
Final Exam

CSC 252

8 May 2018

Computer Science Department

University of Rochester

Instructor: Yuhao Zhu

TAs: Alan Beadle, Sayak Chakraborti, Michael Chavrimootoo, Alan Chiu,

 Akshay Desai, Benjamin Nemeth, Eric Weiss, Jie Zhou

 Name:____________________________________

 Problem 0 (2 points): ______________

 Problem 1 (43 points): ______________

 Problem 2 (15 points): ______________

 Problem 3 (30 points): ______________

 Problem 4 (30 points): ______________

 Problem 5 (15 points): ______________

 Total (135 points): ______________

Remember “I don’t know” is given 15% partial credit, but you must erase/cross everything else.

Please be sure your name is on each sheet of the exam.

Your answers to all questions must be contained in the given boxes. Use spare space to show all

supporting work to earn partial credit.

You have 2 hours and 45 minutes to work (19:15 -- 22:00).

Please sign the following. I have not given nor received any unauthorized help on this exam.

Signature:___

GOOD LUCK!!!

(And Have a Great Semester Break)

1

Problem 0: Warm-up (2 points)

Facebook is hiring hardware engineers. What do you think they are building?

Any answer is accepted.

Problem 1 (43 points)

Part a (5 points): ​A microarchitecture is predicting whether a branch is taken or not taken

using a 1-bit predictor. The last five branches were: taken, taken, taken, taken, not taken. What

does the branch predictor predict (choose): Taken or Not Taken?

Not Taken

Part b (5 points):​ In a typical Linux/Unix terminal, when you hit Ctrl + Z, which state are you

putting the foreground process to (choose): Running, Stopped, Terminated?

Stopped

Part c (5 points): ​Cache blocking is a software-level performance optimization technique that

improves what aspect of a program (choose): Locality, Parallelism, Concurrency, Security?

Locality

Part d (5 points):​ An application that is 90% parallelizable is executed on a single processor in

1.5 hours. If the application is allowed to run with an unlimited number of processors, what is

the lower bound on its execution time?

9 mins. ​With an unlimited number of processors, the parallelizable part of a program

would finish in no time, and the execution time is equivalent to the sequential part, which

is 90 mins * 0.1 = 9 mins.

Part e (5 points): ​On a page fault, the operating system often loads a page from the disk into

memory. How does the operating system know whether it is necessary to write the previously

occupied page in the memory back to the disk? Answer in fifteen words or fewer.

Check the dirty bit in the corresponding page table entry.

2

Part f (5 points): ​What is the cycle time of a 1 GHz processor?

1 ns

Part g (5 points): ​What is the fundamental reason that process context switch has a much

higher overhead than thread context switch in Linux? Answer in twenty words or fewer.

Threads share virtual address space while processes have separate virtual address spaces.

Part h (5 points): ​Suppose we have two 4-bit 2’s complement numbers:

1111

1110

Does the sum of the two numbers result in an overflow?

No.

Part i (3 points):​Recall that the crux of tracing-based GC algorithms such as Mark-and-sweep

and Mark-sweep-compact is to start from “root” variables and then identify all the reachable

variables. In the following code snippet, suppose the program just finishes executing L7, which

variables are regarded as “root”? Name only those that point to variables on the heap.

L1:​ int *p3;

L2:​ int* foo(int n) {
L3:​ int i, *p1;
L4:​ p1 = (int *) malloc(n * sizeof(int));
L5:​ for (i=0; i<n; i++)
L6:​ p1[i] = i;
L7:​ p3 = p1[2];
L8:​ return p1;
L9:​ }

L10:​ void bar() {
L11:​ int *p2 = foo(5);
L12:​ }

p1 ​ and ​p3 ​.

3

Problem 2 (15 points)

We assume that IEEE decided to add a new 8-bit representation with its main characteristics

consistent with the 32/64-bit representations. Consider the following four 8-bit numbers:

A: ​11100101
B: ​00111001
C: ​00001100
D: ​00011101

The decimal values represented by the above numbers are as follows, ​in no particular order​:
, -21, , 3 8

1
32
29

8
3

Part a (3 points):​ Represent decimal value in binary normalized form8
3

1.1 x 2^-2

Part b (3 points):​ Which 8-bit floating point number represents -21 (choose from A, B, C, D)?

A

Part c (3 points):​ Which 8-bit floating point number represents (choose from A, B, C, D)?32
29

D

Part d (6 points):​ Given the above information, figure out the following:

(2 points)​ Number of bits needed for exponent:

3

(2 points)​ Number of bits needed for fraction:

4

(2 points)​ Bias:

3

4

Problem 3 (30 points)

A byte-addressable, write-back cache of ​fixed total size​ and ​fixed cache line (a.k.a., block) size​ is

implemented as both a direct mapped cache and also as an N-way set-associative cache. In both

cases, we will assume the cache is initially empty.

