
CSC 252: Computer Organization 
 Spring 2019: Lecture 3 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Action Items:
• Trivia 1 is due tomorrow, midnight
• Main assignment due Feb. 1, midnight

Carnegie Mellon

2

Announcement
• Programming Assignment 1 is out

• Details: http://cs.rochester.edu/courses/252/spring2019/
labs/assignment1.html

• Due on Feb 1, 11:59 PM
• Trivia due Friday, 1/25, 11:59 PM
• You have 3 slip days (not for trivia)

Trivia

Due

Today

http://cs.rochester.edu/courses/252/spring2019/labs/assignment1.html

Carnegie Mellon

3

Announcement
• TA review sessions schedule is posted

Carnegie Mellon

4

Announcement
• Check the course website before asking

• http://www.cs.rochester.edu/courses/252/spring2019/

Carnegie Mellon

4

Announcement
• Check the course website before asking

• http://www.cs.rochester.edu/courses/252/spring2019/
• Direct ALL questions regarding assignments to the TAs

• They have done them. They have debugged them. They know
them inside out.

• If one doesn’t know, ask another.
• If all don’t know, ask me.

Carnegie Mellon

5

Previously in 252…
• Computers are built to understand bits: 0 and 1

• 0: low (no) voltage; 1: high voltage
• Integer representations (Fixed-point really)

Carnegie Mellon

Store/Access Data

6

row select

bi
tli

ne

_b
itl

in
e1 0

1

1

1 0

Gate = 0

Gate = 1

NMOS

Carnegie Mellon

Store/Access Data

6

row select

bi
tli

ne

_b
itl

in
e1 0

1

1

1 0

Gate = 0

Gate = 1

NMOS

Carnegie Mellon

7

Encoding Negative Numbers
• Two’s Complement

Carnegie Mellon

7

Encoding Negative Numbers
• Two’s Complement

0 1 2 3 4 5 6 7

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Carnegie Mellon

7

Encoding Negative Numbers
• Two’s Complement

0 1 2 3-1-2-3-4

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Carnegie Mellon

7

Encoding Negative Numbers
• Two’s Complement

0 1 2 3-1-2-3-4

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Signed
0
1
2
3
-4
-3
-2
-1

Carnegie Mellon

7

Encoding Negative Numbers
• Two’s Complement

0 1 2 3-1-2-3-4

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Signed
0
1
2
3
-4
-3
-2
-1

b2b1b0

Weights in
Unsigned 202122

Carnegie Mellon

7

Encoding Negative Numbers
• Two’s Complement

0 1 2 3-1-2-3-4

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Signed
0
1
2
3
-4
-3
-2
-1

b2b1b0

Weights in
Unsigned 202122

Weights in
Signed 2021-22

Carnegie Mellon

7

Encoding Negative Numbers
• Two’s Complement

0 1 2 3-1-2-3-4

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Signed
0
1
2
3
-4
-3
-2
-11012 = 1*20 + 0*21 + (-1*22) = -310

b2b1b0

Weights in
Unsigned 202122

Weights in
Signed 2021-22

Carnegie Mellon

7

Encoding Negative Numbers
• Two’s Complement

0 1 2 3-1-2-3-4

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Signed
0
1
2
3
-4
-3
-2
-11012 = 1*20 + 0*21 + (-1*22) = -310

b2b1b0

Weights in
Unsigned 202122

Weights in
Signed 2021-22

Carnegie Mellon

7

Encoding Negative Numbers
• Two’s Complement

0 1 2 3-1-2-3-4

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Signed
0
1
2
3
-4
-3
-2
-11012 = 1*20 + 0*21 + (-1*22) = -310

b2b1b0

Weights in
Unsigned 202122

Weights in
Signed 2021-22

Carnegie Mellon

7

Encoding Negative Numbers
• Two’s Complement

0 1 2 3-1-2-3-4

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Signed
0
1
2
3
-4
-3
-2
-11012 = 1*20 + 0*21 + (-1*22) = -310

b2b1b0

Weights in
Unsigned 202122

Weights in
Signed 2021-22

Carnegie Mellon

8

Two-Complement Implications
• Only 1 zero

• There is (still) a bit that represents sign!

• Unsigned arithmetic still works

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Carnegie Mellon

8

Two-Complement Implications
• Only 1 zero

• There is (still) a bit that represents sign!

• Unsigned arithmetic still works

 010
+) 101

 111

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Carnegie Mellon

8

Two-Complement Implications
• Only 1 zero

• There is (still) a bit that represents sign!

• Unsigned arithmetic still works

 010
+) 101

 111

 2
+) -3

 -1

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Carnegie Mellon

8

Two-Complement Implications
• Only 1 zero

• There is (still) a bit that represents sign!

• Unsigned arithmetic still works

 010
+) 101

 111

 2
+) -3

 -1

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

• 3 + 1 becomes -4 (called overflow. More on it later.)

Carnegie Mellon

9

Data Types (in C)
• Suppose you want to define a variable that represents a

person’s age. What assumptions can you make about this
variable’s numerical value?

Carnegie Mellon

9

Data Types (in C)
• Suppose you want to define a variable that represents a

person’s age. What assumptions can you make about this
variable’s numerical value?

