
CSC 252: Computer Organization 
           Spring 2019: Lecture 3 

Instructor: Yuhao Zhu


Department of Computer Science

University of Rochester

Action Items: 
• Trivia 1 is due tomorrow, midnight 
• Main assignment due Feb. 1, midnight
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Announcement
• Programming Assignment 1 is out


• Details: http://cs.rochester.edu/courses/252/spring2019/
labs/assignment1.html 

• Due on Feb 1, 11:59 PM 
• Trivia due Friday, 1/25, 11:59 PM 
• You have 3 slip days (not for trivia)

Trivia

Due

Today

http://cs.rochester.edu/courses/252/spring2019/labs/assignment1.html
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Announcement
• TA review sessions schedule is posted
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Announcement
• Check the course website before asking


• http://www.cs.rochester.edu/courses/252/spring2019/
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Announcement
• Check the course website before asking


• http://www.cs.rochester.edu/courses/252/spring2019/
• Direct ALL questions regarding assignments to the TAs


• They have done them. They have debugged them. They know 
them inside out. 

• If one doesn’t know, ask another. 
• If all don’t know, ask me.
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Previously in 252…
• Computers are built to understand bits: 0 and 1


• 0: low (no) voltage; 1: high voltage 
• Integer representations (Fixed-point really)
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Encoding Negative Numbers
• Two’s Complement
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Two-Complement Implications
• Only 1 zero

• There is (still) a bit that represents sign!

• Unsigned arithmetic still works

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111
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Two-Complement Implications
• Only 1 zero

• There is (still) a bit that represents sign!

• Unsigned arithmetic still works

   010 
+) 101

   111

    2 
+) -3

    -1

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

• 3 + 1 becomes -4 (called overflow. More on it later.)
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Data Types (in C)
• Suppose you want to define a variable that represents a 

person’s age. What assumptions can you make about this 
variable’s numerical value?
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Data Types (in C)
• Suppose you want to define a variable that represents a 

person’s age. What assumptions can you make about this 
variable’s numerical value?

• Integer
• Non-negative
• Between 0 and 255 (8 bits)

• Define a data type that captures all these attributes: 
unsigned char in C

• Internally, an unsigned char variable is represented as a 8-bit, 
non-negative, binary number
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Data Types (in C)
• What if you want to define a variable that could take 

negative values?
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Data Types (in C)
• What if you want to define a variable that could take 

negative values?
• That’s what signed data type (e.g., int, short, etc.) is for

• How are int values internally represented?
• Theoretically could be either signed-magnitude or two’s complement
• The C language designers chose two’s complement
• This is where math meets computer science
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Data Types (in C)

C	  Data	  Type 32-‐bit 64-‐bit

(unsigned) char 1 1

(unsigned) short 2 2

(unsigned) int 4 4

(unsigned) long 4 8
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Data Types (in C)

C	  Data	  Type 32-‐bit 64-‐bit

(unsigned) char 1 1

(unsigned) short 2 2

(unsigned) int 4 4

(unsigned) long 4 8

! W"
! 8" 16" 32" 64"

UMax" 255! 65,535! 4,294,967,295! 18,446,744,073,709,551,615!
TMax" 127! 32,767! 2,147,483,647! 9,223,372,036,854,775,807!
TMin" -128! -32,768! -2,147,483,648! -9,223,372,036,854,775,808!

!
!
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Data Types (in C)

C	  Data	  Type 32-‐bit 64-‐bit

(unsigned) char 1 1

(unsigned) short 2 2

(unsigned) int 4 4

(unsigned) long 4 8

! W"
! 8" 16" 32" 64"

UMax" 255! 65,535! 4,294,967,295! 18,446,744,073,709,551,615!
TMax" 127! 32,767! 2,147,483,647! 9,223,372,036,854,775,807!
TMin" -128! -32,768! -2,147,483,648! -9,223,372,036,854,775,808!

!
!

• C Language

•#include <limits.h>
•Declares constants, e.g.,


•ULONG_MAX
•LONG_MAX
•LONG_MIN

•Values platform specific
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Today: Representing Information in Binary

• Why Binary (bits)?

