Modeling Fine-Grained Dynamics of Mood at Scale
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ABSTRACT

Mental health affects all aspects of people’s lives, yet it remains
difficult to obtain accurate data about influential factors. This work
investigates quantifying, infering, and predicting—via social me-
dia data—the day-to-day mental state of individuals. We develop
a statistical model of the affective state (mood) of specific individ-
uals with up to hourly temporal resolution. This model enables
us to quantify, in a unified way, aggregate mood trends, as well
as patterns specific to individuals and groups of friends. It finds
key features of mood variation over time and allows us to decom-
pose a person’s emotional state into a weighted sum of contributing
factors—shedding new light on how mood affects, and is affected
by environment. We then show that individuals’ mood can be ac-
curately predicted days into the future based on online behavior.

1. INTRODUCTION

Mental health is crucial to the well-being of individuals and so-
ciety as a whole, yet many emotional disorders persist at epidemic
levels. For instance, the 12-month prevalence of depression is >5%,
ranking third globally among all diseases [4]. Mental health disor-
ders lead to personal health problems and broader social issues:
2009 was the first time that the number of suicides exceeded deaths
by motor vehicle accident. We present an approach to monitoring,
at individual-to-epidemic and hourly-to-monthly scales, the emo-
tional state of a population using only microblog data.

Our approach provides insight beyond that of official channels,
where mental health issues are often underreported [3]. The predic-
tive aspect of our model suggests opportunities for prevention and
even proactive intervention. Recent work has demonstrated that
microblogging data can be used to predict a variety of phenomena,
including movie box-office revenues [2], elections [9], and flu epi-
demics [7], but has mostly focused on predicting aggregate proper-
ties of the data.

Using online social data, we quantify associations between men-
tal health and the social and physical environment. Our methods
tease apart the mood dynamics among thousands of Twitter users.
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We contribute a scalable model, based on principal components
analysis, that can predict mood 10 days into the future with more
than 61% accuracy, and next-day mood with 73% accuracy. We
also obtain the following descriptive results about the role social
networks play in the emotional state of its members:
1. Online friends share linguistic and behavioral traits (e.g., sleep-
ing habits), but are surprisingly uncorrelated in other ways.
2. Correlation between friends’ emotional states increases with
their tweeting frequency, suggesting our approach will be-
come more powerful as social media becomes more popular.
3. Eigen- and spectral- analysis of time-series data reveals pat-
terns in mood change related to periodic cycles, and events.
4. Mood changes in one member of a clique of friends may trig-
ger a cascade of changes in the others (emotional coupling).

2. DATASET

Our data was collected from Twitter, a popular micro-blogging
service. Users post messages of 140 characters or less, and can sub-
scribe to receive messages others (called following), without being
followed back. When two users mutually follow one another, we
say they are friends. There is evidence that Twitter friendships have
a substantial overlap with offline friendships [6].

We collected a sample of public tweets from the New York City
(NYC) metropolitan area (100km radius) over a one month period
beginning on May 18, 2010. We logged nearly 16 million tweets
authored by more than 630, 000 unique users.To put these statis-
tics in context, the NYC metropolitan area has a population of 19
million people (www.census.gov/popest/metro/). Since this work
studies the effects of people’s location and co-location on mood,
we concentrate on the 6,237 geo-active users who posted more than
100 GPS-tagged tweets during the collection period.

3. THE FEATURES

From these geo-tagged tweets we derive a number of different
features. First, we divide the time over which the data was collected
into even intervals of a day, hour, or week. Each of the features is
then derived from the set of all tweets each user makes within each
time interval. We call this unit of aggregation a user-time block.

Our features are based on the Diagnostic and Statistical Man-
ual IV (DSM-IV-TR)’s definition of major depressive disorder [1],
commonly known as SIG E CAPS (see Table 1).

Linguistic. We we measure the percent of words within each
user-time block that appears in a Linguistic Inquiry and Word Count
(LIWC) lexicon. LIWC is a collection of behavior-related lexicons
developed by behavioral scientists. We focus on eight lexicons re-
lated emotional state: positive emotional (posemo), negative emo-
tional (negemo), social, swear, anxiety, anger, sad, and death.

Geo-temporal. Described in Table 2.