• Integer

Carnegie Mellon

9

Data Types (in C)
• Suppose you want to define a variable that represents a

person’s age. What assumptions can you make about this
variable’s numerical value?

• Integer
• Non-negative

Carnegie Mellon

9

Data Types (in C)
• Suppose you want to define a variable that represents a

person’s age. What assumptions can you make about this
variable’s numerical value?

• Integer
• Non-negative
• Between 0 and 255 (8 bits)

Carnegie Mellon

9

Data Types (in C)
• Suppose you want to define a variable that represents a

person’s age. What assumptions can you make about this
variable’s numerical value?

• Integer
• Non-negative
• Between 0 and 255 (8 bits)

• Define a data type that captures all these attributes:
unsigned char in C

Carnegie Mellon

9

Data Types (in C)
• Suppose you want to define a variable that represents a

person’s age. What assumptions can you make about this
variable’s numerical value?

• Integer
• Non-negative
• Between 0 and 255 (8 bits)

• Define a data type that captures all these attributes:
unsigned char in C

• Internally, an unsigned char variable is represented as a 8-bit,
non-negative, binary number

Carnegie Mellon

10

Data Types (in C)
• What if you want to define a variable that could take

negative values?

Carnegie Mellon

10

Data Types (in C)
• What if you want to define a variable that could take

negative values?
• That’s what signed data type (e.g., int, short, etc.) is for

Carnegie Mellon

10

Data Types (in C)
• What if you want to define a variable that could take

negative values?
• That’s what signed data type (e.g., int, short, etc.) is for

• How are int values internally represented?

Carnegie Mellon

10

Data Types (in C)
• What if you want to define a variable that could take

negative values?
• That’s what signed data type (e.g., int, short, etc.) is for

• How are int values internally represented?
• Theoretically could be either signed-magnitude or two’s complement

Carnegie Mellon

10

Data Types (in C)
• What if you want to define a variable that could take

negative values?
• That’s what signed data type (e.g., int, short, etc.) is for

• How are int values internally represented?
• Theoretically could be either signed-magnitude or two’s complement
• The C language designers chose two’s complement

Carnegie Mellon

10

Data Types (in C)
• What if you want to define a variable that could take

negative values?
• That’s what signed data type (e.g., int, short, etc.) is for

• How are int values internally represented?
• Theoretically could be either signed-magnitude or two’s complement
• The C language designers chose two’s complement
• This is where math meets computer science

Carnegie Mellon

11

Data Types (in C)

C	 Data	 Type 32-‐bit 64-‐bit

(unsigned) char 1 1

(unsigned) short 2 2

(unsigned) int 4 4

(unsigned) long 4 8

Carnegie Mellon

11

Data Types (in C)

C	 Data	 Type 32-‐bit 64-‐bit

(unsigned) char 1 1

(unsigned) short 2 2

(unsigned) int 4 4

(unsigned) long 4 8

! W"
! 8" 16" 32" 64"

UMax" 255! 65,535! 4,294,967,295! 18,446,744,073,709,551,615!
TMax" 127! 32,767! 2,147,483,647! 9,223,372,036,854,775,807!
TMin" -128! -32,768! -2,147,483,648! -9,223,372,036,854,775,808!

!
!

Carnegie Mellon

11

Data Types (in C)

C	 Data	 Type 32-‐bit 64-‐bit

(unsigned) char 1 1

(unsigned) short 2 2

(unsigned) int 4 4

(unsigned) long 4 8

! W"
! 8" 16" 32" 64"

UMax" 255! 65,535! 4,294,967,295! 18,446,744,073,709,551,615!
TMax" 127! 32,767! 2,147,483,647! 9,223,372,036,854,775,807!
TMin" -128! -32,768! -2,147,483,648! -9,223,372,036,854,775,808!

!
!

• C Language

•#include <limits.h>
•Declares constants, e.g.,

•ULONG_MAX
•LONG_MAX
•LONG_MIN

•Values platform specific

Carnegie Mellon

12

Today: Representing Information in Binary

• Why Binary (bits)?

• Bit-level manipulations

• Integers

• Representation: unsigned and signed

• Conversion, casting

• Expanding, truncating

• Addition, negation, multiplication, shifting

• Summary

• Representations in memory, pointers, strings

Carnegie Mellon

13

One Bit Sequence, Two Interpretations
• A sequence of bits can be interpreted as either a signed

integer or an unsigned integer

Signed
0
1
2
3
-4
-3
-2
-1

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Carnegie Mellon

14

Signed vs. Unsigned Conversion in C
• What happens when we convert

between signed and unsigned numbers?

• Casting (In C terminology)

• Explicit casting between signed & unsigned	

• Implicit casting

• e.g., assignments, function calls

tx = ux;	
uy = ty;

int tx, ty = -4;
unsigned ux = 7, uy;
tx = (int) ux; // U2T
uy = (unsigned) ty; // T2U

Carnegie Mellon

14

Signed vs. Unsigned Conversion in C
• What happens when we convert

between signed and unsigned numbers?