• Bit-level manipulations

• Integers


• Representation: unsigned and signed

• Conversion, casting

• Expanding, truncating

• Addition, negation, multiplication, shifting

• Summary


• Representations in memory, pointers, strings



Carnegie Mellon

13

One Bit Sequence, Two Interpretations
• A sequence of bits can be interpreted as either a signed 

integer or an unsigned integer

Signed
0
1
2
3
-4
-3
-2
-1

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111
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Signed vs. Unsigned Conversion in C
• What happens when we convert 

between signed and unsigned numbers?

• Casting (In C terminology)


• Explicit casting between signed & unsigned	  

• Implicit casting

• e.g., assignments, function calls

tx = ux;	  
uy = ty;

int tx, ty = -4; 
unsigned ux = 7, uy; 
tx = (int) ux; // U2T 
uy = (unsigned) ty; // T2U
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• Mappings between unsigned and two’s complement 
numbers: Keep bit representations and reinterpret

15

T2U
T2B B2U

Signed Unsigned

Maintain Same Bit Pattern

tx uxX

Mapping Between Signed & Unsigned

U2T
U2B B2T

SignedUnsigned

Maintain Same Bit Pattern

ux txX
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Mapping Signed ↔ Unsigned
Signed

0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111
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Mapping Signed ↔ Unsigned
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Mapping Signed ↔ Unsigned
Signed

0
1
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0
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5
6
7
8
9
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12
13
14
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0000
0001
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1110
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U2T

T2U
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Mapping Signed ↔ Unsigned
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Mapping Signed ↔ Unsigned
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0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax  + 1

2’s Complement 
Range

Unsigned

Range

Conversion Visualized
• Signed → Unsigned


• Ordering Inversion 
• Negative → Big Positive
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Today: Representing Information in Binary

• Why Binary (bits)?

• Bit-level manipulations

• Integers


• Representation: unsigned and signed

• Conversion, casting

• Expanding, truncating

• Addition, negation, multiplication, shifting

• Summary


• Representations in memory, pointers, strings
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The Problem
  short int x =  15213; 
  int      ix = (int) x;  
  short int y = -15213; 
  int      iy = (int) y;

C	  Data	  Type 64-‐bit

char 1

short 2

int 4

long 8
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The Problem
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  int      ix = (int) x;  
  short int y = -15213; 
  int      iy = (int) y;

C	  Data	  Type 64-‐bit

char 1

short 2

int 4

long 8

• Converting from smaller to larger integer data type

• Should always be able to preserve the value, but how?
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The Problem
  short int x =  15213; 
  int      ix = (int) x;  
  short int y = -15213; 
  int      iy = (int) y;

C	  Data	  Type 64-‐bit

char 1

short 2

int 4

long 8

Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

• Converting from smaller to larger integer data type

• Should always be able to preserve the value, but how?
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Signed Extension
• Task:


• Given w-bit signed integer x 
• Convert it to (w+k)-bit integer with same value
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Signed Extension
• Task:


• Given w-bit signed integer x 
• Convert it to (w+k)-bit integer with same value

• Rule:

• Make k copies of sign bit: 
• X ′ =  xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB
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Signed Extension
• Task:


• Given w-bit signed integer x 
• Convert it to (w+k)-bit integer with same value

• Rule:

• Make k copies of sign bit: 
• X ′ =  xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

• • •X 

X ʹ′ • • • • • •

• • •

w

wk
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Another Problem

Decimal Hex Binary
x 47981 BB 6D 10111011 01101101
ux 47981 00 00 BB 6D 00000000 00000000 10111011 01101101

  unsigned short x = 47981; 
  unsigned int  ux = x; 
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Unsigned (Zero) Extension
• Task:


• Given w-bit unsigned integer x 
• Convert it to (w+k)-bit integer with same value 

• Rule:

• Simply pad zeros: 
• X ′ =  0 ,…, 0 , xw–1 , xw–2 ,…, x0

k copies of 0

• • •X 

X ʹ′ • • • 0000 • • •

• • •

w

wk
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Yet Another Problem

  int    x =  53191; 
  short sx = (short) x;

Decimal Hex Binary
x 53191 00 00 CF C7 00000000 00000000 11001111 11000111
sx -12345 CF C7 11001111 11000111
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Yet Another Problem

  int    x =  53191; 
  short sx = (short) x;

Decimal Hex Binary
x 53191 00 00 CF C7 00000000 00000000 11001111 11000111
sx -12345 CF C7 11001111 11000111

• Truncating (e.g., int to short)

• Can’t always preserve the numerical value 
• C’s implementation: leading bits are truncated, results reinterpreted
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Yet Another Problem

  int    x =  53191; 
  short sx = (short) x;

Decimal Hex Binary
x 53191 00 00 CF C7 00000000 00000000 11001111 11000111
sx -12345 CF C7 11001111 11000111

Questions?