Criterion Features

Sleep disturbance after_midnight, max_delta, max_2nd_delta, health
Interest social, health

Guilt feelings anxiety, sadness

Energy level gyration, mileage, health

Concentration anxiety, health

Appetite / weight health

Psychomotor activity | gyration, mileage

Psychomotor activity | sadness, anxiety,, death

Table 1: SIG E CAPs criteria (from DSM-IV-TR) mapped to our geo-
tagged tweet features. (Table 2 explains the features.)
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Name Definition

num_tweets number of tweets

after_midnight | number of tweets after midnight
max_delta longest time interval between tweets
2nd_max_delta | second longest time interval
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Table 2: The geo-temporal features used in our study. Here z. and y. are
the mean position in space of an individual’s tweets (taken as an estimate
of the individual’s home), z; and y; represent the location of a particular
tweet, and n the number of tweets.

The features below are derived from those in the above cate-
gories. The next two categories describe the emotional environ-
ments of a user’s social and physical spaces, respectively.

Friends. For each user-time block and linguistic or geo-temporal
feature described, we take the associated “friends” feature to be the
mean of the feature over all of a user’s Twitter friends in the set.

Aggregate LIWC. A final feature, which is central to our pre-
dictive model, reduces all of the LIWC features into three discrete
states o: positive, neutral, and negative given by

. posemo + social
o = sign ( norm - (D)
negemo + swear + anxiety + anger + sad + death

Equation 1 captures the ratio between positive and negative fea-
tures, and is normalized per-user by subtracting out the mean and
dividing by standard deviation. Equation 1 reduces the LIWC fea-
ture space to a single finite state variable, dramatically increasing
the scalability of our predictive model in a way that attenuates the
emotional aspects of the data, and reduces variation in the LIWC
values of individual users. Note that anger, anxiety, and sad are
subsets of the negemo lexicon. Including them separately allows
each (including the part of negemo not in these subsets) to inde-
pendently influence o. By normalizing per user, our model learns
dynamic patterns in mood that are invariant despite user biases.

4. METHODS

In the remainder of this paper, we address such questions as,
“Given that 20% of your online friends are sad today, and that
you have recently met eight strangers, who were in a bad mood
as well, can we accurately quantify your increased likelihood of
sadness in the near future?” We observe correlations between var-
ious features, using standard correlation coefficients. Next, we
study how these correlations scale as Twitter use increases; for
w € {0,1,...,50} we remove those user-days with fewer than
w tweets from the dataset.

We then use Fourier analysis to extract in a principled way
significant time periods in emotional signals. We map a function
f from the time to the frequency domain via discrete the Fourier
transform (DFT), given by
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where o, . .., x7—1 is a series denoting mood over 7" time chunks.
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Figure 1: Pearson correlatlons%etween users an(? the mean of tl?elr friends.

Error bars are 95% confidence intervals and p-values are shown on the right.

Finally, we use Principal component analysis (PCA) to per-
form descriptive time-series and well as predictive analysis. PCA
is a dimensionality reduction technique that transforms the original
data into a new basis, where the basis vectors are, in turn, aligned
with the directions of the highest remaining variance of the data.
PCA can be performed by eigendecomposition (also called eige-
nanalysis) of the data covariance matrix, or by applying singular
value decomposition (SVD) directly on the data matrix. Our imple-
mentation uses the latter approach, as it is more numerically stable.
We leverage PCA'’s probabilistic interpretation as a latent variable
model, which endows our model with all the practical advantages
stemming from this relationship, including efficient learning and
dealing with missing data [8].

S. DESCRIPTIVE RESULTS

Figure 1 summarizes the correlations between an individual’s af-
fective state and those of their friends. In terms of SIG E CAPS, it
shows that, while major depression may be transmitted individual-
to-individual, its underlying components may do so independently.

5.1 More Data Yields Stronger Correlations

To explore the effect of data volume on our model, we mea-
sured how correlated and uncorrelated features grew with increas-
ing amounts of data. Using a threshold of between 1 and 50 daily
tweets, and dividing features into this with above 0.1 correlation
(correlated) and those below 0.1 (uncorrelated), we found the aver-
age Spearman correlation was 0.205 (Pearson correlation of 0.129)
when all workers were considered, but grew to 0.416 (Pearson:
0.416) for users that had at least 50 tweets. The trend was also
strongly logarithmic (R? = 0.996 for Spearman and R? = 0.973
for Pearson), suggesting that increases in per-user tweet density can
be modest over time and still benefit our approach.

