
Glance: Rapidly Coding Behavioral Video with the Crowd

Walter S. Lasecki

Computer Science Department
University of Rochester

wlasecki@cs.rochester.edu

Malte F. Jung
Information Science
Cornell University
mfj28@cornell.edu

Mitchell Gordon
Computer Science Department

University of Rochester
m.gordon@rochester.edu

Steven P. Dow
HCI Institute

Carnegie Mellon University

spdow@cs.cmu.edu

Danai Koutra
Computer Science Department

Carnegie Mellon University
danai@cs.cmu.edu

Jeffrey P. Bigham
HCI and LT Institutes

Carnegie Mellon University
jbigham@cs.cmu.edu

ABSTRACT
Behavioral researchers spend considerable amount of time
coding video data to systematically extract meaning from
subtle human actions and emotions. In this paper, we present
Glance, a tool that allows researchers to rapidly query, sam
ple, and analyze large video datasets for behavioral events
that are hard to detect automatically. Glance takes advantage
of the parallelism available in paid online crowds to inter
pret natural language queries and then aggregates responses
in a summary view of the video data. Glance provides ana
lysts with rapid responses when initially exploring a dataset,
and reliable codings when refining an analysis. Our experi
ments show that Glance can code nearly 50 minutes of video
in 5 minutes by recruiting over 60 workers simultaneously,
and can get initial feedback to analysts in under 10 seconds
for most clips. We present and compare new methods for
accurately aggregating the input of multiple workers mark
ing the spans of events in video data, and for measuring the
quality of their coding in real-time before a baseline is estab
lished by measuring the variance between workers. Glance’s
rapid responses to natural language queries, feedback regard
ing question ambiguity and anomalies in the data, and ability
to build on prior context in followup queries allow users to
have a conversation-like interaction with their data – opening
up new possibilities for naturally exploring video data.

Author Keywords
Data analysis; subjective coding; crowdsourcing; video
ACM Classification Keywords
H.5.m. Information Interfaces and Presentation: Misc.

INTRODUCTION
Behavioral video coding provides researchers in the social
sciences a lens for studying human interactions [3]. In the do
main of HCI, for example, researchers use video analysis to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

UIST ’14, October 05 - 08 2014, Honolulu, HI, USA

Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ACM 978-1-4503-3069-5/14/10. $15.00.

http://dx.doi.org/10.1145/2642918.2647367

Figure 1. Glance codes behavioral events in video quickly and accu
rately. When a question is asked, small clips from the video are sent
to crowd workers who label events in parallel. The judgments are then
quickly merged together and displayed. In this example, we use Glance
to count the frequency and duration of eye contact between presidential
candidates during a 2012 debate.

study how users interact with computational systems [21, 19]
and to develop theories that explain those interactions (e.g.,
[3, 4]). While video coding affords a systematic measure
of behavior, it is notoriously time-consuming. By some ac
counts, video coding analysis takes 5-10x longer than the play
time of video [20]. This does not include the time to develop
a reliable coding scheme, to train coders, or to check for inter-
rater reliability. Given the high cost and lengthy turnaround
required to test a hypothesis, researchers may exhibit sunk-
cost reasoning and resist changes to their coding scheme.

Ideally —and maybe eventually —computational approaches
will mature to the point of being able to automatically la
bel segments of behavior. However, due to the diverse con
texts and subtly interpretive nature of video coding, auto
mated analysis of human behavior currently yields poor re
sults. While commercial video coding tools make this pro
cess easier for a research team, they do not eliminate the bot
tleneck of sequentially viewing all the video [22, 1].

http://dx.doi.org/10.1145/2642918.2647367
mailto:Permissions@acm.org
mailto:jbigham@cs.cmu.edu
mailto:danai@cs.cmu.edu
mailto:spdow@cs.cmu.edu
mailto:m.gordon@rochester.edu
mailto:mfj28@cornell.edu
mailto:wlasecki@cs.rochester.edu

In this paper, we introduce Glance, a system that allows re
searchers to analyze and code events in large video datasets
by parallelizing the process across a crowd of online workers
(Figure 1). This approach significantly reduces the amount of
time required to test a coding hypothesis within video data.
Video data can be coded in a fraction of the actual time de
pending on the size of the available crowd. By distributing the
same video segments among multiple workers, Glance can
calculate the variance to provide quick feedback result reli
ability. Glance provides a front-end interface for analysts to
enter natural-language queries and to visualize coding results
as they arrive.

To evaluate Glance, we coded multiple behavioral events in
several different types of video data, including a publicly
broadcast political debate and lab-based social science exper
iment. To investigate the speed of the approach, we coded
occurrences of a single type of behavioral event in an hour-
long video. Glance produced judgments on a 12 minute-long
video in 2 minutes (6× speedup), and coded 48 minutes of
video in just 5 minutes (a nearly 10× speedup).

To evaluate accuracy, we coded for the occurrence and time
window of variable-length behavioral events and compared
them to a gold standard. Using 10 simultaneous workers for
each video segment, Glance was able to accurately identify
on average over 99% of the event occurrences and estimated
the time window of these events within a 1-second margin of
error, in terms of both when they occur and for how long.

By dramatically reducing the speed and increasing the reli
ability of video coding, researchers have the opportunity to
interact more “opportunistically” with their data. Glance’s in
terface visualizes coding results in real-time, allowing an ana
lyst to issue new queries, and cancel or re-frame their original
one after seeing initial results. The resulting conversational
style of interaction allows video analysts to more quickly ex
plore, develop and refine research hypotheses in ways that are
not feasible today.

Our contributions can be summarized as follows:
•	 We propose a conversational interaction paradigm for

video coding that leverages crowd workers with minimal
expertise to provide rapid judgments on natural language
queries about behavioral events in video data.

•	 We introduce Glance, a video coding tool for researchers
that (i) recruits and coordinates an online crowd for behav
ioral coding, (ii) segments video data and distributes video
coding tasks to individual crowd workers, and (iii) collects
and visualizes individual judgments and aggregate statis
tics in real-time.

•	 We provide experimental evidence via a large study with
Amazon Mechanical Turk workers that the crowd can
quickly and accurately identify events in video on-demand.

•	 We demonstrate an end-to-end interaction using Glance to
explore real-world data, and show that the results are quick,
accurate, and allow analysts to make informed decisions
about subsequent steps in their data exploration process.

ENVISIONED INTERACTION
In this section, we overview an envisioned interaction with a
video coding system, which inspired Glance, the system that
we introduce in this paper.

