
Generating Real-Time Crowd Advice to Improve
Reinforcement Learning Agents

Gabriel V. de la Cruz Jr.
School of EECS

Washington State University
gabriel.delacruz@wsu.edu

Bei Peng
School of EECS

Washington State University
bei.peng@wsu.edu

Walter S. Lasecki
Computer Science Department

University of Rochester
wlasecki@cs.rochester.edu

Matthew E. Taylor
School of EECS

Washington State University
taylorm@eecs.wsu.edu

Abstract

Reinforcement learning is a powerful machine learn-
ing paradigm that allows agents to autonomously learn
to maximize a scalar reward. However, it often suf-
fers from poor initial performance and long learning
times. This paper discusses how collecting on-line hu-
man feedback, both in real time and post hoc, can po-
tentially improve the performance of such learning sys-
tems. We use the game Pac-Man to simulate a naviga-
tion setting and show that workers are able to accurately
identify both when a sub-optimal action is executed, and
what action should have been performed instead. Our
results demonstrate that the crowd is capable of gener-
ating helpful input. We conclude with a discussion the
types of errors that occur most commonly when engag-
ing human workers for this task, and a discussion of
how such data could be used to improve learning. Our
work serves as a critical first step in designing systems
that use real-time human feedback to improve the learn-
ing performance of automated systems on-the-fly.

Introduction
Reinforcement learning (Sutton and Barto 1998) is a very
flexible, robust approach to solving problems such as
backgammon (Tesauro 1995), helicopter control (Ng et al.
2004), and simulated robot soccer (Stone et al. 2006). How-
ever, early in the training process much of the problem space
is unexplored, often resulting in poor performance because
reasonable policies are only discovered after a consider-
able amount of trial-and-error. In this paper, we propose
the idea of using on-demand human intelligence, available
via crowdsourcing platforms such as Amazon Mechanical
Turk, in order to provide immediate feedback to reinforce-
ment learning systems based on the intuition and experience
of the human observer.

To test whether crowd workers are able to accurately pro-
vide such advice, we perform a set of experiments that mea-
sure the crowd’s ability to generate just-in-time warnings
to an agent playing Pac-Man. First, we establish that the
crowd can collectively identify the correct point at which an

Copyright c© 2015, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: This screenshot shows the web interface of the user
study with game layout, and components of the Pac-Man
game: 1) Pac-Man, 2) 4 Ghosts, 3) Pills, and 4) Power Pills.
Crowd workers watch a video of the game in progress and
mark mistakes made by a reinforcement learning agent.

error occurs with over 91% accuracy. Second, we demon-
strate that not only can this mistake identification be done
in real time with a mean latency of just 0.39 seconds, but
also that workers are able to identify what the optimal move
would have been been. Third, we compare the crowd’s per-
formance in this real-time setting with an offline “review”
setting where game playback can be controlled and replayed.
In this setting, mistakes can be better estimated, with a mean
distance from the correct position of just 0.15 seconds.

Included in this paper is a discussion on how we plan to
leverage crowd advice in RL. We have identified three in-
tegration strategies that includes: 1) automatically accepting
the crowd’s advice, 2) using reward shaping to update the
agent’s policy, and 3) treating the crowd as human demon-
strator. In addition, we also look into three strategies for col-
lecting the crowd’s advice: 1) worker provides suggestion
while the RL agent is learning in real-time, 2) a cyclic sys-
tem where an RL agent records a video clip of a portion in
the game, uploads it to a crowdsourcing platform, retrieves

the crowd’s advice and integrate it, and 3) RL agent decides
when and what to ask the crowd that can be incorporated to
the the first two strategies.

This work is the first research to establish the crowd’s
ability to react to mistakes made by an intelligent agent in
real time, and provide accurate guidance on a preferred al-
ternative action. Our work informs the design of future sys-
tems that use human intelligence to guide untrained systems
through the learning process, without limiting systems to
only learn from their mistakes far after they make them.