• Casting (In C terminology)

• Explicit casting between signed & unsigned	

• Implicit casting

• e.g., assignments, function calls

tx = ux;	
uy = ty;

int tx, ty = -4;
unsigned ux = 7, uy;
tx = (int) ux; // U2T
uy = (unsigned) ty; // T2U

Signed
0
1
2
3
-4
-3
-2
-1

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Carnegie Mellon

• Mappings between unsigned and two’s complement
numbers: Keep bit representations and reinterpret

15

T2U
T2B B2U

Signed Unsigned

Maintain Same Bit Pattern

tx uxX

Mapping Between Signed & Unsigned

U2T
U2B B2T

SignedUnsigned

Maintain Same Bit Pattern

ux txX

Carnegie Mellon

16

Mapping Signed ↔ Unsigned
Signed

0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Carnegie Mellon

16

Mapping Signed ↔ Unsigned
Signed

0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

T2U

Carnegie Mellon

16

Mapping Signed ↔ Unsigned
Signed

0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

U2T

T2U

Carnegie Mellon

16

Mapping Signed ↔ Unsigned
Signed

0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

=

Carnegie Mellon

16

Mapping Signed ↔ Unsigned
Signed

0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

=

+/-‐	 16

Carnegie Mellon

16

Mapping Signed ↔ Unsigned
Signed

0
1
2
3
4
5
6
7
-8
-7
-6
-5
-4
-3
-2
-1

Unsigned
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

Bits
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

=

+/-‐	 16

Carnegie Mellon

17

0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax + 1

2’s Complement
Range

Unsigned

Range

Conversion Visualized
• Signed → Unsigned

• Ordering Inversion
• Negative → Big Positive

Carnegie Mellon

17

0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax + 1

2’s Complement
Range

Unsigned

Range

Conversion Visualized
• Signed → Unsigned

• Ordering Inversion
• Negative → Big Positive

Carnegie Mellon

17

0

TMax

TMin

–1
–2

0

UMax
UMax – 1

TMax
TMax + 1

2’s Complement
Range

Unsigned

Range

Conversion Visualized
• Signed → Unsigned

• Ordering Inversion
• Negative → Big Positive

Carnegie Mellon

18

Today: Representing Information in Binary

• Why Binary (bits)?

• Bit-level manipulations

• Integers

• Representation: unsigned and signed

• Conversion, casting

• Expanding, truncating

• Addition, negation, multiplication, shifting

• Summary

• Representations in memory, pointers, strings

Carnegie Mellon

19

The Problem
 short int x = 15213;
 int ix = (int) x;
 short int y = -15213;
 int iy = (int) y;

C	 Data	 Type 64-‐bit

char 1

short 2

int 4

long 8

Carnegie Mellon

19

The Problem
 short int x = 15213;
 int ix = (int) x;
 short int y = -15213;
 int iy = (int) y;

C	 Data	 Type 64-‐bit

char 1

short 2

int 4

long 8

• Converting from smaller to larger integer data type

• Should always be able to preserve the value, but how?

Carnegie Mellon

19

The Problem
 short int x = 15213;
 int ix = (int) x;
 short int y = -15213;
 int iy = (int) y;

C	 Data	 Type 64-‐bit

char 1

short 2

int 4

long 8

Decimal Hex Binary
x 15213 3B 6D 00111011 01101101
ix 15213 00 00 3B 6D 00000000 00000000 00111011 01101101
y -15213 C4 93 11000100 10010011
iy -15213 FF FF C4 93 11111111 11111111 11000100 10010011

• Converting from smaller to larger integer data type

• Should always be able to preserve the value, but how?

Carnegie Mellon

20

Signed Extension
• Task:

• Given w-bit signed integer x
• Convert it to (w+k)-bit integer with same value

Carnegie Mellon

20

Signed Extension
• Task:

• Given w-bit signed integer x
• Convert it to (w+k)-bit integer with same value

• Rule:

• Make k copies of sign bit:
• X ′ = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

Carnegie Mellon

20

Signed Extension
• Task:

• Given w-bit signed integer x
• Convert it to (w+k)-bit integer with same value

• Rule:

• Make k copies of sign bit:
• X ′ = xw–1 ,…, xw–1 , xw–1 , xw–2 ,…, x0

k copies of MSB

• • •X

X ʹ′ • • • • • •

• • •

w

wk

Carnegie Mellon

21

Another Problem

Decimal Hex Binary
x 47981 BB 6D 10111011 01101101
ux 47981 00 00 BB 6D 00000000 00000000 10111011 01101101

 unsigned short x = 47981;
 unsigned int ux = x;

Carnegie Mellon

22

Unsigned (Zero) Extension
• Task:

• Given w-bit unsigned integer x
• Convert it to (w+k)-bit integer with same value

• Rule:

• Simply pad zeros:
• X ′ = 0 ,…, 0 , xw–1 , xw–2 ,…, x0

k copies of 0

• • •X

X ʹ′ • • • 0000 • • •

• • •

w

wk

Carnegie Mellon

23

Yet Another Problem

 int x = 53191;
 short sx = (short) x;

Decimal Hex Binary
x 53191 00 00 CF C7 00000000 00000000 11001111 11000111
sx -12345 CF C7 11001111 11000111

Carnegie Mellon

23

Yet Another Problem

 int x = 53191;
 short sx = (short) x;

Decimal Hex Binary
x 53191 00 00 CF C7 00000000 00000000 11001111 11000111
sx -12345 CF C7 11001111 11000111

• Truncating (e.g., int to short)

• Can’t always preserve the numerical value
• C’s implementation: leading bits are truncated, results reinterpreted

Carnegie Mellon

23

Yet Another Problem

 int x = 53191;
 short sx = (short) x;

Decimal Hex Binary
x 53191 00 00 CF C7 00000000 00000000 11001111 11000111
sx -12345 CF C7 11001111 11000111

Questions?