Alice is a human-computer interaction researcher who wants
to analyze 18 hours of video of computer game play sessions
to determine if the system she has built improves players’ en
gagement with one another. She begins by opening her be
havioral coding software package and loading the video she
recorded during her experiments. Once loaded, she asks the
system to find all of the times when at least one person was
talking in the video. Instantly, indicators appear below the
play bar that mark the 75% of her videos that contain some
one talking. She then asks the system to find “when two
players are engaged with one another”. The system responds
with several instances as well as a message indicating that
the question is too vague and there is low confidence in the
reported results. Realizing that she has underspecified the
problem, Alice researches the literature for behavioral cues
to look for when measuring engagement, and asks the sys
tem to find instances of eight such cues. The system returns
separate event logs for all eight behaviors, and from this vi
sualization, Alice is able to see that only five of the behaviors
occur more than once in her data.

Given the few returned instances, Alice suspects that those
might be only a small part of the two-person interactions in
the video. For this reason, she asks the system to find all
times where two people talk directly to one another, as a sub
set of the times when people are talking. The system realizes
that this is a follow-up query and only checks sections of the
video that it knows has someone talking in them. After see
ing the results, Alice realizes her suspicions were correct –
only about 60% of conversations were coded for the target
engagement metrics. Looking at her initial coding scheme,
she realizes that she was only coding for positive engagement
cues. After doing another search, she tries asking the sys
tem to mark a few negative engagement cues during periods
where other cues were not found, but that had two players
talking to one another. The system returns a number of ex
amples, and Alice is able to see that, at some points, players
are fighting with one another about in-game decisions. In
further interactions with the system, she is able to make a
number of other corrections to her initial assumptions and de
velop a well-informed coding scheme that other analysts can
be trained on to get reportable data for her research.

Alice’s interaction with the behavioral coding tool demon
strates a best-case scenario: the system understands natural
language queries, replies instantly, gives feedback on the clar
ity and expected accuracy of queries even when no ground
truth is available, and allows follow-up queries as subsets of
previous queries – similar to a Q&A conversation.

In this paper, we present a system, Glance, that attempts to
bring analysts closer to this type of ideal interaction by using
the crowd to provide highly parallelizable on-demand human
intelligence when answering queries. But, before we intro
duce the tool, we review related work and empirically eval

uate to what extent the speed and accuracy of crowd-based
video coding could support the interaction we envision.

RELATED WORK
Glance is a crowd-powered system that allows users to
rapidly iterate on a video coding task. It draws from prior
work in both behavioral coding and crowd-powered systems.
Prior research in behavioral coding illustrates what would
need to be done to approach the envisioned interaction pre
sented in the last section, and work on crowd-powered sys
tems suggests a path for achieving it.

Behavioral Observation and Coding
Observing and coding behavioral events in video is a common
research practice in the social sciences, used in fields as di
verse as human-computer interaction, linguistics, anthropol
ogy, psychotherapy, and child psychology [11, 20]. System
atic observation through video focuses on creating a precise
measurement of behavioral streams. To demonstrate rigor,
researchers often use “properly trained observers to produce
identical protocols, given that they observed the same stream
of behavior” [3]. In practice these are often undergraduate
students who are given training that may range from a day to
multiple weeks for complex events.

Bakeman and Gottman [3] provide a comprehensive intro
duction into this technique that is largely performed in three
steps. First a coding scheme, which defines the set of behav
ioral categories, has to be developed. This can be done in
a bottom-up, top-down approach [34], or, more often, a hy
brid approach. In a bottom-up approach the coding scheme
is constructed from behavioral features observed during care
ful viewing and re-viewing of the video, while in a top-down
approach it is derived from theory.

The second step is then to train coders. The amount of train
ing required largely depends on the complexity of the cod
ing scheme, and can take up to several weeks or require de
tailed training curriculum.Training is often seen as a continu
ous process even after the actual coding has started. For ex
ample, Coan and Gottman [11] describe a practice in which
coders collectively watch practice videos in order to clarify
confusions. We integrate a similar (but shorter) form of train
ing into our tasks to prepare crowd workers.

The final step is then to categorize or “code” the video data
according to the coding scheme. At least one independent
observer should code some of the videos for a second time
to test reliability. Researchers often selectively test inter-rater
agreement [12] throughout the process to refine the coding
scheme. Practitioners recommend that analysts make several
passes through the video data and code one event type at a
time, in order to avoid missing occurrences [20]. This in
creases reliability, but also greatly increases the amount of
time required to code a video.

Video Coding Tools
Several tools have been developed to support the video coding
process, particularly steps two and three described above. For
example, ANVIL, Datavyu [1], VACA [9], and VCode [18]
all provide an interface for easily annotating audio and video

with event tags, and some allow for testing of inter-rater
agreement, but only for the overlap of observed events. Tools
such as GSEQ [4] calculate agreement statistics and provide
visual feedback for coders.

Despite this growing availability of video coding tools, there
is a lack of support for the highly iterative process of devel
oping, testing, and re-visiting a coding scheme . This pro
cess can take several times longer than the length of the video
content itself, and as a result, researchers invest considerable
time in each iteration of their coding scheme. This makes it
challenging for researchers to reanalyze video based on initial
findings, to thoroughly explore the different types of events,
or to modify a coding scheme based on preliminary analy
sis. In this paper we address these shortcomings by providing
tool-support for a process of rapidly iterating and testing cod
ing schemes via the inherent parallelism of the crowd.

Measuring Agreement
Observer agreement describes the degree to which two or
more observers agree with each other [3]. This is different
from observer reliability that describes the degree to which
an observation aligns with an established “truth”, such as a
baseline observation protocol. Most observational research
only assesses agreement, while reliability is assumed given
sufficient agreement. Measuring agreement can: (i) indi
cate the trustworthiness of observations in the data, and (ii)
provide feedback to calibrate observers against each other or
against baseline observations. If one assumes the baseline to
be “true”, then observer agreement can be used to assess relia
bility. A commonplace statistic to assess observer agreement
is Cohens Kappa [12] which corrects for chance agreement
between two workers.

Crowdsourcing Video Annotations
Crowdsourcing leverages human computation [32] in the
form of open calls to paid online workers from platforms such
as Amazon’s Mechanical Turk. Crowdsourcing has been used
on tasks that rely on human judgment and that are difficult
for automated systems. For example, Soylent [7] uses the
crowd to edit or shorten writing, VizWiz [8] answers ques
tions about photographs quickly, and Legion [24] follows nat
ural language commands to intelligently control a GUI.