5.2 Time-series Analysis

Fig. 2 shows the aggregate daily affect over all users in our dataset.
Significant dates are highlighted. Intuitively, we see that Monday is
consistently the most negative day in a week, except for Memorial
Day Monday, which is a U.S. national holiday.

Similarly, Fig. 3 shows hourly fluctuations in positive affect,
where Memorial Day again exhibits a considerable increase in hap-
piness. In agreement with prior work [5], we see that mornings are
the happiest time of day. We also see that most days have an affec-
tive “low” mid-day with a slight improvement in the evening.
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Figure 2: Daily trends in positive affect aggregated over all users. Monday
is consistently the most “depressing” day in a week, expect for Memorial
Day Monday, which is the second most positive day in the dataset.
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Figure 3: Hourly trends in positive affect aggregated over all users. Note
the strong effect of Memorial Day weekend.

We apply Fourier analysis to find the periodicities present in both
daily and hourly trends (see Fig. 4). We see strong periodicities at
12 and 24 hours, and 3, 5 and 7 days. Hourly and daily resolutions
produce consistent patterns (e.g., we detect a strong 5-day period
and a corresponding 120-hour period). Interestingly, a significant
fraction of power is concentrated in the hourly fluctuation of mood.

5.3 Descriptive Eigenanalysis

Eigenanalysis enables us to decompose the sentiment signal into
factors and quantify the contributions of each factor in an unsuper-
vised fashion. We apply probabilistic PCA on our data matrix D
(rows are user-weeks, columns are days of the week). Each element
o in D is given by Equation 1. We call the eigenvectors of the co-
variance matrix of D eigenweeks. Fig. 5 shows eigenweeks learned
from our dataset, ranked by the percentage of variance explained.

Eigenweeks show long-range patterns, but we are also interested
in the broader interactions between days within a month. We trans-
form the data matrix into D’ so that each row represents a user-
month (columns are days). We call the eigenvectors of the covari-
ance matrix of D’ eigenmonths. Fig. 6 shows learned eigenmonths
ranked by the amount of variance explained. One can think of the
eigenmonths as a “library” of prototypical months from which any
actual user-months can be reconstructed. Since the behavior of
users can be accurately described as a weighted sum of only a few
eigenmonths, there is a large amount of coupling across individu-
als. Even though our dataset contains 6,237 user-months, just 15
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Figure 4: Power spectrum of daily (top) and hourly (bottom) positive affect

aggregated over all users. We see strong periodicities at 12 and 24 hours,

and 3, 5 and 7 days (but much of power lies in the hourly fluctuations).
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Figure 5: Each row is an eigenweek — an eigenvector of the covariance ma-
trix of o values for each user-day by day of the week. The first two eigen-
weeks model “happy” (pink) Saturday and Sunday followed by a “sad”
(blue) Monday and alone explain nearly 38.1% of the variance in all weeks.
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Figure 6: Top-15 most significant eigenmonths jointly explain over 73% of
the variance. An eigenmonth is an eigenvector of the covariance matrix of
o values for each user-day by day of the month. The first eigenmonth cap-
tures the essence of a typical month for most users: happier weekends than
weekdays. But different clusters of users are happier at different times. The
second eigenmonth models individuals who may have to work on week-
ends and have time off mid-week. Eigenmonths #4-9 capture enjoyment of
Memorial Day Weekend, including Monday, May 31.

eigenmonths are enough to explain more than 73% of the variance.

5.4 Cascading Emotions in Cliques

We use eigendecomposition to tease apart the global signal that
shapes the mood of virtually everybody in a given locale (e.g., those
driven by weather, elections, etc.) and the local fluctuations that
affect only subsets of the population, namely cliques of friends. To
quantify patterns internal only to a clique ¢, we first learn dominant
eigenmonths E,, from all user-days, excluding users in c. Optimal
projection of ¢ onto E,, enables us to “subtract out” the global
signal and highlight the dynamics within the clique.