The contributions of this paper are to:
• present the idea that on-line crowds can provide assistance

to learning agents in real-time, as the need arises.
• demonstrate that crowd workers can respond quickly and

accurately enough to provide just-in-time feedback.
• show that workers can also improve their accuracy in post

hoc review settings for use in future situations.
• discuss strategies on how we plan to integrate crowd ad-

vice to improve learning.

Background and Related Work
Reinforcement learning has a history of succeeding on diffi-
cult problems with little information. This paper leverages
the on-policy learning algorithm Sarsa (Sutton and Barto
1998). A Sarsa agent learns to estimate Q-values, represent-
ing the estimated total reward the agent would receive in a
state s, execute action a, and then follows the current policy
until the episode is terminated. Over time, this type of tem-
poral difference learning allows the agent to learn a near-
optimal policy that collects as much reward as possible (in
expectation).

While autonomous methods like Sarsa have many em-
pirical successes and sound theoretical underpinnings, if a
human is available to provide useful information, the agent
is often able to learn much faster. For example, if a hu-
man understands the domain, she may be able to provide
high-level advice to an agent (Maclin, Shavlik, and Kael-
bling 1996). Another approach is to allow a user see tra-
jectories and label individual actions as good or bad (Ju-
dah et al. 2010). A more active approach involves pro-
viding human rewards to an agent, which the agent could
either interpret numerically (Thomaz and Breazeal 2006;
Knox and Stone 2010) or categorically (Loftin et al. 2014).
Finally, when a human can temporarily control the agent to
perform the correct behavior, learning from demonstration
techniques (Argall et al. 2009) can be used to mimic the hu-
man, or potentially improve upon the human’s demonstrated
behavior (Taylor, Suay, and Chernova 2011). In all of these
examples, the approaches differ in 1) the level of expertise
required of the human, 2) the type of interaction, and 3) how
the advice is represented and integrated into the agent’s con-
trol policy.

Among the most closely-related existing work to this pa-
per is that investigating methods for crowdsourcing control
and recognition tasks. Human control of robots has been
explored in the context of a robot Ouija board and naviga-
tion setting (Goldberg et al. 2000). The Robot Management
System (Toris, Kent, and Chernova 2014) (RMS) also uses

on-line contributors to crowdsource human-robot interaction
studies. RMS used groups of participants working from their
home computers to practice controlling a robot using camera
views and a web-based control interface.

Legion (Lasecki et al. 2011) explored using crowd work-
ers to collaboratively control a robot in real time. This was
the first work to show that on-demand human intelligence
could be used to control a robot when an automatic sys-
tem is unable to proceed. Legion:AR (Lasecki et al. 2013)
showed that an active learning approach could be used in
an activity recognition setting to call on crowd support for
an action-labeling task only when needed. In both systems,
low-latency responses were achieved by keeping the crowd
continuously engaged with a task for a period of time. How-
ever, complete crowd control does not allow the system ef-
fectively evaluate its own policy. In this work, we explore if
and how we can use real-time crowds in an advisory role,
without needing the crowd to directly control the Pac-Man
avatar, while still maintaining exceptional response speeds.

Experimental Design
Our Pac-Man agent (see Figure 1) used Sarsa to learn a
near-optimal policy to win the game while earning as many
points as possible using an existing open learning implemen-
tation (Taylor et al. 2014). Due to the large state space, the
agent uses seven high-level features for function approxima-
tion to learn a continuous Q-value function.

To generate the videos used in the user study, we recorded
Pac-Man being controlled by a human who intentionally
made different types of mistakes. Then, we picked 10–14
seconds which contained one (and only one) mistake. Q-
values for the agent’s trajectory were also recorded, con-
firming that the human-created mistakes had lower Q-values
than the “correct” action. We create four videos where each
contained a mistake: Video 1) moving so that Pac-Man is
trapped by one or more ghosts, Video 2) not moving towards
an edible ghost after eating a power pill, Video 3) taking an
empty path instead of going for pills when they are no risk,
and Video 4) not going for all edible ghosts that are within
close range.