The crowd has also been leveraged in the context of activity
recognition systems. For instance, VATIC [33] allows crowd
workers to tag where objects appear in a scene. While the
crowd provides these annotations, it is not designed to re
spond quickly to the end-user. Similarly, Legion:AR [25, 28]
explores crowd labeling of low-level actions in video for as
sistive home monitoring: workers are asked to watch a video
stream as it happens live, and then an automated system la
bels activities soon after they occur. Unlike our approach,
Legion:AR does not process video any faster than an individ
ual can, and is designed for use not by a human analyst, but
by a Hidden Markov Model-based system.Di Salvo et al. [14]
added game elements to an annotation task to get the crowd to
mark where an object appears. With Glance, workers identify
complex or subtle events, and to accurately identify the range
over which they occurred.

http:system.Di

Figure 2. The Glance analyst user interface (AUI). Analysts can load a video from YouTube, ask if or when an event occurs in the video in natural
language, and set parameters to control cost and speed. Crowd workers then process this query and return results in a fraction of the playtime of the
video. These results are aggregated to simplify the answer for the analyst, and make it more reliable than a single worker’s answer.

GLANCE
Glance is a video coding tool that leverages online crowds
to produce rapid analyses of video data (Figure 1). To reach
envisioned conversation-like interaction with data, Glance al
lows analysts to ask questions about events in natural lan
guage, provides nearly-immediate responses, and supports
query refinement by building on known context. We describe
the user experience here, then detail the novel technical com
ponents in the next sections.

Recruiting a Crowd
When an analyst arrives to Glance’s analyst user inter
face (AUI), shown in Figure 2, the system begins recruit
ing workers into a retainer using the LegionTools toolkit
(http://rochci.github.io/LegionTools/). This retainer allows
workers to be available within a matter of seconds of posing a
query [8, 6]. To load a video, the analyst provides the system
a YouTube link, a link to a video on their own server, or di
rectly uploads a file. The video is immediately loaded into the
embedded player, and the query creation tool becomes active.

Posing Queries
When the analyst wants to ask Glance a question about the
video, they enter a name for the query and a natural language
description of the hypothesized behavioral event. To more
clearly specify the sought-after event, the analyst has the op
tion to select one or more parts of the video to serve as exam
ples. These example video segments will then be shown to
workers during a short training session.

When a query is posted, Glance sends tasks to multiple crowd
workers in parallel and retrieves answers as soon as possible.
In order to reduce the cost of these queries, especially during
early exploration where complete coverage of the video might
not be necessary, Glance lets analysts select a portion of video

to focus on. The system also allows analysts to adjust the
following parameters:

•	 Redundancy. Glance lets the user control the size of the
crowd being used (and thus the cost of the query) in part by
selecting a level of redundancy for each query. This defines
the number of workers who will label each video clip. If
the analyst wants to increase the reliability of the response
later in the process, Glance lets them increase the level of
redundancy – building upon already completed work.

•	 Playback Rate. For some queries, costs can be reduced
by increasing the playback rate of the video. While this
is also common practice for current video coding systems,
combining it with the parallelism of the crowd can lead to
even quicker responses. As increasing playback speed is
not practical with all types of data and events, we leave it
to analysts to know when it is appropriate to use.

•	 Sampling Rate. To get an initial idea of what types of
events occur in a video, Glance lets analysts select a video
clip sampling rate. This allows analysts to see how fre
quently their events arise, without needing to hire work
ers for a complete run. Glance selects this percentage of
clips uniformly across the analyst-specified range. If ana
lysts want to take a closer look at their data later, Glance
lets them increase the sampling rate without repeating work
that has already been done.

•	 “Gist” Mode. In “gist” mode, the system asks workers to
simply mark if any instance of the event occurs within a
the clip, rather than asking them to mark the exact range in
which it occurs. This option provides a means for quickly
illustrating the high-level frequency of pertinent events.

Each of these parameters lets the analyst fully specify the lim
itations and behavior of the system for a specific query. Note
that this additional complexity is entirely voluntary – analysts

http://rochci.github.io/LegionTools

09:00.00 09:30.00
baseline simple filtering k-means scanning scanning EM (F1) scanning EM (Jaccard) scanning early-bird individual worker

Aggregations

Workers

Figure 3. A visualization of crowd worker responses when coding “head nodding” events in a 20-minute video. Colored lines denote the marked span of
an instance of the event. The top half of the figure shows the results for all 20 minutes, and the bottom half shows a zoomed-in version of one 30-second
clip. Worker inputs are shown at the bottom of the zoomed clip, while the aggregated spans produced by our 6 schemes are shown above.

may use the built-in defaults for any or all of these settings if
they so choose.

Visualizing Results
Once a worker codes a video clip, the judgement gets dis
played in the video coding UI. Glance visualizes partial re
sults to show analysts the work-in-progress results. In order
to reduce the complexity inherent in multiple worker judge
ments, Glance aggregates the answers. Analysts may choose
to use one or more aggregation algorithms, and may choose
to see raw worker input as well. Figure 3 shows an exam
ple visualization and the next section provides details on the
aggregation algorithms.

The problem of visualizing results that come in over time is
one that has been studied in data analytics as well (e.g., [5]).
There, the bound is the speed of machine computation over
large datasets, which parallels the human computation delay
seen in Glance, or any crowd-powered system.

Receiving Feedback on the Query
The reliability of the resulting worker judgements is under
standably tied to the description given by the analyst. To help
guide analysts, Glance provides feedback about a query’s
clarity and likelihood of convergence. The system analyzes
variance between workers and predicts the quality of results,
even before a query is finished, and even when there is no
baseline data for comparison.

Glance can also highlight when individual clips may contain
an exception to an otherwise stable rule (e.g., highlighting
when one worker may have either made an error or noticed
something the rest of the crowd did not). The next section de
tails how Glance facilitates this feedback by observing agree
ment levels between workers.

Refining a Query with Followup Questions
To further support conversation-like interaction with video
data, Glance supports followup queries that use prior re
sponses as filters to reduce the number of video clips un
der consideration. For example, an analyst can search for the
existence of a broad category of behavior, and then — only
within clips that have this behavior — ask for more specific
variations of that behavior. To select a filter query, the analyst

can select one or more previously completed queries, and the
new query will only be run over positive instances of the re
turned clips. Conversely, the ‘inverse’ selection tells the sys
tem to only run a query in selected clips where a previously
coded event was not found.

In sum, Glance supports conversation-like interaction with
video data by accepting natural language queries, responding
quickly, providing feedback when queries are too vague or
when anomalies occur, and supporting a ”layering” approach
to queries that build on prior coding results. The next section
describes three empirical studies that demonstrate the techni
cal innovations in Glance.

FEASIBILITY EVALUATIONS
To further describe and validate the core features of Glance,
we ran a series of feasibility experiments. The following three
sections provide empirical studies for three core aspects of
the Glance system: (i) the time required to respond to natu
ral language queries, (ii) the accuracy of multiple workers in
aggregate, and (iii) the feedback provided to analysts to im
prove their natural language queries based on incoming coder
agreement. First, we describe the sample data, participants,
and procedures used for these experiments.

