
Beyond Autocomplete: Automatic Function Definition

Kyle I. Murray and Jeffrey P. Bigham
Department of Computer Science

University of Rochester
Rochester, NY 14627

kyle.murray@rochester.edu, jbigham@cs.rochester.edu

Abstract—Programmers have used autocomplete to reduce the
cognitive overhead of remembering exhaustive lists of APIs for
years. Autocomplete has a primary and obvious point of failure:
when a programmer expects a certain method or function name
to exist and it does not, the autocompletion list simply stops
displaying results and disappears. We describe automatic function
definition (AFD), which can succeed where autocomplete fails. It
is a novel way to reduce the impact of threadbare libraries,
increase the coding speed of primary programming tasks, and
distribute work among different types of programmers and
automatic tools. Instead of seeing an empty list, users can instead
perform automatic function definition, which uses several sources
to define the function that the user intended to use. We present
three complementary techniques for defining functions based on
the information about the function that a user provides while
writing code as usual: code search, fellow programmers, and the
crowd. Finally, we discuss our implementation of this work in
progress and plans for evaluation.

I. INTRODUCTION

Autocomplete is a common feature of integrated develop-
ment environments. Traditionally, however, it has only been
used to list names that have already been defined in a ref-
erenced library or that exist elsewhere in a given project.
While it is true that many programming tasks involve frequent
references to existing code, the reason for writing a new
program or script in the first place is almost always to define
something that does not already exist or that is not readily
available to the programmer who is writing this new program;
this is her novel task.

While coding, a programmer is likely to encounter a failure
of autocomplete when some method that he expected to exist
in a library he was using does not actually exist. It could
be that another language’s library has the method or that he
thought that such a useful method ought to exist on the class
and therefore assumed that it was. At this point, there are only
a few ways to deal with the lack of code. First, the programmer
can write what would have been the body of the missing code
inline with the rest of the code for that project. Alternatively,
he can often use a language’s dynamic extensibility features
to define the method, either globally or modularly, himself.
Finally, the programmer can decide to skip this portion of
the code for the moment and proceed to complete the actual
novel task without ceding his valuable time and concentration
to distractions.

All of the above approaches for dealing with the presence
of an unexpectedly missing piece of functionality have flaws
that impose immediate cognitive costs on the programmer.

Automatic function definition (AFD) avoids these situational
impairments by allowing the programmer to delegate the task
and immediately continue working on the intricacies of the
unique task that the programmer expected to be working on
from the start. While she continues, the missing functions that
she chose to have defined are being filled out in parallel from
the various definition sources that we describe next.

II. DEFINITION SOURCES

A. Code Search

A huge amount of code exists on the web, which has lead
to the development of tools such as Sourcerer [1] and Google
Code Search1 to crawl it all. These tools can take as little as a
keyword and a source language, but they also support finely-
detailed search based on code structure, such as Sourcerer’s
CodeRank. These existing systems suggest that code search
alone would be able to cover many situations in which a pro-
grammer might want to have function automatically defined.
Some languages even have community-built repositories of
commonly used functions that are missing from the standard
libraries; these are ideal corpora to crawl for use with AFD.

B. Other Programmers

Large projects often rely on the ability of the senior pro-
grammers and managers to effectively delegate portions of the
projects to teams of other programmers. AFD benefits from
the availability of these other programmers by being able to
delegate a task to someone else within seconds of the original
programmer realizing that the task exists; it presents delegated
tasks in one of the most prevalent modular forms: the function.
Large projects are not the only programming situations in
which task delegation is practical today. Services such as
oDesk2 allow even a single, self-employed programmer to
subcontract other programmers by the hour. We imagine
situations in which a single programmer subcontracts another
programmer for a few hours during a time crunch near an
important deadline and has the subcontractor handle a stream
of delegated function definition tasks.

C. Crowdsourcing

A burgeoning solution to problems that cannot be solved
completely with AI but that can sometimes be too expensive or

1http://google.com/codesearch
2http://odesk.com



slow to complete with dedicated, expert humans is the crowd
[2]. The aforementioned function definition sources fall into
the AI and dedicated human categories, respectively, and may
therefore have the propensity to occasionally fall victim to
the same problems that crowdsourcing was designed to solve.
Interestingly, the crowd can be instructed to write code or
search for code. This helps to alleviate concerns that crowd
workers would not be experts enough to write certain code
themselves, or that they would be as limited by existing code
as regular code search.

III. RELATED WORK

Collabode [3] provides an interface and environment for
programmers to delegate tasks to collaborators and for col-
laborators to submit results in a process that Goldman et
al. call micro-outsourcing. Tasks are specified by opening an
interface where users type natural language instructions to
collaborators, and the scope of the task is also specified in
natural language. This differs from AFD in that the primary
programmer is taken away from her own programming task
in order to write instructions for someone else, and because
only close collaborators are used as sources of code.