First, consider the cache organized as a direct mapped cache. The following sequence of 11

accesses generates the hits/misses shown. Some miss/hit entries are intentionally left blank.

Address Read/

Write

Direct Mapped

(Hit/Miss)

0100001010 R

1100100111 R Miss

1110101000 R Miss

0011000101 R

0110111100 R

1010110101 R Miss

1100100000 R Miss

0100001111 R Hit

0101111111 W Miss

0110110100 R

0110100101 R Miss

Part a (4 points):​ How many cache lines does each set have in a direct mapped cache?

1

Part b (2 points):​ What is the cache line (a.k.a., block) size?

16 Bytes

Part c (2 points):​ What are the number of index bits for the direct mapped cache?

3

5

Yuhao Zhu

Yuhao Zhu
Hit because of this miss

Yuhao Zhu
* The hit must be because of the first access because only the first address has the same high order bits as the hit address.
* Comparing the hit address and the first address, we know that offset is at least 3 bits.
* From the last two misses we that the offset is at most 4 bits.
* The miss immediately before the hit and the second miss have the same first 7 bits. So there must be an access in-between that evicts the line brought in by the second miss.
* There also could not be a miss that evicts the line brought in by the first miss for the hit to be a hit.
* All these could only be possible if offset is 3, index is 3.�

Yuhao Zhu

Yuhao Zhu

Yuhao Zhu
Note high order bits are the same but still miss.

Now consider the cache organized as a N-way set-associative cache, with the same total size and

same cache line size as before. The total size of “overhead” for this N-way set associative cache is

112 bits. Assume that in this particular cache, overhead in ​each​ cache line includes tag bits and

10 additional bits for bookkeeping (e.g., the valid bit, modified bit, LRU bits) that do not affect

this problem. We have expanded the table to show the hit/misses for the same sequence of

accesses when the cache is organized as an N-way set-associative cache.

Address Read/

Write

Direct Mapped

(Hit/Miss)

N-way associative

(Miss/Hit)

0100001010 R Miss Miss

1100100111 R Miss Miss

1110101000 R Miss Miss

0011000101 R Miss Miss

0110111100 R Miss Miss

1010110101 R Miss Miss

1100100000 R Miss Hit

0100001111 R Hit Hit

0101111111 W Miss Miss

0110110100 R Miss Hit

0110100101 R Miss Miss

Part d (4 points):​ What is N?

2

Part e (4 points):​ What is the number of index bits for the N-Way set associative cache?

2

Part f (4 points):​ Is this a write-allocate cache?

No

Part g (10 points; 1 point per blank):​ Please complete the second table above by filling in

”Hit” or ”Miss” for each of the blank entries. “I Don’t Know” is accepted on a per blank basis.

6

Yuhao Zhu
* T bits for tag, I bits for set index; we have (10+T) * 2^I * N = 112
* Since the cache line size is the same as before, the offset must be 4, and so we have T + I = 10 - 4 = 6.
* 10<=10+T<=16. only 14 and 16 are divisible by 112. So T is either 4 or 6.
* If T is 6, then 2^I * N = 7, so I = 0 and N = 7. If T is 4 then 2^I * N = 8, so I = 2 and N = 2 or I = 1 and N = 4.
* Since the total size is fixed and the cache line size is fixed, the total number of cache lines 2^I * N must be 8, same as before.
* So I must be 2 and N must be 2.�

Problem 4 (30 points)

We wish to enhance the x86 ISA by adding a new instruction. The new instruction is called ​STI ​,
“Store Indirect”, and its format is:

STI Ra,Rb,Offset

The opcode of ​STI ​ is 1010, and its binary encoding is (2-Byte long):

Opcode​ <4-bit> Ra​ <3-bit> Rb​ <3-bit> Offset​ <6-bit>

STI ​ operates as follows: We compute a virtual address (call it ​A ​) by adding the sign-extended

Offset ​ to the contents of register ​Rb ​. The memory location specified by ​A ​ contains the virtual

address ​B ​. We wish to store the contents of register ​Ra ​ into the address specified by ​B ​.

The processor has a simple one-level virtual memory system. There is also a 2-entry TLB. You

are given the following information:

● Virtual Address Space: 64 KB

● Physical Memory Size: 4 KB

● PTE Size: 2 Bytes

● The format of a PTE is shown below. The MSB is the valid bit, and the lower several bits

are for the physical page number (PPN). Note that the exact number of bits for PPN is for

you to determine. The rest bits are always padded with 0.