Method
Sample Data
We evaluated the core components of Glance using video
clips from two different data sets:

•	 2012 presidential debates. We leverage the first hour
of video from the presidential town hall debate between
Barack Obama and Mitt Romney. Presidential debates
have long been subject to scientific analysis, examining as
pects such as visual camera treatment [31], gesture anal
ysis [10], and social media reactions to debate dynamics
[30, 15]. The video shows the two candidates interacting
with each other, audience members, and the moderator.
Across our studies, Glance coded for five different types
of behavioral events. Workers were instructed to mark the
spans of time when the candidates: 1) made eye contact
with each other, 2) argued with each other, 3) transitioned
from sitting to standing or vice versa, 4) exhibited rapid

changes in mood, and 5) used hand gestures. To estab
lish a baseline for the purposes of quality comparisons,
2 researchers from our team independently hand-coded a
portion of the overall video (5-minute clips for the first 4
events, and a 10-minute clip for the 5th event), then came
to a consensus on each event.

•	 Design team interactions. We selected a second data
set from a human-subjects experiment where two people
worked together on a design task and provide feedback to
each other on their designs [16]. The data comprise 30
seconds of interaction with 10 different pairs of people; all
participants provided written permission to be included in
this study. We kept these clips short, similar to Gottman’s
’thin-slice’ studies of married couples [2]. Across our stud
ies, Glance coded for four different behavior events: Work
ers marked segments of video when the designers 1) made
eye contact, 2) shifted their focus between different de
signs, 3) provided positive feedback, and 4) displayed a
burst of excitement. To establish a baseline for quality
comparisons, our research team independently coded these
same four events in all ten clips.

These two data sets are representative of data typically an
alyzed using video coding. They are sufficiently large and
complex to allow us to confidently evaluate our approach.

Setup and procedures
Participants: Across the various studies, we recruited a total
of 493 unique workers from Mechanical Turk. In total, these
workers marked 2593 clips.

Training: When a worker arrives to the task, she is first
shown a brief tutorial on the general coding task she will be
asked to perform, and then asked to complete an interactive
tutorial that confirms she understands what to do, or provides
feedback until she completes the sample task correctly. At
this point, the worker remains in the retainer model until a
query gets posted.

Task: When an analyst posts a query, workers in the retainer
pool first see a brief description of the event to be coded, and
an example, if the analyst specified one. Then they proceed
to Glance’s worker UI (Figure 4) where they see a video clip
and a button that lets them mark the beginning and end of
behavioral events. As they watch the video, they can press
this button and then a new slider will appear below the video
that marks the beginning of the event and follows the current
position in the video until they click the button again to mark
the end of a behavioral event. Workers can then go back and
adjust times if corrections are needed. Workers can also mark
as many or as few event spans as they see fit.

In ‘gist’ mode, the worker UI is simplified to elicit only
whether the event has occurred or not. As soon as a worker
marks the presence of an event and hits submit, the worker
gets a new clip and the data gets recorded and displayed in
the analyst’s UI.

Study 1: Eliciting Rapid Results
The first of three feasibility studies focuses on how rapidly
Glance can respond to natural language queries. For this eval
uation, we ran several preliminary time trials, as well as, a live
real-time experiment at scale.

Figure 4. Glance’s worker interface. Workers are asked to press a but
ton when they see an event start or end to get an initial estimate of the
time range of the event. Workers can then correct the marked range if
needed by sliding the start or end marker. In “gist” mode, workers are
only asked to mark whether or not they saw the event occur at all.

Time trials
We measured the average time that it took workers to view
and mark events in 30-second clips from the debate video.
In this trial, we had ten workers per clip code one of four
different behavioral events (eye contact, arguments, sit/stand
transitions, and mode shifts. It took an average of 60.05 sec
onds (σ = 12.29) per clip to mark the start and end times of
all events. On average, there were 0.93 events per clip.

We also tested the “gist” mode where workers provide a bi
nary answer — instead of a time span – as soon as they per
ceive a behavioral event. This drastically reduced the coding
time — by nearly 10× — by removing the need to watch the
entire clip and to fine-tune the event markers. The same 30
second clips of the debate videos took ten workers an average
of 8.7 seconds (p < .01).

To get even faster results, we can increase the video playback
rate. When we increase the playback rate ten-fold, we get a
significant improvement from 8.7 to 4.4 seconds (p < .05).
We further explored how playback speed and worker redun
dancy affected the time to detect an event (Figure 5). In gen
eral, increasing the playback speed reduces the time to re
turn coded events, but sees diminishing value above 2x speed.
Similarly, if an analyst wants to increase confidence by hiring
multiple workers per clip, this increases the coding time.

Increasing playback speed is also a common technique in tra
ditional video coding. Other traditional approaches for reduc
ing latency can also apply to crowd video coding, although
some may require more training.

Figure 5. As playback speed is increased, there is a non-linear decrease
in the response rate of the first N workers (gist mode).

Coding an hour of video in real-time
To understand how Glance performs on a real video coding
task, we coded an entire hour of video from the presiden
tial debate as sixty one-minute clips. We set the playback
rate to 2× speed and performed a full coding of the start and
end times for all occurrences of eye contact between the two
candidates. To optimize for speed, we recruited roughly 50
workers into a retainer. Recruiting workers using a retainer
model [8, 6] allows Glance to get workers started on a task in
as little as a second.

Figure 6 shows the amount of time required to complete all
60 clips. After about 60 seconds, while the first workers view
the video and mark events, answers begin to arrive. In the first
5 minutes after submitting the query, 48 minutes of the video
(80%) had been fully coded. As the task nears completion,
we see a decrease in the completion rate, in part due to hav
ing fewer workers in the retainer at that point. These results
confirm that it is possible to code large amounts of video very
quickly, especially if enough workers are recruited (in this
case, we had just under 50 workers for the first 48 clips).

Study 2: Aggregating Results
The second feasibility study focuses on the accuracy of mul
tiple workers when aggregated. Through crowdsourcing and
massive parallelism, Glance can quickly produce answers to
queries. However, with multiple workers coding the single
clip, we observe different levels of agreement, due to the
specificity/ambiguity of queries and worker differences (Fig
ure 9). Individual crowd workers could miss events or mis
understand the query. Some workers put no effort into tasks.
To conceal these details and give analysts a clear indication
of the occurrences of behavioral events, Glance aggregates
worker responses using an input mediator.