• Truncating (e.g., int to short)

• Can’t always preserve the numerical value 
• C’s implementation: leading bits are truncated, results reinterpreted
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Announcement
• Check the course website before asking


• http://www.cs.rochester.edu/courses/252/spring2019/ 
• Direct ALL questions regarding assignments to the TAs


• They have done them. They have debugged them. They know 
them inside out. 

• If one doesn’t know, ask another. 
• If all don’t know, ask me.
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Today: Representing Information in Binary

• Why Binary (bits)?

• Bit-level manipulations

• Integers


• Representation: unsigned and signed

• Conversion, casting

• Expanding, truncating

• Addition, negation, multiplication, shifting

• Summary


• Representations in memory, pointers, strings
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Unsigned Addition
Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111



Carnegie Mellon

26

Unsigned Addition
• Similar to Decimal Addition Unsigned Binary

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111



Carnegie Mellon

26

Unsigned Addition
• Similar to Decimal Addition
• Suppose we have a new data type that is 

3-bit wide (c.f., short has 16 bits)

   010 
+) 101

   111

    2 
+)  5

     7

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111Normal 

Case
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Unsigned Addition
• Similar to Decimal Addition
• Suppose we have a new data type that is 
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Unsigned Addition
• Similar to Decimal Addition
• Suppose we have a new data type that is 

3-bit wide (c.f., short has 16 bits)
•Might overflow: result can’t be 

represented within the size of the data type

   010 
+) 101

   111

    2 
+)  5

     7

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111Normal 

Case

Overflow 
Case

   110 
+) 101

  1011

    6 
+)  5

    11 True Sum
   011      3 Sum with same bits
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Unsigned Addition in C
• • •
• • •

u
v+

• • •u + v
• • •

True	  Sum:	  w+1	  bits

Operands:	  w	  bits

Discard	  Carry:	  w	  bits UAddw(u , v)
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Two’s Complement Addition
Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111
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Two’s Complement Addition
• Has identical bit-level behavior as 

unsigned addition (a big advantage 
over sign-magnitude)
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-2 110
-1 111
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Two’s Complement Addition
• Has identical bit-level behavior as 

unsigned addition (a big advantage 
over sign-magnitude)
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Two’s Complement Addition
• Has identical bit-level behavior as 

unsigned addition (a big advantage 
over sign-magnitude)

• Overflow can also occur

   010 
+) 101

   111

    2 
+) -3

    -1

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Normal 
Case

Overflow 
Case

   110 
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  1011

   -2 
+) -3

    -5
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Two’s Complement Addition
• Has identical bit-level behavior as 

unsigned addition (a big advantage 
over sign-magnitude)
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Two’s Complement Addition
• Has identical bit-level behavior as 

unsigned addition (a big advantage 
over sign-magnitude)

• Overflow can also occur

   010 
+) 101

   111

    2 
+) -3

    -1

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Normal 
Case

Overflow 
Case

   110 
+) 101

  1011

   -2 
+) -3

    -5

Max

   011 3

   011 
+) 001

  0100

    3 
+)  1

     4
   100 -4

Negative Overflow Positive Overflow

Min
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Two’s Complement Addition in C
• • •
• • •

u
v+

• • •u + v
• • •

True	  Sum:	  w+1	  bits

Operands:	  w	  bits

Discard	  Carry:	  w	  bits TAddw(u , v)
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Is This Signed Addition an Overflow?

   111 
+) 110

  1101

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111
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Is This Signed Addition an Overflow?