To study the hypothesis that crowd workers can provide
information useful to reinforcement learning agents, we con-
sider four settings. First, a video of Pac-Man is played only
once (real-time) or the worker can view it multiple times
(review). Second, the worker may be asked to identify the
time at which the mistake is made (Mistake Identification),
or asked to identify both the mistake time as well as suggest
the optimal action (Action Suggestion).

We want to measure the performance of users in identi-
fying the point at which a mistake is made and suggesting
optimal action Pac-Man should have executed. To evaluate
worker actions, we can compare to recorded Q-values.

User Studies
Workers were first shown instructions describing the task,
as well as the rules of Pac-Man. During a preliminary test
of the web interface, we found that workers would some-
times identify mistakes before the sub-optimal action was

executed, anticipating the mistake. We provided explicit in-
structions to workers to encourage them to identify the ex-
act time at which a mistake was made. Workers were then
directed to a tutorial which asked them to complete an ex-
ample task using the marking interface. After the tutorial,
workers were given a new video and asked to identify the
mistake. Finally, workers were able to provide general com-
ments before submitting.

We recruited crowd workers from Amazon Mechanical
Turk (AMT) for our experiments. While AMT provides im-
mediately, programmatic access to crowds, it also poses a
number of challenges, including that workers: 1) are un-
likely to be experts, 2) may not take the task seriously and
not read the instructions, and 3) may intentionally select in-
correct times/actions. Our methods need to be robust to these
challenges, unlike in Learning from Demonstration, where
demonstrations are typically assumed to be optimal.

16 Human Intelligence Tasks (HITs) on AMT encom-
passed our four different types of experiments. Each exper-
iment was tested with 4 different videos. We collected data
from 30 unique workers per HIT and every worker was paid
25 cents. Trials are denoted as AMT 1–16 in Table 1.

Result Analysis
This section presents the results of our study in three parts.
First, we establish that the crowd can identify the mis-
take with high accuracy. Second, we demonstrate that not
only can Mistake Identification be done in real-time but
that workers can also successfully identify what the opti-
mal “correct” move would have been. Third, we compare
the crowd’s performance in the real-time setting with offline
“review” setting and show that if additional time is available,
even more accurate performance can be achieved.

Mistake Identification
Our performance measure is based on how many workers
can correctly identify and suggest a time that is close to the
correct mistake time. Histograms provide a visual represen-
tation of the accuracy of workers in different settings. The
mistake times are reported as game move numbers, which
are 986, 1809, 1116 and 334, for Videos 1–4, respectively.
These video clips are 10 to 14 seconds long, correspond-
ing to 250–350 total game moves, and the mistakes located
roughly three quarters of the way through the clip. How-
ever, because Pac-Man moves continually, it is difficult for
workers to identify the exact frame when the mistake was
executed.

To quantify how accurate the workers were, we calculated
the difference between the actual mistake time and the iden-
tified mistake time, where zero corresponds to a perfect an-
swer. We selected a threshold of 30 actions, roughly 1 sec-
ond, so that any answer within±1 second will be counted as
correctly identifying the mistake. Figure 2(a) shows the dis-
tribution of workers’ answers for AMT 1 and 2. Responses
within the 956–1016 moves range are considered to be cor-
rect, showing only two errant responses.

To compute the mean difference between the time re-
ported by a worker and the real error time µdiff , we use:

µdiff (AMTk) =

∑n
i=1 |twi − tm|

n
(1)

where k is the group number, n is the total number of work-
ers per group that are within the threshold, twi

is the ith
worker’s suggested time, and tm is the correct mistake time.
The standard deviation is also computed using:

σdiff (AMTk) =

√∑n
i=1(µdiff (AMTk)− |twi

− tm|)2
n

(2)

where a low value indicates suggestions are tightly clustered.
To establish that workers can correctly identify where and

when mistakes occur in our game, we count the number of
people who correctly identified the mistake. Video 1’s re-
view setting collective percentage of correct events has the
highest over all four videos with 98.3%. This is followed by
Videos 4 and 2, with 88.0% and 86.6% respectively. And
Video 3 has the lowest accuracy with 68.4%. This observed
high percentage of correct events from the three videos sug-
gests that the crowd can identify a mistake in many cases.