Glance uses a variety of input mediators to fit the needs of
analysts (e.g., favoring recall over precision, or visa versa).
To explore the space of mediation strategies, we implemented
six input mediators for illustrating the consensus opinion on
each clip:

1.	 Simple Filtering. Our first approach uses a set of heuris
tic filters to disambiguate worker input by removing out
liers (mid-points or spans more than 2 standard deviations

Figure 6. A plot of the number of 1-minute clips from an hour-long
video being completed by crowd workers in real-time as part of our live
trial. In two minutes, 20% of the content was labeled. In five minutes,
80% of the 60 clips were labeled. This demonstrates that large groups of
workers (> 50 people in all in this case) can be recruited simultaneously
to complete our coding task quickly.

from the mean), then determines the mode of the num
bers of segments marked in a clip and averages the start
and end points of responses from workers that match the
correct number of segments marked. To avoid discard
ing input from workers who saw the same basic events,
but marked them slightly differently (e.g., as two sequen
tial events instead of a single continuous one) we also look
at input where segments are subsumed by the majority of
other workers with the correct number of inputs.

2.	 k-means Clustering. To move beyond basic overlap de
tection, we implemented a k-means clustering algorithm
that groups the start and end times of k clusters. To select
k, we use the mode number of events marked by workers,
after combining all majority-subsumed events into single
spans (as described for filtering). Once worker segments
are clustered, the final answer is generated by averaging
all of the spans in each cluster and defining an equivalent
range around the cluster’s centroid.

3.	 Scanning. As opposed to trying to aggregate their marked
spans directly, this approach uses a “scanning” pass to de
termine if the majority of workers agreed that an event oc
curred at that point in time. To calculate this, we discretize
the clip into 10-millisecond bins and check for agreement
within each bin. To prevent small coincidental gaps in ma
jority agreement from fracturing events into multiple in
stances, we set a 0.5 second minimum bound for how small
the gap can be between two events for them to be consid
ered distinct.

4.	 Scanning with E-M on the F1 Score. The Scanning ap
proach tended to produce a bias for shorter spans (the core
parts of a behavioral event where most workers agree), and
often single events were split into multiple because of co
incidental gaps in coverage that caused the agreement to
fall below majority during a small span of time. To coun
teract this, we implemented a new mediator that uses the
initial scanning pass as a starting point, and then runs a
version of Expectation-Maximization proposed by Dawid
and Skene [13] to improve the initial guess for the seg

Figure 7. Precision, recall, and F1 score results for all 6 of the worker aggregation schemes we explore. Using our “scanning” approach with additional
filtering and adjustments proves the most effective overall, and is significantly better than simple filtering or k-means clustering (p < .05).

ment with multiple observers. Specifically, the following
two steps occur iteratively: (a) the workers are assigned
weights that correspond to our confidence in their answers
and (b) the start and end point of the best-guess segment are
updated by computing the weighted average of the work
ers’ start and end points, respectively. Our confidence in
a worker corresponds to the agreement between her indi
vidual answer and the current best guess for the segment.
In this approach, we use the F1 score1, where the answer
of a worker is tested against the current best guess for the
segment. We repeat these two steps until the method con
verges —when the weights (confidence) of the workers do
not change, or equivalently, the best guess for the segment
remains the same.

5.	 Scanning with E-M on the Jaccard Index. This ap
proach is similar to the one above, but runs Expectation-
Maximization using the Jaccard index between the
worker’s answer and the current best guess as the confi
dence level in a worker.

6.	 Scanning with Filtering and Early-Bird Bias. We found
that both of the EM modifications to scanning typically re
sulted in over-sized spans for events. The recall improved,
but at the cost of precision. As a result, we looked at other
potential improvements to the basic scanning method. Due
to a natural latency in human response, the scanning meth
ods tend to mark the onset of behavioral events a bit late
(the observed start time was often behind the true time).
To counteract this, we created a mediator that uses scan
ning to find the bins where a majority agreed, but then it
shifts the start time earlier. We calculate a time shift using
the average of the earliest start time reported by a worker
and the aggregate start time across all workers. We use the
midpoint because the earliest worker often observed subtle
cues that let them anticipate the event early. To prevent this
use of a single response from adding potentially far-fetched
answers to the final response, we remove all starting times
that are outliers from this selection process.

To compare our input mediators, we calculated precision, re
call, and F1 score using three different strategies: 1) agree
1We also tried using the precision and recall individually to define
the confidence in each worker, but the F1 score —which appropri
ately combines the two metrics —works better.

ment of the occurrence time and span, 2) agreement in the
number of behavioral occurrences count, and 3) agreement
of the span after running multiple sequence alignment to cor
rect for any slight misalignment that may have otherwise pro
duced low precision and recall (aligned). As Figure 7 shows,
our modified scanning approach was the most effective over
all. It was significantly better than the simple filtering and
k-means approaches (p < .01), and borderline significantly
better than the basic scanning approach (p = .05). Basic
scanning did not perform significantly better than the scan
ning with EM approaches.

Study 3: Giving Feedback by Measuring Agreement
The third feasibility study focuses on how Glance provides
feedback to help analysts improve their natural language
queries based on emerging coder agreement and potential
edge cases in the data. This feature stems from the realization
that not all queries are created equal. Since analysts specify
their queries to Glance in natural language, their descriptions
could be vague or underspecified. Queries are ”ambiguous”
when their lack of specificity leaves them open to multiple
interpretations by workers. In contrast, we refer to well-
defined queries as “concrete”. Of course, every query falls
on a continuum between these two classifications, and gen
erally speaking, as analysts develop a coding scheme, their
queries will become less ambiguous.

In this section, we explore how we can give analysts feedback
on the clarity of their query, detect edge cases in descriptions,
and even predict the quality of crowd responses without re
quiring baseline values.

Detecting Agreement
To give analysts feedback on how well workers understand
their query, and how good the resulting responses are likely to
be, we measure the level of agreement between workers. As a
preliminary trial, we compared the total count occurrence be
tween workers when coding two different descriptions within
the same clip, concrete (“the person is leaning forward”) ver
sus ambiguous (“the person is engaged”). From this trial, we
find that the ambiguous description led to significantly more
disagreement among workers in the total count of behavioral
events (p < .01). Further, we see an obvious difference in

Figure 8. Correlation between our agreement score (variance in the
number of segments marked by workers in a single clip) and the aligned
F1 score (R2 = .74). This suggests that the level of agreement between
workers can be used as a predictor of the overall answer quality even
when no baseline is available to compare to.

the variance of concrete events (σ2 = 0.014) versus more
ambiguous events (σ2 = 0.884) (Figure 9). Intuitively, this
makes sense – when subjectively coding an ambiguous event,
different workers may have different interpretations. This can
be avoided if analysts provide clear descriptions of events,
and one (or more) examples to workers.