• Truncating (e.g., int to short)

• Can’t always preserve the numerical value
• C’s implementation: leading bits are truncated, results reinterpreted

Carnegie Mellon

24

Announcement
• Check the course website before asking

• http://www.cs.rochester.edu/courses/252/spring2019/
• Direct ALL questions regarding assignments to the TAs

• They have done them. They have debugged them. They know
them inside out.

• If one doesn’t know, ask another.
• If all don’t know, ask me.

Carnegie Mellon

25

Today: Representing Information in Binary

• Why Binary (bits)?

• Bit-level manipulations

• Integers

• Representation: unsigned and signed

• Conversion, casting

• Expanding, truncating

• Addition, negation, multiplication, shifting

• Summary

• Representations in memory, pointers, strings

Carnegie Mellon

26

Unsigned Addition
Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Carnegie Mellon

26

Unsigned Addition
• Similar to Decimal Addition Unsigned Binary

0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111

Carnegie Mellon

26

Unsigned Addition
• Similar to Decimal Addition
• Suppose we have a new data type that is

3-bit wide (c.f., short has 16 bits)

 010
+) 101

 111

 2
+) 5

 7

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111Normal

Case

Carnegie Mellon

26

Unsigned Addition
• Similar to Decimal Addition
• Suppose we have a new data type that is

3-bit wide (c.f., short has 16 bits)
•Might overflow: result can’t be

represented within the size of the data type

 010
+) 101

 111

 2
+) 5

 7

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111Normal

Case

Overflow
Case

 110
+) 101

 1011

 6
+) 5

 11

Carnegie Mellon

26

Unsigned Addition
• Similar to Decimal Addition
• Suppose we have a new data type that is

3-bit wide (c.f., short has 16 bits)
•Might overflow: result can’t be

represented within the size of the data type

 010
+) 101

 111

 2
+) 5

 7

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111Normal

Case

Overflow
Case

 110
+) 101

 1011

 6
+) 5

 11 True Sum

Carnegie Mellon

26

Unsigned Addition
• Similar to Decimal Addition
• Suppose we have a new data type that is

3-bit wide (c.f., short has 16 bits)
•Might overflow: result can’t be

represented within the size of the data type

 010
+) 101

 111

 2
+) 5

 7

Unsigned Binary
0 000
1 001
2 010
3 011
4 100
5 101
6 110
7 111Normal

Case

Overflow
Case

 110
+) 101

 1011

 6
+) 5

 11 True Sum
 011 3 Sum with same bits

Carnegie Mellon

27

Unsigned Addition in C
• • •
• • •

u
v+

• • •u + v
• • •

True	 Sum:	 w+1	 bits

Operands:	 w	 bits

Discard	 Carry:	 w	 bits UAddw(u , v)

Carnegie Mellon

28

Two’s Complement Addition
Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Carnegie Mellon

28

Two’s Complement Addition
• Has identical bit-level behavior as

unsigned addition (a big advantage
over sign-magnitude)

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Carnegie Mellon

28

Two’s Complement Addition
• Has identical bit-level behavior as

unsigned addition (a big advantage
over sign-magnitude)

 010
+) 101

 111

 2
+) -3

 -1

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Normal
Case

Carnegie Mellon

28

Two’s Complement Addition
• Has identical bit-level behavior as

unsigned addition (a big advantage
over sign-magnitude)

• Overflow can also occur

 010
+) 101

 111

 2
+) -3

 -1

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Normal
Case

Overflow
Case

 110
+) 101

 1011

 -2
+) -3

 -5

Carnegie Mellon

28

Two’s Complement Addition
• Has identical bit-level behavior as

unsigned addition (a big advantage
over sign-magnitude)

• Overflow can also occur

 010
+) 101

 111

 2
+) -3

 -1

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Normal
Case

Overflow
Case

 110
+) 101

 1011

 -2
+) -3

 -5
 011 3

Carnegie Mellon

28

Two’s Complement Addition
• Has identical bit-level behavior as

unsigned addition (a big advantage
over sign-magnitude)

• Overflow can also occur

 010
+) 101

 111

 2
+) -3

 -1

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Normal
Case

Overflow
Case

 110
+) 101

 1011

 -2
+) -3

 -5
 011 3

Negative Overflow

Min

Carnegie Mellon

28

Two’s Complement Addition
• Has identical bit-level behavior as

unsigned addition (a big advantage
over sign-magnitude)

• Overflow can also occur

 010
+) 101

 111

 2
+) -3

 -1

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Normal
Case

Overflow
Case

 110
+) 101

 1011

 -2
+) -3

 -5
 011 3

 011
+) 001

 0100

 3
+) 1

 4

Negative Overflow

Min

Carnegie Mellon

28

Two’s Complement Addition
• Has identical bit-level behavior as

unsigned addition (a big advantage
over sign-magnitude)