   111 
+) 110

  1101

   -1 
+) -2

    -3

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

• This is not an overflow by definition
• Because the actual result can be represented by 

the bit width of the datatype (3 bits here)

Truncate
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Inverter (NOT Gate)
+1.2V

+0.0V
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Inverter (NOT Gate)

In Out

0 1
1 0

+1.2V

+0.0V

+1.2V

+0.0V
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Inverter (NOT Gate)

In Out

0 1
1 0

+1.2V

+0.0V

+1.2V

+0.0V



Carnegie Mellon

32

NOR Gate (NOT + OR)

A B C

0 0 1
0 1 0

1 0 0

1 1 0
Note: Serial structure on top, parallel on bottom.
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Basic Logic Gates

A | B ~(A | B)

A & B ~(A & B)
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Basic Logic Gates

A | B ~(A | B)

A & B ~(A & B)

The little 
circle 
means NOT
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Add two bits and carry-in, 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t

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

S = (~A & ~B & Cin)
        | (~A & B & ~Cin)
        | (A & ~B & ~Cin)

        | (A &  B &  Cin)

Cou = (~A & B & Cin)
        | (A & ~B & Cin)
        | (A & B & ~Cin)
        | (A &  B &  Cin)

Truth Table
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Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)
        | (A & ~B & Cin)
        | (A & B & ~Cin)
        | (A &  B &  Cin)

Outputs depend only on current inputs (i.e., not the past 
inputs), continuously (with some delay)

Combinational Logic
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Four-bit Adder
• Ripple-carry Adder


• Simple, but performance linear to bit width
• Carry look-ahead adder (CLA)


• Generate all carriers simultaneously
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A B C F
0 0 0 0
0 0 1 0
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F = (A & B & C)
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Logic Design
• Design digital components from basic logic gates
• Key idea: use the truth table!
• Example: how to design a piece of circuit that does 

majority vote?

A B C F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

F = (A & B & C)

        | (A & ~B & C)

        | (A & B & ~C)

        | (~A & B & C)

F = (A & B)

        | (A & C)

        | (B & C)
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Logic Design
• Design digital components from basic logic gates
• Key idea: use the truth table!
• Example: how to design a piece of circuit that does 

majority vote?

A B C F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
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ECE112 Logic Design
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Logic Design
• Design digital components from basic logic gates
• Key idea: use the truth table!
• Example: how to design a piece of circuit that does 

majority vote?

Questions?

A B C F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

ECE112 Logic Design
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Multiplication
• Goal: Computing Product of w-bit numbers x, y

–2w	  –1

0

2w	  –1–1OMax

OMin
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Multiplication
• Goal: Computing Product of w-bit numbers x, y
• Exact results can be bigger than w bits

• Up to 2w bits (both signed and unsigned)

–2w	  –1

0

2w	  –1–1OMax

OMin

Original Number (w bits) Product

–22w–2	  +	  2w–1

22w-‐2

0

OMin2

OMin * OMax

PMax

PMin

(2w bits)
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Unsigned Multiplication in C

• Standard Multiplication Function

• Ignores	  high	  order	  w	  bits	  

• Implements Modular Arithmetic

UMultw(u	  ,	  v)	   =	   u	  	  	  ·∙	  v	  	  mod	  2w

• • •
• • •

u
v*

• • •u · v
• • •

True	  Product:	  2*w	  	  bits

Operands:	  w	  bits

Discard	  w	  bits:	  w	  bits

• • •
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Signed Multiplication in C

• Standard Multiplication Function

• Ignores	  high	  order	  w	  bits	  
• Some	  of	  which	  are	  different	  for	  signed	  vs.	  unsigned	  multiplication	  
• Lower	  bits	  are	  the	  same

• • •
• • •

u
v*

• • •u · v
• • •

True	  Product:	  2*w	  	  bits

Operands:	  w	  bits

Discard	  w	  bits:	  w	  bits

• • •
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• u << k gives u * 2k 
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• u << k gives u * 2k 

• 0012 << 2 = 1002 (1 * 22 = 4)

• Both signed and unsigned
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Power-of-2 Multiply with Shift
• Operation


• u << k gives u * 2k 

• 0012 << 2 = 1002 (1 * 22 = 4)

• Both signed and unsigned

True Product: w+k  bits

Discard k bits (if overflow)

u · 2k
k

•	  •	  • 0 0 0•••

0 0 0••••••

•	  •	  •u
w
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Power-of-2 Multiply with Shift
• Operation


• u << k gives u * 2k 

• 0012 << 2 = 1002 (1 * 22 = 4)