To turn this insight into a means of providing feedback to ana
lysts, we created two different agreement metrics. We look at
how well each agreement measure predicts the F1 score of the
aligned metric described in the previous section. The aligned
metric provides a good measure of overall fitness due to the
fact that it tolerates small time shifts in the marked segments.

•	 Fleiss’ Kappa: A common way to measure agreement
level is to use a kappa score to measure inter-rater reliabil
ity [17]. When more than two coders are present, Fleiss’
kappa can be used. However, Fleiss’ kappa assumes that
fixed, discrete information is being coded (such as whether
a paragraph of text is written in a hostile tone or not). To
adapt this measure to our continuous domain, we again bin
time into 10ms units, then determine if each worker is im
plicitly contributing a ‘yes’ or ‘no’ vote for the event occur
ring in that bin (i.e., ‘yes’ if they marked that bin in one of
their event spans, and ‘no’ otherwise). Despite its roots in
existing inter-rater reliability settings, it is not a strong pre
dictor of the final accuracy of a given set of inputs. Com
paring to the aligned F1 score2, we find R2 = .24.

•	 Count Variance: Another important way to measure
agreement is the overall variance of the different worker
inputs. We explored using the variance in the number of
events workers marked in a segment (count), total duration
of the segments they marked (span), and area of each seg
ment marked (area), as well as combinations of the three.
Most combinations scored between R2 = .3 and R2 = .5.
In the end, measuring the count variance was the most pre
dictive of the F1 score of the whole clip, with a Pearson
correlation of 0.86, R2 = .74 (Figure 8).

2We use the aligned F1 score because it is most indicative of the
overall quality of the final answer.

High
Agreement

Worker ID

0 10 20 30

Medium
Agreement

Low
Agreement

(sec)

 1
 2

 .

 .

 .

 8

 9

 10

 1
 2

 .

 .

 .

 8

 9

 1
 2

 .

 .

 .

 8

 9

 10

C L I P
 1

C L I P
 3

C L I P
 2

Figure 9. Visualization of the agreement levels between workers for
three 30-second clips (in black, blue, red, respectively). The Y-axis is
the worker ID and the X-axis is time (position). Each bar (segment) rep
resents an event marked in the video clip.

While different in their predictive power, the two measures
did support one another’s findings. The count variance tightly
correlates with the Fleiss’ kappa, with a Pearson correlation
of 0.87, and R2 = 0.76 (Figure 10).

Threshold Pruning
Our ultimate goal in measuring agreement is to use it as a
proxy for performance that can be calculated immediately,
without the need for a baseline to be calculated (which would
defeat the point of having a rapid-response tool!) The trend
observed when plotting F1 score against agreement score
(Figure 8) indicates that the count variance is a good predic
tor. But does it really work?

The results shown in Figure 7 have been filtered by remov
ing low-agreement clips. To compare the clips in terms of
workers’ agreement level (response), we performed ANOVA
analysis with the clip ID as a single factor with 10 lev
els. We found that at least one clip had a significantly dif
ferent mean agreement level from the other sample means
(F9,55 = 4.4555, p < .001). To understand how the mean
agreement levels differ, we performed multiple pairwise com
parisons using Tukey-Kramer HSD, to correct for Type I er
rors. At the 95% confidence level, we found that the highest
mean agreement value was statistically significantly different
from the mean agreement values of four other sessions. We
used this as a threshold value (an agreement level of 0.72) and
filtered out the three significantly lower trials. This resulted
in a 7.8% to 11.1% average increase in the performance of
each aggregation method.

In practice, we will not have such a wide range of results
to draw from when selecting a cutoff. Thus, we won’t be
able to predict an exact threshold a priori. However, our goal

Figure 10. While the count variance is much more predictive of the final
F1 score of a response (R2 = .74 versus R2 = .24 for Fleiss’ kappa),
the count variance still tightly correlates with Fleiss’ kappa, suggesting
they are measuring similar aspects of agreement.

when providing agreement as feedback to analysts is to pro
vide some signal that they can use to determine how confident
they can expect to be in Glance’s results. In high-agreement
cases, Glance’s precision and recall exceeded 99%.

Giving Feedback
The correlation and corresponding effectiveness of filtering
based on differences in agreement levels denote it is an effec
tive indicator of the final quality of the answers to a query.
This in turn suggests that we can provide this measure to an
alysts to allow them to judge how consistently workers are
agreeing with one another, and thus how accurate they can
expect their results to be. For particularly low values of re
sponses for a query (we use below 0.50 in practice), Glance
can even alert users to the potential issues with their query.
Most commonly, low values will occur when very subjective
descriptions are provided because each worker will interpret
the event they are looking for slightly differently. As results
arrive, this measure can instantly be applied, potentially al
lowing analysts to retract their query before it is completed in
the event that it is unclear to workers – something not possi
ble using current approaches where results are typically not
seen until after they are completed.

Even when the overall agreement score is acceptably high,
Glance can detect when a subsection of the video (even a sin
gle clip) falls below the expected norm. In this case, it is
likely true that something in that video is causing confusion
for workers (e.g., an edge case that the analyst did not think or
know to clarify for in the initial description). In these cases,
the clip can be highlighted and shown to analysts who can
choose to skip the clip, redefine the query, or continue.

EXAMPLE SCENARIO AND EVALUATION
To demonstrate Glance and the AUI, we present an example
interaction between an analyst and Glance. Throughout this
example, we report real data coded by the crowd. This data
came from a third video dataset showing a couple on a date,
which is 20 minutes long and includes baseline data for 4
events for the entire video, resulting in 80 minutes of video
content. This video is separate from the one used in the eval
uations of the individual approaches above.

Our imaginary analyst is a relationship researcher interested
in quickly coding a video of a couple dating. Since our ana
lyst initially does not even know what she is most interested in
or if the data is valid, she decides to run a rapid-response task
with no redundancy but 100% coverage to determine when
the two people are talking to one another. This query takes an
average of 9.6 seconds to return results, and correctly identi
fies 100% of the 35 segments in the video that have conversa
tion. The same query with a redundancy level of three would
have still only taken 20.6 seconds on average.

Once our analyst sees that there are enough instances of con
versation between the two partners to make the video po
tentially interesting, she decides to ask a follow-up question:
“when are the people in the video engaged?” This question is
asked about only the 35 clips that contain interaction between
the two people in the video since it is a follow-up. After just 5
clips are completed, the system alerts our analyst that worker
agreement on the answer is potentially very low. She sees
that the agreement score is just 0.57 (recall that our threshold
value was 0.72 before), so she decides to stop the query early
and rephrase her question to be more clear.