• Overflow can also occur

 010
+) 101

 111

 2
+) -3

 -1

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Normal
Case

Overflow
Case

 110
+) 101

 1011

 -2
+) -3

 -5
 011 3

 011
+) 001

 0100

 3
+) 1

 4
 100 -4

Negative Overflow

Min

Carnegie Mellon

28

Two’s Complement Addition
• Has identical bit-level behavior as

unsigned addition (a big advantage
over sign-magnitude)

• Overflow can also occur

 010
+) 101

 111

 2
+) -3

 -1

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Normal
Case

Overflow
Case

 110
+) 101

 1011

 -2
+) -3

 -5

Max

 011 3

 011
+) 001

 0100

 3
+) 1

 4
 100 -4

Negative Overflow Positive Overflow

Min

Carnegie Mellon

29

Two’s Complement Addition in C
• • •
• • •

u
v+

• • •u + v
• • •

True	 Sum:	 w+1	 bits

Operands:	 w	 bits

Discard	 Carry:	 w	 bits TAddw(u , v)

Carnegie Mellon

30

Is This Signed Addition an Overflow?

 111
+) 110

 1101

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Carnegie Mellon

30

Is This Signed Addition an Overflow?

 111
+) 110

 1101

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Carnegie Mellon

30

Is This Signed Addition an Overflow?

 111
+) 110

 1101

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Truncate

Carnegie Mellon

30

Is This Signed Addition an Overflow?

 111
+) 110

 1101

 -1
+) -2

 -3

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

Truncate

Carnegie Mellon

30

Is This Signed Addition an Overflow?

 111
+) 110

 1101

 -1
+) -2

 -3

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

• This is not an overflow by definition

Truncate

Carnegie Mellon

30

Is This Signed Addition an Overflow?

 111
+) 110

 1101

 -1
+) -2

 -3

Signed Binary
0 000
1 001
2 010
3 011
-4 100
-3 101
-2 110
-1 111

• This is not an overflow by definition
• Because the actual result can be represented by

the bit width of the datatype (3 bits here)

Truncate

Carnegie Mellon

31

Inverter (NOT Gate)
+1.2V

+0.0V

Carnegie Mellon

31

Inverter (NOT Gate)
+1.2V

+0.0V

PMOS

Carnegie Mellon

31

Inverter (NOT Gate)
+1.2V

+0.0V

PMOS

NMOS

Carnegie Mellon

31

Inverter (NOT Gate)
+1.2V

+0.0V

+1.2V

Carnegie Mellon

31

Inverter (NOT Gate)
+1.2V

+0.0V

+1.2V

+0.0V

Carnegie Mellon

31

Inverter (NOT Gate)

In Out

0 1
1 0

+1.2V

+0.0V

+1.2V

+0.0V

Carnegie Mellon

31

Inverter (NOT Gate)

In Out

0 1
1 0

+1.2V

+0.0V

+1.2V

+0.0V

Carnegie Mellon

32

NOR Gate (NOT + OR)

A B C

0 0 1
0 1 0

1 0 0

1 1 0
Note: Serial structure on top, parallel on bottom.

Carnegie Mellon

33

Basic Logic Gates

A | B ~(A | B)

A & B ~(A & B)

Carnegie Mellon

33

Basic Logic Gates

A | B ~(A | B)

A & B ~(A & B)

The little
circle
means NOT

Carnegie Mellon

34

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Carnegie Mellon

34

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

Truth Table

Carnegie Mellon

34

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

S = (~A & ~B & Cin)

Truth Table

Carnegie Mellon

34

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

S = (~A & ~B & Cin)
 | (~A & B & ~Cin)

Truth Table

Carnegie Mellon

34

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

S = (~A & ~B & Cin)
 | (~A & B & ~Cin)
 | (A & ~B & ~Cin)

Truth Table

Carnegie Mellon

34

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

S = (~A & ~B & Cin)
 | (~A & B & ~Cin)
 | (A & ~B & ~Cin)

 | (A & B & Cin)

Truth Table

Carnegie Mellon

34

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

S = (~A & ~B & Cin)
 | (~A & B & ~Cin)
 | (A & ~B & ~Cin)

 | (A & B & Cin)

Cou = (~A & B & Cin)
 | (A & ~B & Cin)
 | (A & B & ~Cin)
 | (A & B & Cin)

Truth Table

Carnegie Mellon

35

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)
 | (A & ~B & Cin)
 | (A & B & ~Cin)
 | (A & B & Cin)

Carnegie Mellon

35

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)
 | (A & ~B & Cin)
 | (A & B & ~Cin)
 | (A & B & Cin)

Carnegie Mellon

35

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)
 | (A & ~B & Cin)
 | (A & B & ~Cin)
 | (A & B & Cin)

Carnegie Mellon

35

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)
 | (A & ~B & Cin)
 | (A & B & ~Cin)
 | (A & B & Cin)

AND Gates

OR Gates

Carnegie Mellon

35

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)
 | (A & ~B & Cin)
 | (A & B & ~Cin)
 | (A & B & Cin)

AND Gates

OR Gates

Carnegie Mellon

35

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)
 | (A & ~B & Cin)
 | (A & B & ~Cin)
 | (A & B & Cin)

AND Gates

OR Gates

Carnegie Mellon

35

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)
 | (A & ~B & Cin)
 | (A & B & ~Cin)
 | (A & B & Cin)

AND Gates

OR Gates

Carnegie Mellon

35

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)
 | (A & ~B & Cin)
 | (A & B & ~Cin)
 | (A & B & Cin)