It is also important to point out that there are instances in
which the mistakes are more subtle, making it harder to iden-
tify. Video 3 has the lowest accuracy, and the Mistake Iden-
tification experiment has the least percentage of correct an-
swers at 56.7%. However, the sparsity of the data as shown
in Figure 2(b) suggests that the mistake was harder to find.

In summary, these results established that, in most cases,
workers can identify a mistake in the Pac-Man game with
an overall accuracy for review Mistake Identification at 80%
and an accuracy of 91% for review Action Suggestion.

Optimal Action Identification
Given that workers can correctly identify mistakes, we next
consider whether they can also accurately provide the ac-
tion that should have been taken. To do this, we first have to
verify that majority of the workers within the threshold sug-
gested the same action, and second, the suggested action has
the maximum Q-value in the recorded video’s game state.

Figure 2(c) shows that all workers’ suggested actions that
are within the 30-move threshold, in both the real-time and
review cases, meaning that a majority of workers do suggest
similar actions.

Knowing that the crowd reaches consensus on a single ac-
tion, we can now compare the crowd’s advice to the recorded
Q-values of the game to verify if it is the correct (near-
optimal) action. The maximum Q-value of the 4 possible
Pac-Man actions determines what action Pac-Man should
perform. In Video 1, a step before 986 moves should sug-
gest the Q-values for the next move. At move 985, the Q-
values are: up = 1729, right = 1621, down = 1768, and
left = 1621. In the human-controlled game in Video 1,
Pac-Man went right at this time when it should have gone
down (the maximum Q-value). And as shown in Figure 2(c),
workers did suggest for Pac-Man should move downward in
Video 1. Similar in the other three videos demonstrate that
workers can identify that a mistake has been made but as
well as provide an advice that is useful and near-optimal.

Video HIT Video Experiment Mean Difference Std Dev # of Suggestions % Correct % Correct
Group Category Type µdiff σdiff <= 30 moves Events Suggestions

1

AMT 1 real-time Mistake Identification 11.250 5.992 28 96.6% -
AMT 2 review 2.733 3.483 30 100.0% -
AMT 3 real-time Action Suggestion 10.379 7.660 29 100.0% 93.1%
AMT 4 review 1.679 2.970 28 96.6% 100.0%

2

AMT 5 real-time Mistake Identification 9.529 7.698 17 56.7% -
AMT 6 review 7.375 8.712 24 80.0% -
AMT 7 real-time Action Suggestion 8.588 6.236 17 56.7% 82.4%
AMT 8 review 11.333 9.418 27 93.1% 55.6%

3

AMT 9 real-time Mistake Identification 8.750 5.365 8 26.7% -
AMT 10 review 2.882 4.820 17 56.7% -
AMT 11 real-time Action Suggestion 8.444 8.053 18 60.0% 77.8%
AMT 12 review 4.833 6.281 24 80.0% 66.7%

4

AMT 13 real-time Mistake Identification 8.889 6.710 27 93.1% -
AMT 14 review 2.042 4.704 24 82.8% -
AMT 15 real-time Action Suggestion 6.882 6.499 17 56.7% 94.1%
AMT 16 review 3.074 5.737 27 93.1% 92.6%

Table 1: Summary results for our 16 Amazon Mechanical Turk HITs. Here, we only consider suggestions within 30 moves
(1.25 seconds) of the true mistake time as correct.

Real-time vs. Review
We expected the real-time setting to be considerably harder
than review setting. This assumption can be verified by con-
sidering the mean difference for each setting — the average
mean difference for real-time setting is 9.1 moves (≈ 0.36
seconds) while review case is of 4.5 moves (≈ 0.18 sec-
onds), as shown in Table 1. The lower mean difference in
review experiments shows that the crowd’s performance in
real-time setting with an offline “review” setting where game
playback can be controlled and replayed, show that if addi-
tional time is available, even closer estimates of the point of
the mistake can be gathered.