In an attempt to make her query less ambiguous, she asks
workers to code specific actions instead of broad interaction
properties. For her first query, she asks “when is the person on
the right laughing?”, of which the crowd finds 71.0% of the
53 instances with 99.9% precision. For her second query, she
asks “when is the person on the left nodding?”, of which the
crowd finds 64.6% of the 87 instances with 99.2% precision.

To check for negative signs during the interaction, she then
asks the crowd to find any instances where someone is check
ing their phone during the date. Because she is mainly inter
ested to find out if this happens a notable number of times, she
turns on the gist mode for a quick response. She soon finds
that Glance correctly identified 100% of the 13 instances of
someone checking their phone. Based on the high amount
of direct interaction, our researcher begins to create a final
coding scheme that best fits her data.

DISCUSSION
Glance’s quick, conversation-style interaction goes beyond
the paradigm adhered to by prior work, which assumed that
making coding faster, even for data exploration, was some
thing that must be done while focusing on a single human in
the loop. Glance uses the parallelism available via the crowd
to not only greatly improve the speed at which video data can
be explored by analysts while effectively compensating for
the added complexity of getting multiple results, but actually
uses the presence of multiple overlapping contributors to pre
dict the effectiveness of the codes based on their agreement.
But there are many challenges involved in robustly supporting
analysis of behavioral video.

Query Ambiguity
Our results suggest that the quality of worker responses
is highly dependent on the level of ambiguity in analysts’
queries. While this is a drawback, it is a bias shared with ex
isting approaches that involve human coders. However, with
shorter training times and more exploratory coding schemes

compared to the well-evaluated ones used in traditional ap
proaches, where getting coding data is very time consuming
and expensive, Glance may help analysts better understand
the ambiguity of their queries and refine their coding scheme
and instructions to compensate.

Context
Maintaining context for workers, who may need to know in
formation from prior clips to accurately understand an event’s
context within a task, is also a key issue when splitting tasks
among multiple people. The general case of this problem,
where information from any previous point in the video may
provide the necessary context for workers, requires novel
techniques and is beyond the scope of this paper. However,
the current version of Glance does try to ensure that individ
ual events are captured in their entirety in a single video. To
do this, we can look at workers who label events that continue
to the end of a clip or begin immediately, allowing for some
small E of error. In our experiments, less than a second was
enough to capture all instances where an event was split, but
this type of division happened so little in our experiments that
no generalizable rule could be devised. Situations where in
formation from more than one clip away was needed to code
and event never arose, largely due to the types of questions
we were asking in our examples.

Worker Training
We do not claim that Glance can code every type of event.
For coding systems that are highly granular, and that capture
very subtle events coders would normally be trained for pe
riods up to weeks to be proficient enough to complete their
task reliably. Crowd based coding has the potential to reduce
training efforts, particularly for complex coding schemes, as
each worker only has to learn a subset of the codes rather than
the entire coding system.

We currently use two forms of on-the-spot training to prepare
workers for tasks: (i) a general interactive tutorial that gives
workers feedback on an example task until they can complete
it successfully (given before workers are sent to the retainer
pool), and (ii) a dynamically created tutorial for the specific
event being coded that consists of a text description and one
or more video examples, if provided by the analyst. However,
this does not fully leverage prior work that has shown workers
remember task details from one session to the next [29], po
tentially facilitating long-term learning, but instead presents
a tool for using crowd workers’ common knowledge to code
events now, while future work will explore how to train in
terested crowd workers over time to allow them to handle in
creasingly complex tasks.

Cost
Workers were paid $0.15 USD per task to code 30 seconds of
video, which took them one minute on average. This equates
to a $9/hour effective rate, which is comparable to a work
study student. In some scenarios, video is coded redundantly.
At a depth of 5 workers, which we do not believe to be nec
essary in practice, the cost per minute could be as high as
2 × 5 × $0.15 = $1.50/minute. The potential advantage of
Glance comes from the ability to get feedback more quickly,

which means that money is less likely to be wasted on coding
that is not used or that has to be changed later. Therefore,
total coding costs could be less.

FUTURE WORK
Glance is still only the first step towards allowing analysts
to truly have a “conversation with their data”. Latency can
be further improved by integrating automated coding where
possible. By using the crowd to make it possible to handle
these natural language requests now, realistic data on how
users pose and refine questions can be collected and used to
train automated systems to both elicit clear queries and rec
ognize events more accurately.

For longer, more in-depth tasks, context can be maintained
more robustly through crowd curation of a shared “mem
ory”, and a richer interaction with the system is possible by
allowing workers to respond to queries (individually or as
a collective) when something is unclear [23, 27]. This is
similar to other types of message passing that has been ob
served as an effective way to boost problem-solving abilities
in crowdsourcing before [35]. This might also lead to cases of
serendipitous discovery of new information, as has been ob
served with crowd-powered conversational search tasks [23].

We will be releasing this tool for open use to both allow an
alysts access to the coding tool to advance their own work,
as well as to collect data on how our conversational interac
tion paradigm is used in real settings to code video. Ongoing
work will explore how the potential for privacy threats (see
[26]) might be mitigated using video filtering techniques that
allow for recognition of the queried events, without revealing
the identity of people in the video.

CONCLUSION
In this paper, we have presented the motivation, design, and
evaluation of Glance, a crowd-powered system for rapidly
coding video. We have shown that by incorporating the ef
fort of many human workers, the system is able to analyze
video very quickly, making possible a conversation-like inter
action with data that was not previously feasible. To further
support iterative refinement and validation of hypotheses on
video data sets, we have introduced methods that use variance
in crowd responses to support iterative improvement of cod
ing schemes, and introduced aggregation strategies that help
produce reliable codes over time span inputs. Glance dramat
ically reduces the time required for the arduous and slow task
of video coding, and in the process may change how social
scientists do their work.

ACKNOWLEDGEMENTS
This work was supported by National Science Foundation
awards #IIS-1149709, #IIS-1218209, #IIS-1208382, #IIS
1217096, and #IIS-1217559, a Sloan Foundation Fellowship,
a Google Research Grant, and a Microsoft Research Ph.D.
Fellowship. The authors would also like to thank Stephanie
O’Keefe for her input on this work.

REFERENCES
1. Datavyu. http://datavyu.org/.

2. Ambady, N., and Rosenthal, R. Thin slices of expressive
behavior as predictors of interpersonal consequences: A
meta-analysis. Psychol bull 111, 2 (1992), 256.

3. Bakeman, R., and Gottman, J. M. Observing

interaction: An introduction to sequential analysis.

Cambridge University Press, 1986.