AND Gates

OR Gates

Carnegie Mellon

35

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)
 | (A & ~B & Cin)
 | (A & B & ~Cin)
 | (A & B & Cin)

Combinational Logic

Carnegie Mellon

35

Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)
 | (A & ~B & Cin)
 | (A & B & ~Cin)
 | (A & B & Cin)

Outputs depend only on current inputs (i.e., not the past
inputs), continuously (with some delay)

Combinational Logic

Carnegie Mellon

36

Four-bit Adder

Carnegie Mellon

36

Four-bit Adder

Carnegie Mellon

36

Four-bit Adder
• Ripple-carry Adder

• Simple, but performance linear to bit width

Carnegie Mellon

36

Four-bit Adder
• Ripple-carry Adder

• Simple, but performance linear to bit width
• Carry look-ahead adder (CLA)

• Generate all carriers simultaneously

Carnegie Mellon

37

Logic Design
• Design digital components from basic logic gates

Carnegie Mellon

37

Logic Design
• Design digital components from basic logic gates
• Key idea: use the truth table!

Carnegie Mellon

37

Logic Design
• Design digital components from basic logic gates
• Key idea: use the truth table!
• Example: how to design a piece of circuit that does

majority vote?

Carnegie Mellon

37

Logic Design
• Design digital components from basic logic gates
• Key idea: use the truth table!
• Example: how to design a piece of circuit that does

majority vote?

Carnegie Mellon

37

Logic Design
• Design digital components from basic logic gates
• Key idea: use the truth table!
• Example: how to design a piece of circuit that does

majority vote?

A B C F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Carnegie Mellon

37

Logic Design
• Design digital components from basic logic gates
• Key idea: use the truth table!
• Example: how to design a piece of circuit that does

majority vote?

A B C F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

F = (A & B & C)

 | (A & ~B & C)

 | (A & B & ~C)

 | (~A & B & C)

Carnegie Mellon

37

Logic Design
• Design digital components from basic logic gates
• Key idea: use the truth table!
• Example: how to design a piece of circuit that does

majority vote?

A B C F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

F = (A & B & C)

 | (A & ~B & C)

 | (A & B & ~C)

 | (~A & B & C)

F = (A & B)

 | (A & C)

 | (B & C)

Carnegie Mellon

37

Logic Design
• Design digital components from basic logic gates
• Key idea: use the truth table!
• Example: how to design a piece of circuit that does

majority vote?

A B C F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

Carnegie Mellon

37

Logic Design
• Design digital components from basic logic gates
• Key idea: use the truth table!
• Example: how to design a piece of circuit that does

majority vote?

A B C F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

ECE112 Logic Design

Carnegie Mellon

37

Logic Design
• Design digital components from basic logic gates
• Key idea: use the truth table!
• Example: how to design a piece of circuit that does

majority vote?

Questions?

A B C F
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1

ECE112 Logic Design

Carnegie Mellon

38

Multiplication

Carnegie Mellon

38

Multiplication
• Goal: Computing Product of w-bit numbers x, y

Carnegie Mellon

38

Multiplication
• Goal: Computing Product of w-bit numbers x, y

–2w	 –1

0

2w	 –1–1OMax

OMin

Original Number (w bits)

Carnegie Mellon

38

Multiplication
• Goal: Computing Product of w-bit numbers x, y

–2w	 –1

0

2w	 –1–1OMax

OMin

Original Number (w bits) Product

0

Carnegie Mellon

38

Multiplication
• Goal: Computing Product of w-bit numbers x, y

–2w	 –1

0

2w	 –1–1OMax

OMin

Original Number (w bits) Product

0

PMax

Carnegie Mellon

38

Multiplication
• Goal: Computing Product of w-bit numbers x, y

–2w	 –1

0

2w	 –1–1OMax

OMin

Original Number (w bits) Product

22w-‐2

0

OMin2PMax

Carnegie Mellon

38

Multiplication
• Goal: Computing Product of w-bit numbers x, y

–2w	 –1

0

2w	 –1–1OMax

OMin

Original Number (w bits) Product

22w-‐2

0

OMin2PMax

PMin

Carnegie Mellon

38

Multiplication
• Goal: Computing Product of w-bit numbers x, y

–2w	 –1

0

2w	 –1–1OMax

OMin

Original Number (w bits) Product

–22w–2	 +	 2w–1

22w-‐2

0

OMin2

OMin * OMax

PMax

PMin

Carnegie Mellon

38

Multiplication
• Goal: Computing Product of w-bit numbers x, y

–2w	 –1

0

2w	 –1–1OMax

OMin

Original Number (w bits) Product

–22w–2	 +	 2w–1

22w-‐2

0

OMin2

OMin * OMax

PMax

PMin

(2w bits)

Carnegie Mellon

38

Multiplication
• Goal: Computing Product of w-bit numbers x, y
• Exact results can be bigger than w bits

• Up to 2w bits (both signed and unsigned)

–2w	 –1

0

2w	 –1–1OMax

OMin

Original Number (w bits) Product

–22w–2	 +	 2w–1

22w-‐2

0

OMin2

OMin * OMax

PMax

PMin

(2w bits)

