 out of 1433 raw solutions) means that the curve is less steep, but the use of rewrite rules (avg. 4.5 rules written per *compDeriv* subject) enabled subjects to cover over 10x the solutions covered by subjects in the baseline condition.

9.2. **Feedback coverage**

We also found that subjects’ feedback on solutions for the *compDeriv* problem had significantly higher coverage when produced using OverCode than with the baseline, but that this was not the case for the *iterPower* and *hangman* problems. *compDeriv* was a significantly more complicated problem than both *iterPower* and *hangman*, meaning that there was a greater amount of variation between student solutions. This high variation meant that any one piece of feedback might not be relevant to many raw solutions, unless it was produced after viewing the solution space as stacks and creating rewrite rules to simplify the space into larger, more representative stacks. Conversely, the simple nature of *iterPower* and *hangman* meant that there was less variation in student solutions. Therefore, regardless of whether the subject was using the OverCode or baseline condition, there was a higher likelihood that they would stumble across a solution that had frequently occurring lines of code, and the feedback coverage for these problems became comparable between the two problems.

9.3. **Perceived coverage**

In addition to the actual read and feedback coverage that subjects achieved, an important finding was that (i) subjects felt they had developed a better high-level understanding of student solutions and (ii) subjects stated they were more confident that identified strategies were frequent issues in the
dataset. While a low self-reported confidence score did not necessarily correlate with low feedback coverage, these results suggest that OverCode enables the teacher to gauge the impact that their feedback will have.

10. FUTURE WORK

10.1. Context and Audience
Currently, we have used OverCode to look at solutions from an introductory programming course. We have yet to explore how well it scales to increasingly complex code solutions. OverCode enabled higher feedback coverage on one of the two more complicated problems in the Coverage Study; applying the OverCode system to even more complicated code will demonstrate how well it scales up, and may also expose the need for new pipeline and interface features that be addressed. One foreseeable complication is the need to handle complex variable values.

OverCode could also readily handle more programming languages. For a language to be displayable in OverCode, one would need (1) a logger of variable values inside tested functions, (2) a variable renamer and (3) a formatting standardization script.

OverCode could be integrated with the autograder that tests functions for input-output correctness. The execution could be performed once in such a way that it serves both systems, since both OverCode and many autograders require actually executing the code on specified test cases. If integrated into the autograder, users of OverCode could also give “power feedback” by writing line- or stack-specific feedback that could be sent back to students along with the input-output test results.

Finally, OverCode may also provide benefit to students, not just the teaching staff, after students have solved the problem on their own, like Cody. However, the current interface may need to be adjusted for use by non-expert students, instead of teaching staff.

10.2. User Interface Improvements
Our user study participants produced a variety of suggestions for additional features. In addition to those but unmentioned by users, variable renaming obscures pedagogically relevant information. The user-tested UI does not include access to raw solutions represented by a stack’s cleaned code, or to the original variable names represented by a common variable name. This can be accomplished by adding tooltips and dropdown menus. This may also be part of better communicating to users that they are looking at cleaned, not raw, code.

10.3. Backend Improvements
When the program tracing, renaming, or reformatting scripts generate an error while processing a solution, we exclude the solution from our analysis. Less than five percent of solutions were excluded from each problem, but that can be reduced further by adding support for handling more special cases and language constructs to these library functions.

Also, our current backend analysis computes the set of common variables by comparing the sequence of values the variables take over a single test case, but this can be easily generalized and extended to work over multiple test cases. The definition of common variables would then be slightly modified to be those variables that take the same set of sequence of values.

11. CONCLUSION
We have designed the OverCode system for visualizing thousands of Python programming solutions to help instructors explore the variations among them. Unlike previous approaches, OverCode uses a lightweight static and dynamic analysis to generate stacks of similar solutions and uses variable renaming to present cleaned solutions for each stack in an interactive user interface. It allows instructors to filter stacks by line occurrence and to further merge different stacks by composing rewrite rules. Based on two user studies with 24 current and potential teaching assistants, we found OverCode allowed instructors to more quickly develop a high-level view of students’ understanding and misconceptions, and provide feedback that is relevant to more students. We believe an informa-
tion visualization approach is necessary for instructors to explore the variations among solutions at the scale of MOOCs, and OverCode is an important step towards that goal.

12. ACKNOWLEDGMENTS

This material is based, in part, upon work supported by the National Science Foundation Graduate Research Fellowship (grant 1122374), the Microsoft Research Fellowship, the Bose Foundation Fellowship, and by Quanta Computer as part of the Qmulus Project. Any opinions, findings, conclusions, or recommendations in this paper are the authors’ and do not necessarily reflect the views of the sponsors.

REFERENCES

13. AUTHOR STATEMENT ABOUT PRIOR PUBLICATIONS

Two work-in-progress abstracts by the same authors have appeared previously, both titled “Feature engineering for clustering student solutions.” One abstract appeared in the Learning at Scale 2014 poster track, and the other in the CHI 2014 Learning Innovations at Scale workshop. Those abstracts used the same dataset of Python solutions used in this submission.

Otherwise, virtually all of the current submission is new work which was not discussed in those abstracts: the OverCode visualization, its implementation, and the empirical evaluations.