In CodeGenie [4], a user first writes unit tests to validate
possible code that he wants CodeGenie to find. One these tests
are written, CodeGenie uses Sourcerer [1] to find relevant code
that passes the unit tests. Again, the most notable difference
is the requisite time that the primary programmer must spend
diverted from a task in order to write the code for the unit
tests. The approach also relies on a single method of finding
source code, code search, instead of using several. Calcite [5]
provides assistance for using unfamiliar APIs. Mooty et al.
introduce placeholder methods, which are method names that
show up in the code completion combobox, but that do not
actually exist. The text beside the placeholder method name
documents, in natural language, how the “desired function-
ality” indicated by the placeholder method could be imple-
mented. This text is crowdsourced. No code definitions are
given for these placeholders, differentiating them from our
AFD approach.

IV. IMPLEMENTATION

We implemented a testbed for AFD in a prototype, web-
based JavaScript development environment. Code analysis is
performed using Dimitrios Vardoulakis’ implementation of
type inference for JavaScript, based on his and Olin Shiver’s
CFA2 algorithm [6], which provides a type-annotated abstract
syntax tree of a given source string. We use the tree and in-
ferred types to provide standard autocomplete and to determine
the proper placement of automatically-inserted definitions in
source files. Automatic function definition is triggered by the
user an option from the typical autocomplete combobox. One
entry in the combobox has the function of initiating automatic
definition and is present even when no other suggestions are
left. We have not yet implemented the submission interface
for other programmers or crowd workers, or the code search
crawler.

V. FUTURE WORK

Automatic function definition is a work in progress, so
significant future work remains to be done. Primarily, an
interface and search mechanism that submit results back to
the existing programming environment will be created. The
human interface will likely use the same editor and submit
completed function definitions back to an existing server
that communicates with the primary programmer’s editor.
Past experience with Amazon’s Mechanical Turk service for
recruiting crowd workers [2] makes that service a likely choice
for crowdsourcing testing, although there may be crowds more
suited for the specific tasks of programming or finding existing
code on the internet.

A formal evaluation of the system with JavaScript program-
mers is planned. It will compare the different definition sources
against each other and against an environment without any
AFD at all. Users will be given sufficient instruction and
training on both types of environments. Metrics to which
we will pay close attention include completion time, code
accuracy, and users’ opinions and thoughts on the system
itself.

VI. CONCLUSION

We have presented automatic function definition, a novel
way to transparently increase the apparent utility of code
libraries, decrease the overall time spent coding for an in-
dividual, and distribute work among different types of pro-
grammers and automatic tools. We described three ways of
sourcing function definitions automatically, and implemented
a programming environment that is ready to accept definitions
once they are provided. As work in progress, we have plans
to build mechanisms to provide definitions to our environment
and plans to evaluate the utility of our new system with
programmers.

REFERENCES

[1] S. Bajracharya, T. Ngo, E. Linstead, Y. Dou, P. Rigor, P. Baldi, and C.
Lopes. Sourcerer: A Search Engine for Open Source Code Supporting
Structure-Based Search. In Proc. of the 21st ACM SIGPLAN Symposium
on Object-oriented Programming Systems, Languages, and Applications,
OOPSLA ’06, 681-682. 2006.

[2] J. P. Bigham, C. Jayant, H. Ji, G. Little, A. Miller, R. C. Miller, R.
Miller, A. Tatarowicz, B. White, S. White, and T. Yeh. VizWiz: Nearly
Real-time Answers to Visual Questions. In Proc. of the 23rd Annual ACM
Symposium on User Interfaces Software and Technology, UIST ’10, 333-
342. 2010

[3] M. Goldman, G. Little, and R. C. Miller. Collabode: Collaborative Coding
in the Browser. In Proc. of the 4th International Workshop on Cooperative
and Human Aspects of Software Engineering, CHASE ’11, 65-68, 2011.

[4] A. L. Lemos, S. K. Bajracharya, J. Ossher. CodeGenie: a Tool for
Test-Driven Source Code Search. In Proc. of the 22nd ACM SIGPLAN
Conference on Object-oriented Programming Systems and Applications,
OOPSLA ’07, 917-918. 2007.

[5] M. Mooty, A. Faulring, J. Stylos, and B. A. Myers. Calcite: Completing
Code Completion for Constructors using Crowds. 2010 IEEE Symposium
on Visual Languages and Human-Centric Computing, VL/HCC ’10, 15-
22. 2010.

[6] D. Vardoulakis and O. Shivers. CFA2: a Context-Free Approach to
Control-Flow Analysis. In Proc. of the 19th European Symposium on
Programming, ESOP ’10, 570-589. 2010.