Carnegie Mellon

39

Unsigned Multiplication in C

• Standard Multiplication Function

• Ignores	 high	 order	 w	 bits	

• Implements Modular Arithmetic

UMultw(u	 ,	 v)	 =	 u	 	 	 ·∙	 v	 	 mod	 2w

• • •
• • •

u
v*

• • •u · v
• • •

True	 Product:	 2*w	 	 bits

Operands:	 w	 bits

Discard	 w	 bits:	 w	 bits

• • •

Carnegie Mellon

40

Signed Multiplication in C

• Standard Multiplication Function

• Ignores	 high	 order	 w	 bits	
• Some	 of	 which	 are	 different	 for	 signed	 vs.	 unsigned	 multiplication	
• Lower	 bits	 are	 the	 same

• • •
• • •

u
v*

• • •u · v
• • •

True	 Product:	 2*w	 	 bits

Operands:	 w	 bits

Discard	 w	 bits:	 w	 bits

• • •

Carnegie Mellon

41

Power-of-2 Multiply with Shift
• Operation

• u << k gives u * 2k

• 0012 << 2 = 1002 (1 * 22 = 4)

• Both signed and unsigned

Carnegie Mellon

41

Power-of-2 Multiply with Shift
• Operation

• u << k gives u * 2k

• 0012 << 2 = 1002 (1 * 22 = 4)

• Both signed and unsigned •	 •	 •u

w

Carnegie Mellon

41

Power-of-2 Multiply with Shift
• Operation

• u << k gives u * 2k

• 0012 << 2 = 1002 (1 * 22 = 4)

• Both signed and unsigned

True Product: w+k bits u · 2k
k

•	 •	 • 0 0 0•••

•	 •	 •u
w

Carnegie Mellon

41

Power-of-2 Multiply with Shift
• Operation

• u << k gives u * 2k

• 0012 << 2 = 1002 (1 * 22 = 4)

• Both signed and unsigned

True Product: w+k bits

Discard k bits (if overflow)

u · 2k
k

•	 •	 • 0 0 0•••

0 0 0••••••

•	 •	 •u
w

Carnegie Mellon

41

Power-of-2 Multiply with Shift
• Operation

• u << k gives u * 2k

• 0012 << 2 = 1002 (1 * 22 = 4)

• Both signed and unsigned

True Product: w+k bits

Discard k bits (if overflow)

u · 2k
k

•	 •	 • 0 0 0•••

0 0 0••••••

•	 •	 •u
w

•Most machines shift and add faster than multiply

• Compiler generates this code automatically
• u << 3 == u * 8	
• (u << 5) – (u << 3) == u * 24

Carnegie Mellon

42

Unsigned Power-of-2 Divide with Shift
• Implement power-of-2 divide with shift

• u >> k gives ⎣u / 2k⎦(⎣2.34⎦= 2)

• Uses logical shift

Carnegie Mellon

42

Unsigned Power-of-2 Divide with Shift
• Implement power-of-2 divide with shift

• u >> k gives ⎣u / 2k⎦(⎣2.34⎦= 2)

• Uses logical shift
u

k

Carnegie Mellon

42

Unsigned Power-of-2 Divide with Shift
• Implement power-of-2 divide with shift

• u >> k gives ⎣u / 2k⎦(⎣2.34⎦= 2)

• Uses logical shift
u

k

u / 2k 0 0 00True Product: w+k bits

Binary Point

•

Carnegie Mellon

42

Unsigned Power-of-2 Divide with Shift
• Implement power-of-2 divide with shift

• u >> k gives ⎣u / 2k⎦(⎣2.34⎦= 2)

• Uses logical shift
u

k

u / 2k 0 0 00

⎣ u / 2k ⎦ 0 0 00

True Product: w+k bits

Discard k bits
after binary point Binary Point

•

Carnegie Mellon

42

Unsigned Power-of-2 Divide with Shift
• Implement power-of-2 divide with shift

• u >> k gives ⎣u / 2k⎦(⎣2.34⎦= 2)

• Uses logical shift
u

k

u / 2k 0 0 00

⎣ u / 2k ⎦ 0 0 00

True Product: w+k bits

Discard k bits
after binary point Binary Point

•

• 23410 >> 2 = 2.3410, truncated result is 2 (⎣2.34⎦= 2)

• 11012 >> 2 = 00112 (true result: 11.012.⎣13 / 4⎦= 3)

Carnegie Mellon

43

Today: Representing Information in Binary

• Why Binary (bits)?

• Bit-level manipulations

• Integers

• Representation: unsigned and signed

• Conversion, casting

• Expanding, truncating

• Addition, negation, multiplication, shifting

• Summary

• Representations in memory, pointers, strings

Carnegie Mellon

44

Byte-Oriented Memory Organization

• Programs refer to data by address

• Conceptually, envision it as a very large array of bytes: byte-addressable

• In reality, it’s not, but can think of it that way
• An address is like an index into that array

• and, a pointer variable stores an address

• • •
00
••
•0

FF
••
•F

Carnegie Mellon

45

Machine Words

• Any given computer has a “Word Size”

• Nominal size of a memory address

• Until recently, most machines used 32 bits (4 bytes) as word size
• Limits addresses to 4GB (232 bytes)

• Increasingly, machines have 64-bit word size
• Potentially, could have 18 EB (exabytes) of addressable memory
• That’s 18.4 X 1018