4. Bakeman, R., and Quera, V. Sequential Analysis and

Observational Methods for the Behavioral Sciences.

Cambridge University Press, 2011.

5. Barnett, M., Chandramouli, B., DeLine, R., Drucker, S.,
Fisher, D., Goldstein, J., Morrison, P., and Platt, J. Stat!:
An interactive analytics environment for big data. In
SIGMOD 2013 (2013), 1013–1016.

6. Bernstein, M. S., Brandt, J. R., Miller, R. C., and Karger,
D. R. Crowds in two seconds: Enabling realtime
crowd-powered interfaces. In UIST (2011), 33–42.

7. Bernstein, M. S., Little, G., Miller, R. C., Hartmann, B.,
Ackerman, M. S., Karger, D. R., Crowell, D., and
Panovich, K. Soylent: a word processor with a crowd
inside. In UIST (2010), 313–322.

8. Bigham, J. P., Jayant, C., Ji, H., Little, G., Miller, A.,
Miller, R. C., Miller, R., Tatarowicz, A., White, B.,
White, S., and Yeh, T. Vizwiz: nearly real-time answers
to visual questions. In UIST (2010), 333–342.

9. Burr, B. Vaca: A tool for qualitative video analysis. In

SIGCHI EA (2006), 622–627.

10. Casasanto, D., and Jasmin, K. Good and bad in the
hands of politicians: Spontaneous gestures during
positive and negative speech. PLoS One 5, 7 (2010),
e11805.

11. Coan, J. A., and Gottman, J. M. Handbook of Emotion
Elicitation and Assessment. Series in Affective Science.
Oxford University Press, 2007, ch. The Specific Affect
Coding System (SPAFF).

12. Cohen, J. A Coefficient of Agreement for Nominal
Scales. Educ Psychol Meas 20, 1 (1960), 37.

13. Dawid, A. P., and Skene, A. M. Maximum likelihood
estimation of observer error-rates using the em
algorithm. In Appl Stat - J Roy St C (1979), 20–28.

14. Di Salvo, R., Giordano, D., and Kavasidis, I. A
crowdsourcing approach to support video annotation. In
VIGTA (2013), 8:1–8:6.

15. Diakopoulos, N. A., and Shamma, D. A. Characterizing
debate performance via aggregated twitter sentiment. In
SIGCHI (2010), 1195–1198.

16. Dow, S., Fortuna, J., Schwartz, D., Altringer, B.,
Schwartz, D., and Klemmer, S. Prototyping dynamics:
Sharing multiple designs improves exploration, group
rapport, and results. In SIGCHI (2011), 2807–2816.

17. Fleiss, J. L. Measuring nominal scale agreement among
many raters. Psychol Bull 76, 5 (1971), 378–382.

18. Hagedorn, J., Hailpern, J., and Karahalios, K. G. Vcode
and vdata: Illustrating a new framework for supporting
the video annotation workflow. In AVI (2008), 317–321.

19. Hailpern, J., Karahalios, K., Halle, J., DeThorne, L., and
Coletto, M.-K. A3: A coding guideline for hci+autism
research using video annotation. In ASSETS (2008),
11–18.

20. Heyman, R. E., Lorber, M. F., Eddy, J. M., West, T.,
Reis, E. H. T., and Judd, C. M. Handbook of Research
Methods in Social and Personality Psychology. Pending,
2014, ch. Behavioral observation and coding.

21. Jordan, B., and Henderson, A. Interaction analysis:
Foundations and practice. J Learn Sci 4, 1 (1995),
39–103.

22. Kipp, M. ANVIL- a generic annotation tool for
multimodal dialogue. Eurospeech (2001), 1367–1370.

23. Lasecki, W., Wesley, R., Nichols, J., Kulkarni, A., Allen,
J., and Bigham, J. Chorus: A crowd-powered
conversational assistant. In UIST (2013).

24. Lasecki, W. S., Murray, K. I., White, S., Miller, R. C.,
and Bigham, J. P. Real-time crowd control of existing
interfaces. In UIST (2011), 23–32.

25. Lasecki, W. S., Song, Y. C., Kautz, H., and Bigham, J. P.
Real-time crowd labeling for deployable activity
recognition. In CSCW (2013).

26. Lasecki, W. S., Teevan, J., and Kamar, E. Information
extraction and manipulation threats in crowd-powered
systems. In CSCW (2014).

27. Lasecki, W. S., Thiha, P., Zhong, Y., Brady, E., and
Bigham, J. P. Answering visual questions with
conversational crowd assistants. In ASSETS (2013).

28. Lasecki, W. S., Weingard, L., Ferguson, G., and
Bigham, J. P. Finding dependencies between actions
using the crowd. In SIGCHI (2014), 3095–3098.

29. Lasecki, W. S., White, S., Murray, K. I., and Bigham,
J. P. Crowd memory: Learning in the collective. In CI
(2012).

30. Shamma, D. A., Kennedy, L., and Churchill, E. F. Tweet
the debates: understanding community annotation of
uncollected sources. In SIGMM (2009), 3–10.

31. Tiemens, R. K. Television’s portrayal of the 1976
presidential debates: An analysis of visual content.

32. von Ahn, L. Human Computation. PhD thesis, Carnegie
Mellon University, 2005.

33. Vondrick, C., Patterson, D., and Ramanan, D. Efficiently
scaling up crowdsourced video annotation. Int J of
Comput Vision (2012), 1–21.

34. Weingart, L. R., Olekalns, M., and Smith, P. L.
Quantitative coding of negotiation behavior. Int
Negotiation 3, 9 (2005), 441–456.

35. Zhang, H., Horvitz, E., Miller, R. C., and Parkes, D. C.
Crowdsourcing general computation. In SIGCHI
Workshop on Human Compuation (2011), 622–627.

http:http://datavyu.org

	Introduction
	Envisioned Interaction
	Related Work
	Behavioral Observation and Coding
	Video Coding Tools
	Measuring Agreement

	Crowdsourcing Video Annotations

	Glance
	Recruiting a Crowd
	Posing Queries
	Visualizing Results
	Receiving Feedback on the Query
	Refining a Query with Followup Questions

	Feasibility Evaluations
	Method
	Sample Data
	Setup and procedures

	Study 1: Eliciting Rapid Results
	Time trials
	Coding an hour of video in real-time

	Study 2: Aggregating Results
	Study 3: Giving Feedback by Measuring Agreement
	Detecting Agreement
	Threshold Pruning
	Giving Feedback

	Example Scenario and Evaluation
	Discussion
	Query Ambiguity
	Context
	Worker Training
	Cost

	Future Work
	Conclusion
	Acknowledgements
	REFERENCES