• Both signed and unsigned

True Product: w+k  bits

Discard k bits (if overflow)

u · 2k
k

•	  •	  • 0 0 0•••

0 0 0••••••

•	  •	  •u
w

•Most machines shift and add faster than multiply

• Compiler generates this code automatically 
• u << 3 == u * 8	  
• (u << 5) – (u << 3) == u * 24
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• Uses logical shift
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• Implement power-of-2 divide with shift


• u >> k gives  ⎣u / 2k⎦(⎣2.34⎦= 2) 

• Uses logical shift
u

k

u / 2k 0 0 00True Product: w+k  bits

Binary Point

•



Carnegie Mellon

42

Unsigned Power-of-2 Divide with Shift
• Implement power-of-2 divide with shift


• u >> k gives  ⎣u / 2k⎦(⎣2.34⎦= 2) 

• Uses logical shift
u

k

u / 2k 0 0 00

⎣ u / 2k ⎦ 0 0 00

True Product: w+k  bits

Discard k bits 
after binary point Binary Point

•



Carnegie Mellon

42

Unsigned Power-of-2 Divide with Shift
• Implement power-of-2 divide with shift


• u >> k gives  ⎣u / 2k⎦(⎣2.34⎦= 2) 

• Uses logical shift
u

k

u / 2k 0 0 00

⎣ u / 2k ⎦ 0 0 00

True Product: w+k  bits

Discard k bits 
after binary point Binary Point

•

• 23410 >> 2 = 2.3410, truncated result is 2 (⎣2.34⎦= 2)


• 11012 >> 2 = 00112 (true result: 11.012.⎣13 / 4⎦= 3)
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Today: Representing Information in Binary

• Why Binary (bits)?

• Bit-level manipulations

• Integers


• Representation: unsigned and signed

• Conversion, casting

• Expanding, truncating

• Addition, negation, multiplication, shifting

• Summary


• Representations in memory, pointers, strings
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Byte-Oriented Memory Organization

• Programs refer to data by address

• Conceptually, envision it as a very large array of bytes: byte-addressable 

• In reality, it’s not, but can think of it that way 
• An address is like an index into that array 

• and, a pointer variable stores an address

• • •
00
••
•0

FF
••
•F



Carnegie Mellon

45

Machine Words

• Any given computer has a “Word Size”

• Nominal size of a memory address 

• Until recently, most machines used 32 bits (4 bytes) as word size 
• Limits addresses to 4GB (232 bytes) 

• Increasingly, machines have 64-bit word size 
• Potentially, could have 18 EB (exabytes) of addressable memory 
• That’s 18.4 X 1018

• • •
00
••
•0

FF
••
•F
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Example Data Representations (in Bytes)

C	  Data	  Type 32-‐bit 64-‐bit

char 1 1

short 2 2

int 4 4

long 4 8

float 4 4

double 8 8

pointer 4 8

Word Size 4 8
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char 1 1

short 2 2
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Word Size 4 8
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Word-Oriented Memory Organization
• Addresses Specify Byte 

Locations

• Address of first byte in word 
• Addresses of successive words 

differ by 4 (32-bit) or 8 (64-bit)

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit
Variables Bytes Addr.

0012
0013
0014
0015

64-bit
Variables

Addr 
=
??

Addr 
=
??

Addr 
=
??

Addr 
=
??

Addr 
=
??

Addr 
=
??

0000

0004

0008

0012

0000

0008
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• Address given by &x is 0x100

• Conventions
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• Variable x has 4-byte value of 0x01234567 
• Address given by &x is 0x100

• Conventions

• Big Endian: Sun, PPC Mac, IBM z, Internet 

• Most significant byte has lowest address (MSB first) 
• Little Endian: x86, ARM 

• Least significant byte has lowest address (LSB first)

0x100 0x101 0x102 0x103

01 23 45 67

Big Endian
01 23 45 67
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Representing Integers
Hex:     00003B6D

6D
3B
00
00

Little-E

3B
6D

00
00

Big-E

int A = 15213;

93
C4
FF
FF

Little-E

C4
93

FF
FF

Big-E

int B = -15213;

Hex:     FFFFC493

Ad
dr

es
s I

nc
re

as
e
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Announcement
• Check the course website before asking


• http://www.cs.rochester.edu/courses/252/spring2019/ 
• Direct ALL questions regarding assignments to the TAs


• They have done them. They have debugged them. They know 
them inside out. 

• If one doesn’t know, ask another. 
• If all don’t know, ask me.