• • •
00
••
•0

FF
••
•F

Carnegie Mellon

45

Machine Words

• Any given computer has a “Word Size”

• Nominal size of a memory address

• Until recently, most machines used 32 bits (4 bytes) as word size
• Limits addresses to 4GB (232 bytes)

• Increasingly, machines have 64-bit word size
• Potentially, could have 18 EB (exabytes) of addressable memory
• That’s 18.4 X 1018

• • •
00
••
•0

FF
••
•F

Carnegie Mellon

46

Example Data Representations (in Bytes)

C	 Data	 Type 32-‐bit 64-‐bit

char 1 1

short 2 2

int 4 4

long 4 8

float 4 4

double 8 8

pointer 4 8

Word Size 4 8

Carnegie Mellon

46

Example Data Representations (in Bytes)

C	 Data	 Type 32-‐bit 64-‐bit

char 1 1

short 2 2

int 4 4

long 4 8

float 4 4

double 8 8

pointer 4 8

Word Size 4 8

Carnegie Mellon

47

Word-Oriented Memory Organization
• Addresses Specify Byte

Locations

• Address of first byte in word
• Addresses of successive words

differ by 4 (32-bit) or 8 (64-bit)

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011

32-bit
Variables Bytes Addr.

0012
0013
0014
0015

64-bit
Variables

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

Carnegie Mellon

48

Byte Ordering

Carnegie Mellon

48

Byte Ordering
• How are the bytes within a multi-byte word ordered in memory?

Carnegie Mellon

48

Byte Ordering
• How are the bytes within a multi-byte word ordered in memory?
• Example

• Variable x has 4-byte value of 0x01234567
• Address given by &x is 0x100

0x100 0x101 0x102 0x103

01 23 45 67

Carnegie Mellon

48

Byte Ordering
• How are the bytes within a multi-byte word ordered in memory?
• Example

• Variable x has 4-byte value of 0x01234567
• Address given by &x is 0x100

• Conventions

• Big Endian: Sun, PPC Mac, IBM z, Internet

• Most significant byte has lowest address (MSB first)
• Little Endian: x86, ARM

• Least significant byte has lowest address (LSB first)

0x100 0x101 0x102 0x103

01 23 45 67

Carnegie Mellon

48

Byte Ordering
• How are the bytes within a multi-byte word ordered in memory?
• Example

• Variable x has 4-byte value of 0x01234567
• Address given by &x is 0x100

• Conventions

• Big Endian: Sun, PPC Mac, IBM z, Internet

• Most significant byte has lowest address (MSB first)
• Little Endian: x86, ARM

• Least significant byte has lowest address (LSB first)

0x100 0x101 0x102 0x103

01 23 45 67

Big Endian
01 23 45 67

Carnegie Mellon

48

Byte Ordering
• How are the bytes within a multi-byte word ordered in memory?
• Example

• Variable x has 4-byte value of 0x01234567
• Address given by &x is 0x100

• Conventions

• Big Endian: Sun, PPC Mac, IBM z, Internet

• Most significant byte has lowest address (MSB first)
• Little Endian: x86, ARM

• Least significant byte has lowest address (LSB first)

0x100 0x101 0x102 0x103

01 23 45 67

Big Endian

0x100 0x101 0x102 0x103

67 45 23 01

Little Endian

01 23 45 67

Carnegie Mellon

48

Byte Ordering
• How are the bytes within a multi-byte word ordered in memory?
• Example

• Variable x has 4-byte value of 0x01234567
• Address given by &x is 0x100

• Conventions

• Big Endian: Sun, PPC Mac, IBM z, Internet

• Most significant byte has lowest address (MSB first)
• Little Endian: x86, ARM

• Least significant byte has lowest address (LSB first)

0x100 0x101 0x102 0x103

01 23 45 67

Big Endian

0x100 0x101 0x102 0x103

67 45 23 01

Little Endian

01 23 45 67

67 45 23 01

Carnegie Mellon

49

Representing Integers
Hex: 00003B6D

6D
3B
00
00

Little-E

3B
6D

00
00

Big-E

int A = 15213;

93
C4
FF
FF

Little-E

C4
93

FF
FF

Big-E

int B = -15213;

Hex: FFFFC493

Ad
dr

es
s I

nc
re

as
e

Carnegie Mellon

49

Representing Integers
Hex: 00003B6D

6D
3B
00
00

Little-E

3B
6D

00
00

Big-E

int A = 15213;

93
C4
FF
FF

Little-E

C4
93

FF
FF

Big-E

int B = -15213;

Hex: FFFFC493

Ad
dr

es
s I

nc
re

as
e

Carnegie Mellon

49

Representing Integers
Hex: 00003B6D

6D
3B
00
00

Little-E

3B
6D

00
00

Big-E

int A = 15213;

93
C4
FF
FF

Little-E

C4
93

FF
FF

Big-E

int B = -15213;

Hex: FFFFC493

Ad
dr

es
s I

nc
re

as
e

Carnegie Mellon

50

Announcement
• Check the course website before asking

• http://www.cs.rochester.edu/courses/252/spring2019/
• Direct ALL questions regarding assignments to the TAs

• They have done them. They have debugged them. They know
them inside out.

• If one doesn’t know, ask another.
• If all don’t know, ask me.