We performed a 4×2 Between Subjects Factorial ANOVA
test of all Action Suggestion experiments shows that the dif-
ference of suggested mistake time by workers between sub-
jects real-time and review setting was statistically significant
(F = 5.10, p < .05, η2 = .023). This difference between
real-time and review setting in all Mistake Identification ex-
periments is also significant (F = 5.02, p < .05, η2 =
.022). This indicates that the different mistakes in each video
can also affect worker’s ability to identify them.

Interestingly, Video 2 has two sets of workers that suggest
different actions in Action Suggestion, and there is only a
small difference between the mean difference of real-time
and review setting in Mistake Identification for Video 2. This
indicates that the mistake in Video 2 was harder for workers
to identify than the other three videos.

It is notable here that the average of mean differences
in the real-time setting for Mistake Identification results to
9.8 moves (≈ 0.39 seconds), and with Action Suggestion
at 8.8 moves (≈ 0.35 seconds), which are both very close
to the human response for tasks with no high-level reason-
ing needed (e.g., clicking a button in response to a visual
stimulus). This suggests that crowd advice for tasks, such
as navigation, can be collected nearly as fast as people can
physically respond. This quickly-available input can, in turn,
be used to improve real-time learning of virtual and physical
agents.

Paradoxically, workers were able to give more accurate
answers when asked to suggest a move compared to when
they are only asked to identify when a mistake is made. One
possible explanation for this is that setting up the problem
so that workers are expecting to act as if they are making a
move in the game itself is a better means of priming workers
to react quickly. As a result, no slowdown of response is
seen, even though they are providing more information.

Discussion and Future Work
Future work will focus on developing learning algorithms
that to leverage the unique strengths of human input on-the-
fly without being detrimentally affected by incorrect advice.
Although others (Taylor, Suay, and Chernova 2011) have in-
corporated advice from multiple demonstrators in past work,
errors from crowdsourced workers are a unique challenges
and opportunities to scale these systems. Furthermore, we
plan to continue to improve our interfaces to further reduce
the latency of worker responses. One potential method to
do this is to leverage workers’ ability to predict when mis-
takes might be made to collectively decrease latency below
the best after-the-fact response speed possible. We are also
interested in studying how the number of examples during
the tutorial affects participants’ accuracy. Finally, we are in-
terested in eliciting a confidence measure from workers, po-
tentially allowing us to weight different pieces of advice.

Leveraging Crowd Advice in RL
Our study has shown that the crowd can identify that a mis-
take that has been made as well as suggest a near-optimal
action. This section focuses on the next stage of our study,
which is leveraging the crowd’s advice into the learning pro-
cess of an RL agent. We will discuss three strategies for in-
tegrating the crowd’s advice into the learning process.

One strategy that provides an easy integration of the
crowd’s advice is to automatically take the crowd’s sug-
gested action. This integration strategy can be implemented
in both review and real-time setting. However, in a real-time

(a) A histogram of the distribution of work-
ers’ suggestions in AMT 1 and 2 using Video
1 (mistake time: 986).

(b) A histogram of the distribution of work-
ers’ suggestions in AMT 9 and 10 using
Video 3 (mistake time: 1116).

(c) Number of times each action was sug-
gested by workers (Optimal: 1–down, 2–
down, 3–down, 4–up).

Figure 2: Selected exemplar results from our 16 Amazon Mechanical Turk experiments.

system, we will have to consider the possibility of a time lag
based on two factors: 1) number of workers and 2) diver-
sity of suggestions. It implies that a mistake is present when
a high number of workers provide suggestions, but it can be
computationally expensive to filter the data if all suggestions
are considered. Also, a diverse data requires more compari-
son to make a decision for integration. Although important,
these added steps can delay integration in a real-time system.
If a time lag does exist, we can still implement a real-time
system by having the workers provide their suggestion a few
moves before the moment of interest. We can also consider
a quasi real-time system where we can pause the game at
the moment of interest to collect the workers’ suggestion.
Forcing the Pac-Man to execute a near-optimal action using
the crowd’s advice brings the RL agent closer to the optimal
policy because the agent is forced to explore in a direction
consistent with a high-performing policy.