Valid​ <1-bit> 0...0 Physical Page Number

● %eax ​: 0x8000

● %ebx ​: 0x401E

● Program Counter (​%eip ​): 0x3048

The TLB state before any instructions related to this problem are executed:

Valid Virtual Page Number

(VPN)

PTE

Valid Physical Page Number (PPN)

1 0x0C1 1 0x01A

1 0x182 1 0x024

7

Yuhao Zhu
0000 1100 0001

Yuhao Zhu
0001 1000 0010

Part a (2 points):​ In this particular TLB, the Valid bit in the first column and the Valid bit in

the third column are the same in both TLB entries. In general, is it possible that these two valid

bits have different values?

Yes

Part b (6 points):​ What is binary encoding for ​STI %eax,%ebx,0 ​? Assume that ​%eax ​ is

encoded as 0 and ​%ebx ​ is encoded as 1.

1010 000 001 000000

Part c (4 points):​ To process the ​STI ​ instruction, one must go through the Fetch, Decode, etc.

instruction cycle. What is the maximum number of physical addresses that can be accessed in

processing an ​STI ​ instruction?

Hints:

1. Instruction fetch is the necessary first step in processing any instruction

2. In the one-level virtual memory system, the page table lives in the physical memory

6

Part d (18 points): ​Now the processor executes ​STI %eax,%ebx,0 ​. It turned out that five

physical memory accesses were needed. The table below shows the Virtual Address (VA),

Physical Address (PA), Data, and whether or not there was a TLB hit for each of these five

physical memory accesses in the order they occurred. Some of the blanks are intentionally left

for you to fill in.

Virtual Address Physical Address Data TLB Hit?

0x3048 0x480 0xA040 Yes

N/A 0x660 0x8040 No

0x401E 0x81E 0x40FE No

N/A 0x66E 0x8040 No

0x40FE 0x1DE 0x8000 No

Complete the table and fill in the following three boxes. You can assume that no page faults

occurred.

8

Yuhao Zhu
This instruction accesses virtual memory three times: fetch instruction, load from address A, and store to address B. Each virtual memory access could at most lead to 2 physical memory accesses: one for accessing the PTE and the other for accessing the actual data.

Yuhao Zhu
Fetch Inst.

Yuhao Zhu
Get PTE for A

Yuhao Zhu
Load from A

Yuhao Zhu
Get PTE for B

Yuhao Zhu
Write to B

Yuhao Zhu
PC

Yuhao Zhu
%ebx (A)

Yuhao Zhu

Yuhao Zhu
%eax

Yuhao Zhu
B

Yuhao Zhu
0x488

Yuhao Zhu
0x800E

Hints:

1. What does the first TLB hit mean?

2. Recall how to use PTBR and VPN to access the page table.

3. Use the first and last accesses to figure out the page size first. Everything else will follow.

(3 points):​ What is the page size?

32 Bytes

(3 points):​ What is the total number of physical pages?

128

(3 points):​ What is the data in the page table base register (PTBR)?

0x260

(9 points; 1 point per blank):​ Please complete the table above. “I Don’t Know” is accepted

on a per blank basis.

9

Yuhao Zhu
* The first virtual memory access must be to fetch the instruction, so the first VA must be the PC, which is 0x3048.
* The first access is a TLB hit. Analyzing the VA and the two TLB entires, you would know that the page offset must be either 5 or 6.

0x0C1: 0000 1100 0001
0x182: 0001 1000 0010
0x3048: 0011 0000 0100 1000�

Problem 5 (15 points)

A programmer writes the following two C code segments. She wants to run them concurrently

on a multicore processor, called SC, using two different threads, each of which will run on a

different core.

Thread ​T1
a = X[0];

b = a + Y[0];

while(*flag == 0);

Y[0] += 1;

Thread ​T2
Y[0] = 1;

*flag = 1;

X[1] *= 2;

a = 0;

X ​, ​Y ​, and ​flag ​ have been allocated in main memory, while ​a ​ and ​b ​ are contained in the

processor registers. A read or write to any of these variables generates a single memory request.

The initial values of all memory locations and variables are 0. Assume each line of the C code

segment of each thread translates to a single machine instruction.

Part a (5 points):​ Both threads have a variable ​a ​. Are they referring to the same variable?

No

Part b (5 points):​ What are the possible final value(s) of ​Y[0] ​ after both threads finish

execution? Consider all the possible thread interleavings.

2

Part c (5 points):​ What are the possible final value(s) of ​b ​ after both threads finish execution?

Consider all the possible thread interleavings.

0 and 1

10

Yuhao Zhu

Yuhao Zhu
Infinite loop until flag becomes 1, at which point Y[0] must be 1. So in the end Y[0] could only be 2.

