
A Direct Manipulation Language
for Explaining Algorithms

Jeremy Scott
MIT CSAIL

Cambridge, MA 02139
Email: jscott@csail.mit.edu

Philip J. Guo
MIT CSAIL / University of Rochester

Cambridge, MA 02139
Email: pg@cs.rochester.edu

Randall Davis
MIT CSAIL

Cambridge, MA 02139
Email: davis@csail.mit.edu

Abstract—Instructors typically explain algorithms in com-
puter science by tracing their behavior, often on blackboards,
sometimes with algorithm visualizations. Using blackboards can
be tedious because they do not facilitate manipulation of the
drawing, while visualizations often operate at the wrong level
of abstraction or must be laboriously hand-coded for each
algorithm. In response, we present a direct manipulation (DM)
language for explaining algorithms by manipulating visualized
data structures. The language maps DM gestures onto primitive
program behaviors that occur in commonly taught algorithms.
We performed an initial evaluation of the DM language on
teaching assistants of an undergraduate algorithms class, who
found the language easier to use and more helpful for explaining
algorithms than a standard drawing application (GIMP).

I. INTRODUCTION

Instructors in introductory CS courses typically explain al-
gorithms by sketching an example data structure, then carrying
out the algorithm’s operations on the example. Whether done
on the blackboard or in a digital medium, this process can be
tedious. Blackboards do not afford manipulation of the drawn
objects, requiring the instructor to either erase and redraw the
data structure, or storyboard the behavior as a series of before-
and-after snapshots. Figure 1, for example, shows an instructor
explaining an AVL insertion by drawing the entire binary tree
after each step of the rotation.

Digital drawing applications (e.g., PowerPoint, GIMP) al-
low shapes to be manipulated, but the manipulations are not
meaningful in a programming context. For example, numbered
boxes might be used to represent an array, but will respond to
drag gestures as a set of independent objects, rather than as a
list of numbers; as a result, it is not as easy as it should be to
demonstrate sorting operations.

An alternative is to prepare animations that illustrate the
algorithm’s behavior. While these animations are typically rich
with programming-specific details they are difficult to create
because visualization code (ex. in Processing or JavaScript)
must be written for each algorithm; the authoring process is
not as direct as drawing and manipulating objects.

In response, we have developed a direct manipulation (DM)
language for tracing the operation of algorithms on example
data structures. A visual vocabulary of numbers, lists, binary
trees and graphs enables the teacher to setup an example data
structure. The DM language provides a mapping from gestures
to primitive operations, enabling the teacher to illustrate the
concrete trace of an algorithm by manipulating the example
data structure.

Fig. 1. An instructor demonstrating an AVL tree insertion.

We performed an evaluation of the DM language’s usability
and utility by asking teaching assistants from an introductory
CS course to trace the behavior of two sorting algorithms on
examples of lists. We asked them to compare their experiences
using both the DM language and a standard computer drawing
application (GIMP) commonly used to describe data structure
manipulations in online learning scenarios.

In this paper, we:

1) describe a novel direct manipulation (DM) language
for tracing algorithms on example data structures,

2) report on a comparative study of the DM language
against a standard digital drawing application for the
task of tracing list sorting algorithms on examples.

II. RELATED WORK

Algorithm visualizations are semantically-rich, hand-coded
animations of an algorithm’s behavior. The fact that they
are hand-coded for each algorithm means that the barrier to
creating such animations is high. Shaffer et al. surveyed CS
instructors and found that while there was high interest in these
visualizations, few actually used them in practice due to the
difficulty of finding and integrating suitable visualizations into
their curriculum [1]. We created our DM language as a means
of lowering the barrier to authoring algorithm explanations.

Program visualization tools [2] enable the user to enter a
small program, single-step through its execution, and see its
visual state at each step. Sorva et al. provide a comprehensive
survey of 44 such tools for languages such as Java, C++, and
Python [3]. In contrast to algorithm visualization, these tools
visualize the low-level semantics of a specific programming
language using constructs such as stack frames and pointers.
The visual vocabulary and DM language proposed in this work



enable explanations at a higher level of abstraction, in terms
of data structures and algorithms.