Our study has shown that there are mistakes that are
harder to identify — there is a need to quantify the confi-
dence of the crowd’s advice. We can approach this by al-
lowing the crowd to provide a confidence rate on their sug-
gestion. Such confidence can be use to simply determine
whether to integrate it or not, but it can also be use to weigh
its effect during integration like in the case on our second
strategy where we consider changing the Q-values. Another
approach is to determine a confidence rate for each worker.
As we collect more data from workers, we can also deter-
mine the worker’s confidence rating. The confidence rating
can represent if a worker normally agrees with others, and if
their suggestions are good.

The second integration strategy is using reward shap-
ing, a method used in reinforcement learning that con-
sists of supplying additional training rewards to a learning
agent to guide its learning process (Ng, Harada, and Rus-
sell 1999). The framework of Markov decision processes
(MDPs) is widely adopted to study sequential reinforcement
learning. In a traditional reinforcement learning algorithm,
we seek to learn an optimal policy for some MDP M =
(S,A, T, γ,R). With giving additional “shaping” rewards,
we aim to learn the optimal policy faster for transformed

MDP M = (S,A, T, γ,R
′
), where R

′
= R + F is the new

reward function, and F is the shaping reward function. If the
former MDP M received reward R(s, a, s

′
) based on tran-

sitioning to s
′

with taking an action a in state s, the trans-
formed MDP would receive reward R(s, a, s

′
) + F (s, a, s

′
)

on the same event.
In our Pac-Man domain, in Mistake Identification

experiments, we can set the shaping reward function
F (s, ap, s

′
) = n when the crowd gives correct advice (Pac-

Man is in state s and takes a wrong action ap), where n is
a negative value, and F (s, ap, s

′
) = 0 otherwise. In Action

Suggestion setting, except shaping reward function for Pac-
Man’s wrong action, we should also set F (s, ac, s

′
) = p

based on crowd’s correct action suggestion (Pac-Man is in
state s and the crowd suggests the optimal action ac), where
p is a positive value. Considering our current learning al-
gorithm, each action taken by Pac-Man in the game will
receive a reward associated with the score. Then, the addi-
tional training reward will directly change the reward func-
tion and indirectly change the Q-value of taking that ac-
tion, making the Q-value of the wrong demonstrated action
smaller and the suggested action larger.

The third integration strategy we have considered is
Learning from Demonstration (LfD), which uses the exam-
ples learned from demonstration teacher to derive a policy
that executes demonstrated behaviors (Argall et al. 2009),
in contrast to learning from experience as in Reinforce-
ment Learning (Sutton and Barto 1998). The LfD learning
problem can be divided into two steps: gathering the ex-
amples, and deriving a policy from gathered examples. In
our Pac-Man domain, crowd workers can be treated as hu-
man demonstrators, and identified mistake time and/or sug-
gested actions are examples learned from them. Consider-
ing the Action Suggestion setting, if the worker provides
an action suggestion to Pac-Man, the current state of Pac-
Man game and suggested action will be recorded as demon-
strated data. The demonstration technique used here can be
considered as interactive approach, which allows the policy
to be updated incrementally as demonstration data become

available. Demonstrations here can prevent Pac-Man from
suffering long periods of blind exploration when no reward
feedback is given.

The limitations of Learning from Demonstration is that
it is heavily limited by the quality of demonstrated infor-
mation, the sequence of state-action pairs executed by the
demonstration teacher. It suffers from the state spaces that
have not been demonstrated and the limited expertise of
demonstrators who are not able to perform optimal pol-
icy. Therefore, integrating crowd advice into reinforcement
learning algorithm also suffers from these limitations.

Strategies for Collecting the Crowd’s Advice
Having already pointed out different strategies for integrat-
ing the crowd advice, we want to build effective strategies
for collecting and harnessing the crowd’s advice. We have
identified three strategies that we will discussed further be-
low.