Fig. 7 shows the residuals (i.e., the projection error) for one
clique. Turquoise (pink) color shows user-days that are unexpect-
edly negative (positive), respectively. We observe an interesting
phenomenon, where a change in a person’s mood triggers a cas-
cade of similar changes in other users in the clique. This effect has
not been, to our knowledge, measured before. It is evident that non-
parametric statistical analysis reveals important patterns that would
be otherwise very difficult to see.

Using eigenanalysis, we can now tease apart the patterns of mood
specific to a target person from the background fluctuations of sen-
timent observed in a broader population. This is crucial for suicide
prevention and other mental health applications where anomalous
behavior needs to be recognized quickly and effectively.
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Figure 7: Clique residuals showing the dynamics of affective state within
a clique of seven friends. Each row is user-month. Note the “diagonal”
patterns that indicate a change in mood of a person is immediately followed
by a cascade of corresponding changes in other members of the clique.
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Figure 8: Error rates of predicting emotional state ten days into the fu-
ture. As another model for comparison, we trained a support vector machine
(SVM) with a linear kernel on the LIWC features of each person for the last
11 days. For longer-term predictions, SVM mostly dominates. Eigenanaly-
sis has the ability to capture long-range statistical patterns, whereas SVMs
learn more robust margins.

6. PREDICTIVE RESULTS

To predict future mood using eigendecomposition (PCA), we
first learn eigen-3-weeks using the first 21 days of all user data.
The affective state of each person p over the last (withheld) 10 days
in the dataset is then predicted by the following process. We project
the last 11 days of p’s observed data onto the space induced by the
first 11 days of the eigen-3-weeks. This results in a set of weights—
one weight for each eigen-3-week. The prediction is the weighted
sum of the last 10 days of the eigen-3-weeks. The length of the
eigenvectors is limited only by the size of the dataset (e.g., we used
eigen-3-weeks and withheld the last 10 days of data for validation).
In a real-time application, the patterns can be of arbitrary length.

As cross-validation, we repeat the evaluation process with all
users and report the mean error rate in Fig. 8. Three baselines
are considered: random guess, most frequent baseline (predict the
mode of a user’s past states), and weekday (predict the mode for
each day of week). Eigendecomposition outperforms all these meth-
ods for predictions within 5 days into the future. The experiments
show that PCA takes advantage of the complex global correlations
in mood and is successful at near-term predictions. As the noise
begins to dominate for temporally distant query times, the SVM
achieves slightly higher accuracy.

7. DISCUSSION

Although the final predictive model does not include any friend
or colocation feature, we did try adding them to the models, but
discovered no significant difference in performance. This may be
due to limitations in our methods. Given how little Twitter tells us
about a user’s social or spatial context, it is somewhat surprising
that as many correlations in Table 1 were as strong as they were.
One interpretation is that these unnormalized features are relatively

static, even as the normalized data used in the predictive model is
more volatile. This could be seen as evidence of the social support
model, in which social structure creates an environment for manag-
ing emotional problems, as opposed to the viral model, where one
can be “infected” with the emotional state of others.

7.1 Limitations

The problem of assessing the mental state of an individual is
hard, even for an expert observer with frequent firsthand interac-
tions with them. Direct, medically valid diagnosis of mental state
is fraught with ethical considerations. Instead, we estimate the
mood of an individual solely based on secondary information from
that individual’s microblogging activity. We base our feature set
on the DSM-IV-TR’s definition of major depressive disorder [1],
which provides an imperfect but principled approach. We are less
concerned here with grounding our models in a particular medical
framework than we are in capturing the dynamic relationships that
emerge between affect and social and environmental factors, using
social media as a proxy.

Noisy and incomplete data pose a major challenge to all research
in this area. Users participate in online social networks in varying
degrees of intensity. The distribution of the number of messages
posted by the users follows a power law. Moreover, usage statis-
tics exhibit chaotic fluctuations [10]. Even an otherwise typical
user may go for a week without posting anything. We explore
model quality as a function of the level of activity of the users
considered—an important problem that is only beginning to emerge
in social network research.

8. CONCLUSION

This paper explores prediction of individuals’ affective state on
the basis of fine-grained social network data—an important instance
of the general problem of modeling emergent properties of large
real-world dynamical systems. We use geo-tagged Twitter posts
as a noisy proxy of users’ emotion, mobility, and overall context.
We quantify the impact of a number of otherwise elusive factors
on people’s mental health, and show that we can accurately predict
one’s future mood from past interactions with others.
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