Visual programming languages enable programmers to
write programs via direct manipulation of graphical elements
rather than by typing text. These languages have gained
widespread adoption in two main areas: (1) domain-specific
languages for specialists, such as LabVIEW for electronic sys-
tems designers and Max/MSP for digital music creators, and
(2) educational programming environments such as Alice [4]
and Scratch [5], which allow novices to create simple programs
by snapping together colorful blocks. Our DM language is
also intended for educational scenarios, but focuses on the CS
instructor’s typical task of explaining algorithms.

III. DIRECT MANIPULATION LANGUAGE FOR TRACING
ALGORITHMS

Our direct manipulation (DM) language maps gestures
onto primitive program behaviors that occur in commonly
taught algorithms. The design of the language was inspired
by watching instructors explain concepts in the introductory
algorithms course at our university. We present the design
decisions in this language then describe its constituent gestures
in detail (Table II).

A. Scope: concrete traces and visual problems

The language’s scope was defined in two ways to suit
its role in educational scenarios. First, we observed that
instructors explain algorithms by drawing concrete examples
of data structures - for example, a specific graph when ex-
plaining Dijkstra’s shortest path algorithm - and then trace the
algorithm’s behavior on that example. We call this a concrete
trace, because the instructor does not illustrate the algorithm in
the abstract, and instead carries out its execution as a sequence
of concrete steps. For this reason, the DM language focuses
on concrete changes to data structures, rather than flow control
diagrams of loops or conditional branches.

Second, our language focuses on supporting algorithm
traces for lists, binary trees, and graphs, because their canon-
ical algorithms – sorting, rotation, search and shortest paths –
are widely taught in introductory CS and algorithms courses.
These data structures and their associated algorithms are also
inherently visual: the natural way to teach and think through
them is by drawing diagrams. Thus, we envision direct ma-
nipulation languages for describing computation to be most
useful for these types of problems.

B. Visual vocabulary

Instructors use a relatively consistent visual vocabulary
to draw data structures: lists as rows of boxes, and trees
and graphs drawn as circles connected by lines or arrows.
Typically, the primitive part of a data structure (single list
element, node or edge) takes on a numerical value, which is
sketched inside the box or circle, and adjacent to the arrow.
Our DM language portrays data structures using this common
visual vocabulary (Table I).

Our observations of instructors led us to expand this
vocabulary. We noted that when describing insertion sort,
instructors indicated the current element to be inserted into

TABLE I. VISUAL VOCABULARY OF DATA STRUCTURES

Data Structure Visualization

Number

List

Binary Tree Node

Graph Node

Graph Edge

Finger

the sorted sublist by drawing an arrow that points to it. We
therefore included a finger visualization in the language, which
can be used to keep track of where we “are” as the algorithm
progresses.

We also noted that instructors verbally explain decision
making when they are illustrating a concrete trace of the
algorithm. For example, during an AVL insertion, the instructor
might say: “because the 6-node is greater than the 4-node, we
follow the 4-node’s right pointer.” For this reason, we added
numerical comparisons and pointer traversals to the visual
vocabulary. These are intended to help illustrate basic decision
making during the tracing task.

C. Gestural vocabulary

To design this vocabulary of DM gestures, we examined
a variety of examples of sorting and search algorithms being
explained by instructors and asked three questions:

• What behaviors need to be expressed to explain each
algorithm’s trace on the example data structure?

• How do instructors currently express those behaviors
by drawing on the blackboard?

• What direct manipulation gestures would be most
natural to express those behaviors?

For example, insertion sort requires the instructor to express
atomic program behaviors such as: create a list, maintain a
pointer to the current list position, compare numeric values,
and rearrange elements. AVL insertions are expressed by
creating binary tree nodes, comparing node values, recursing
into a node’s left or right child, inserting nodes, and rotating
subtrees. Graph algorithms involve similar but unconstrained
constructions of nodes and edges, in addition to comparisons,
pointer traversals and updates of node and edge values. For
all data structures, instructors may want to mark nodes or list
elements to indicate some state (e.g. visited or sorted).