Our first strategy is to collect the crowd’s advice through
a real-time system. We will use an interface similar to that
used in this study where workers can provide an advice by
simply pressing a button to suggest a mistake, and/or ad-
ditional buttons for suggesting the correct action. Multiple
workers will watch the same RL agent as it learns how to
navigate through its environment. This can be deployed on
the web or it can also be done locally through several com-
puters. The integration will depend whether there are enough
workers to provide suggestions, and whether a consensus is
reached. It also depends on what type of advice is given by
the crowd, whether a worker is suggesting an action or just
simply identifying a mistake. In any case, the crowd’s advice
can be integrated on-the-fly by having the RL agent take the
suggested action via the strategies suggestion in the previous
subsection.

The second strategy will work more towards a review
setting. Instead of manually recording videos of a human-
controlled game and uploading it to Mechanical Turk to col-
lect inputs, we will collect worker inputs using a cyclic sys-
tem that involves having the RL agent itself record video
clips of the game during the learning process, and automat-
ically uploads them to our current crowd worker interface
that collects advice. This strategy would be most useful in
the early-stages of the learning process and we assume that
the RL agent has not converged to the optimal policy —
video clips can be recorded with a uniform random distri-
bution and there will be some videos that have no mistakes.
Besides using the Mechanical Turk to collect data, we will
also look into using an on-site set of workers for faster data
collection.

Our third strategy can be an added functionality to the
first two strategies. The RL agent decides when and what to
ask the crowd. The cue for the agent to decide when to ask
the crowd can be 1) when the agent has no sufficient prior
experience of its current state, and 2) when the agent does
not have strong confidence on what action to take if the dif-
ferences of the Q-values are insignificant. For the first cue,
we can use reasoning like in R-MAX (Brafman and Ten-
nenholtz 2003) to decide if a state has been visited “often
enough” to assume some amount of certainty. Another op-

tion is to use confidence intervals for different action (e.g.,
using UCT (Kocsis and Szepesvri 2006)) to determine when
to ask for help. Since theoretically there can be an implicit
cost associated with asking for crowd’s advice that by using
the key idea of active learning (Settles 2010), an RL agent
should ask for fewer number of crowd advice in an episode
but should still yield a greater reward or a better policy.

Conclusion
Reinforcement learning algorithms often suffer from poor
early-stage performance since agents have to experience
considerable amount of trial-and-error before learning an ef-
fective policy. Our approach uses real-time crowds to pro-
vide immediate assistance to the learning agent to help im-
prove its performance. We ran a set of user studies to show
that crowd workers from Amazon Mechanical Turk can re-
spond quickly and accurately enough to provide just-in-time
feedback to an agent playing Pac-Man. We show that work-
ers can correctly identify the point at which a mistake is
made by Pac-Man and the optimal action Pac-Man should
have executed. We also showed that higher performance
could be achieved by workers in post hoc review settings.

Our results demonstrated that 1) crowd workers are able
to accurately choose the mistake time in real-time with a
mean latency of just 0.39s, and 2) latency does not increase
if workers must also suggest an action. By leveraging the
crowd, we present an effective, scalable means of providing
during-task assistance to learning agents. Next steps include
leveraging crowd advice to improve an RL agent’s learning
performance.

Acknowledgements
This work was supported in part by NSF IIS-1319412.

References
Argall, B. D.; Chernova, S.; Veloso, M.; and Browning,
B. 2009. A survey of robot learning from demonstration.
Robot. Auton. Syst. 57(5):469–483.
Brafman, R. I., and Tennenholtz, M. 2003. R-max-a general
polynomial time algorithm for near-optimal reinforcement
learning. The Journal of Machine Learning Research 3:213–
231.
Goldberg, K.; Chen, B.; Solomon, R.; Bui, S.; Farzin, B.;
Heitler, J.; Poon, D.; and Smith, G. 2000. Collaborative
teleoperation via the internet. In In IEEE International Con-
ference on Robotics and Automation (ICRA, 2019–2024.
Judah, K.; Roy, S.; Fern, A.; and Dietterich, T. G. 2010.
Reinforcement learning via practice and critique advice. In
AAAI.
Knox, W. B., and Stone, P. 2010. Combining manual feed-
back with subsequent mdp reward signals for reinforcement
learning. In Proceedings of the 9th International Confer-
ence on Autonomous Agents and Multiagent Systems, AA-
MAS ’10, 5–12. Richland, SC: International Foundation for
Autonomous Agents and Multiagent Systems.

Kocsis, L., and Szepesvri, C. 2006. Bandit based monte-
carlo planning. In In: ECML-06. Number 4212 in LNCS,
282–293. Springer.
Lasecki, W. S.; Murray, K. I.; White, S.; Miller, R. C.; and
Bigham, J. P. 2011. Real-time crowd control of existing
interfaces. In Proceedings of the 24th Annual ACM Sympo-
sium on User Interface Software and Technology, UIST ’11,
23–32. New York, NY, USA: ACM.
Lasecki, W. S.; Song, Y. C.; Kautz, H.; and Bigham, J. P.
2013. Real-time crowd labeling for deployable activity
recognition. In Proceedings of the 2013 Conference on
Computer Supported Cooperative Work, CSCW ’13, 1203–
1212. New York, NY, USA: ACM.
Loftin, R.; Peng, B.; MacGlashan, J.; Littman, M. L.; Taylor,
M. E.; Huang, J.; and Roberts, D. L. 2014. A strategy-
aware technique for learning behaviors from discrete human
feedback. In Proceedings of the 28th AAAI Conference on
Artificial Intelligence (AAAI).
Maclin, R.; Shavlik, J. W.; and Kaelbling, P. 1996. Creating
advice-taking reinforcement learners. In Machine Learning,
251–281.
Ng, A. Y.; Kim, H. J.; Jordan, M. I.; and Sastry, S. 2004.
Inverted autonomous helicopter flight via reinforcement
learning. In In International Symposium on Experimental
Robotics. MIT Press.
Ng, A. Y.; Harada, D.; and Russell, S. 1999. Policy invari-
ance under reward transformations: Theory and application
to reward shaping. In ICML, volume 99, 278–287.
Settles, B. 2010. Active learning literature survey. Univer-
sity of Wisconsin, Madison 52:55–66.
Stone, P.; Kuhlmann, G.; Taylor, M. E.; and Liu, Y. 2006.
Keepaway soccer: From machine learning testbed to bench-
mark. In Noda, I.; Jacoff, A.; Bredenfeld, A.; and Takahashi,
Y., eds., RoboCup-2005: Robot Soccer World Cup IX, vol-
ume 4020. Berlin: Springer-Verlag. 93–105.
Sutton, R. S., and Barto, A. G. 1998. Reinforcement learn-
ing: An introduction, volume 28. MIT press.
Taylor, M. E.; Carboni, N.; Fachantidis, A.; Vlahavas, I.;
and Torrey, L. 2014. Reinforcement learning agents pro-
viding advice in complex video games. Connection Science
26(1):45–63.
Taylor, M. E.; Suay, H. B.; and Chernova, S. 2011. Inte-
grating reinforcement learning with human demonstrations
of varying ability. In Proceedings of the International Con-
ference on Autonomous Agents and Multiagent Systems (AA-
MAS).
Tesauro, G. 1995. Temporal difference learning and TD-
Gammon. Commun. ACM 38(3):58–68.
Thomaz, A. L., and Breazeal, C. 2006. Reinforcement
learning with human teachers: Evidence of feedback and
guidance with implications for learning performance. In
Proceedings of the National Conference on Artificial Intelli-
gence, volume 21, 1000. Menlo Park, CA; Cambridge, MA;
London; AAAI Press; MIT Press; 1999.
Toris, R.; Kent, D.; and Chernova, S. 2014. The robot
management system: A framework for conducting human-

robot interaction studies through crowdsourcing. Journal of
Human-Robot Interaction 3(2):25–49.