TABLE II. DIRECT MANIPULATION LANGUAGE FOR TRACING ALGORITHMS

Atomic behavior Direct manipulation Example(s)

Use or copy an object’s value

drag-away: Grab an object,
and drag it away quickly.
Drop it to create a new num-
ber with the same value.

Remove an object from its
parent

dwell-drag-away: Grab an ob-
ject, dwell for one second and
drag it elsewhere.

Compare two objects’ values drag-into: Drag one value into
another.

Assign one object’s value to
another

drag-into-dwell: Drag one
value into another, and dwell
until the desired interpretation
(=, +=, -=) appears.

Insert a value into list or node
into tree/graph

drag-insert: Drag the value
into a gap in the list, or
the node to the tip of a
pointer/edge.

Show a pointer traversal
drag-follow: Drag a value
over a binary tree pointer or
graph edge.

Indicate current point in
traversal

drag-finger: Drag the finger
from one element to another.

Based on this list of behaviors, we devised a set of 8 ges-
tures (Table II) that is both expressive and compact; analogous
behaviors can be performed in the same way regardless of
their data structure type. For example, dragging one object
into another triggers a comparison of their numeric values,
regardless of whether they are list elements, nodes or numbers.
Similarly, popping a list element or detaching a subtree from its
parent is accomplished by grabbing it and holding it – dwelling
– until it can be moved away freely. This expressivity means
the language can be used to describe a variety of list, tree and
graph algorithms.

These gestures have been designed in keeping with prin-
ciples of direct manipulation, both by Shneiderman’s original
definition [6] and what has been called post-DM [7]. Objects in
our visual vocabulary act like physical objects with constraints
and affordances that match the way programmers think of
abstract data structures. For example, when a number is
brought into the vicinity of a list, the list expands to offer

spaces between existing elements where the number can be
inserted. When the number is inserted, the list collapses back
into place, in its new configuration.

D. Resolving overloaded gestures

When designing a gesture vocabulary, the gesture that
seems most natural for a task can often be interpreted in
multiple ways. There are two main examples of this in the DM
language: ambiguity in the drag-into gesture, and ambiguity in
the drag-away gesture when the value is part of some higher-
level data structure (e.g. a list element, or a child node in a
tree or graph).

The drag-into gesture is ambiguous because dragging one
object into another could be interpreted as a comparison
(x<y), an assignment (x=y), or an augmented assignment
such as x+=y or x-=y. Performing the drag-away gesture on
a child object is ambiguous because it is not obvious whether
the parent object should be altered or not. For example, when



dragging an element away from a list, should a copy of the
element be made, or should the element be pulled out of the
parent list? For trees and graphs, should a copy of the dragged
node be made, or should that node and its descendants be
detached from the parent?

Our solution is to default to the gesture interpretation that
does not alter any involved data structures. If the user dwells
for more than one second, then we preview possible mutation
behaviors. For the drag-into gesture this means defaulting to a
comparison, then previewing assignments. For the drag-away
gesture, a copy of the dragged value is made, unless the
user has dwelled and removed the value from its parent data
structure.

IV. EVALUATION

To evaluate the direct manipulation language, we conducted
a comparative study against a standard drawing application
(GIMP). We chose GIMP because it is the state-of-the-art in
authoring digital explanations of algorithms. In order to test the
DM language, we implemented it in a prototype system called
CodeInk, which will be presented in more detail in future work.
The system embodies the described visual vocabulary and DM
language, making it possible for subjects to setup example data
structures and manipulate them to trace an algorithm.

Our subjects were four teaching assistants (mean age =
23.5, σ=4.0) from the introductory algorithms course at our
university. By asking them to compare their experiences using
each tool to explain list sorting algorithms, we tested the
following hypotheses:

H1: TAs find it easier to explain list sorting algorithms using
the DM language than using the drawing application.

H2: TAs find the DM language more helpful than the drawing
application for explaining an algorithm’s trace.

A. Tasks

Our study had 2x2 conditions: two list sorting algorithms
(insertion and merge sort) and two ways of explaining each
algorithm (the DM language and the GIMP digital drawing
application used with a Wacom pen tablet). We used a within-
subjects design, where subjects explained the two sorting
algorithms in both CodeInk and in GIMP. The ordering of
tool-algorithm pairs was counterbalanced between subjects to
avoid confounding effects.

After subjects watched a training video and had time to
become familiar with the DM language, they were asked to
explain each algorithm’s trace on an example list using both
tools. At the end of the study, subjects were asked to fill out
a questionnaire rating agreement with two statements: (a) the
DM language was easier to use and (b) was more helpful for
explaining algorithms than GIMP.

B. Results and Discussion

Since there were only 4 subjects in this evaluation of
the language, our results cannot be considered statistically
significant. Across subjects, agreement with the ’easier-to-use’
statement had a mean score of 5.00 and agreement with the
’more helpful’ statement had a mean score of 6.50. Multiple

subjects commented that the affordances and constraints of the
DM language “felt realistic for explaining the algorithm,” and
that “actually swapping the elements was more illustrative than
redrawing the list over and over again.”

While subjects were able to explain insertion sort much
faster in using the DM language, the same was not true for
merge sort. For example, when merging one element at a
time into the final list, subjects would often accidentally dwell
and remove an element instead of copying it. While subjects
found comparisons illustrative, they would also sometimes ac-
cidentally compare values when dragging a list element across
the canvas. Replacing the dwelling construct with contextual
menus or more explicit controls for entering copy, remove,
compare or assign modes might resolve some of these
usability problems.

V. CONCLUSION

This paper presents the design of a direct manipulation
(DM) language for describing algorithm traces on examples
of data structures. The language provides a mapping from
DM gestures to primitive program behaviors that occur in
list, binary tree, and graph algorithms commonly taught in CS
courses. In a comparative study that evaluated the language’s
usability and usefulness against a standard drawing application,
teaching assistants in an introductory algorithms course found
CodeInk easier to use and more helpful for explaining list
sorting algorithms. We have implemented the DM language
in a system called CodeInk; its design and evaluation will be
described in future work.

ACKNOWLEDGMENTS

The authors would like to thank Rob Miller, Tom Lieber,
Juho Kim, the UID group at MIT CSAIL and all our study
participants for their feedback. This work was funded in part
by Quanta Computer and NSF Grant Number 1018055.

REFERENCES

[1] C. A. Shaffer, M. Akbar, A. J. D. Alon, M. Stewart, and S. H. Edwards,
“Getting algorithm visualizations into the classroom,” in Proceedings of
the 42nd ACM Technical Symposium on Computer Science Education,
ser. SIGCSE ’11. New York, NY, USA: ACM, 2011, pp. 129–134.

[2] P. J. Guo, “Online Python Tutor: Embeddable Web-based Program Vi-
sualization for CS Education,” in Proceeding of the 44th ACM Technical
Symposium on Computer Science Education, ser. SIGCSE ’13. New
York, NY, USA: ACM, 2013, pp. 579–584.

[3] J. Sorva, V. Karavirta, and L. Malmi, “A review of generic program
visualization systems for introductory programming education,” Trans.
Computing Education, vol. 13, no. 4, pp. 15:1–15:64, Nov. 2013.

[4] W. P. Dann, S. Cooper, and R. Pausch, Learning To Program with
Alice, 2nd ed. Upper Saddle River, NJ, USA: Prentice Hall Press,
2008. [Online]. Available: http://portal.acm.org/citation.cfm?id=1477661

[5] J. L. Ford, Scratch Programming for Teens, 1st ed. Boston, MA, United
States: Course Technology Press, 2008.

[6] B. Shneiderman, “The future of interactive systems and the emergence
of direct manipulation,” Behaviour & Information Technology, vol. 1,
no. 3, pp. 237–256, 1982.

[7] B. Lee, P. Isenberg, N. H. Riche, and S. Carpendale, “Beyond mouse and
keyboard: Expanding design considerations for information visualization
interactions,” Visualization and Computer Graphics, IEEE Transactions
on, vol. 18, no. 12, pp. 2689–2698, 2012.


