CSC 252: Computer Organization
Spring 2018: Lecture 25

Instructor: Yuhao Zhu

Department of Computer Science
University of Rochester

Action Items:
* Programming Assignment 5 grades are out
* Programming Assignment 6 is due soon



Announcement

* Grades for Lab 4 and 5 are out. Talk to Yu and Amir.
e | ab 6 is out. Due 11:59pm, Thursday, May 2.
* Take a look at the cache and virtual memory problem sets.

Today

Due



Today

* From process to threads
e Basic thread execution model



Today

* From process to threads

¢ Basic thread execution model
e Multi-threading programming
* Hardware support of threads

e Multi-core

e Hyper-threading

e Cache coherence

We will be scratching the surface.
Take CSC 2/458 to learn more!!



Programmers View of A Process

* Process = process context + code, data, and stack

Process context Code, data, and stack
Program context: Sp —> Stack

Data registers

Condition codes Shared libraries

Stack pointer (SP)

Program counter (PC) brk = Run-time heap
Kernel context: Read/write data

VM structures PC —> Read-only code/data

Descriptor table
brk nointer




A Process With Multiple Threads

* Multiple threads can be associated with a process
« Each thread has its own logical control flow
« Each thread shares the same code, data, and kernel context
« Each thread has its own stack for local variables
 but not protected from other threads
« Each thread has its own thread id (TID)

Thread 1 (main thread) Thread 2 (peer thread) Shared code and data

stack 1

Thread 1 context:
Data registers
Condition codes
SP1
PC1

stack 2

shared libraries

run-time hean

Thread 2 context:
Data registers
Condition codes
SP2
PC2

read/write data

read-only code/data

Kernel context:
VM structures
Descriptor table
brk pointer




Logical View of Threads

* Threads associated with process form a pool of peers
« Unlike processes which form a tree hierarchy

Threads associated with process foo Process hierarchy

“a| shared code, data
and kernel context

®
®
2@

ofolo



Concurrent Threads

* Two threads are concurrent if their flows overlap in
time

* Otherwise, they are sequential

. Examples: Thread A Thread B Thread C
« Concurrent: A& B,A&C | -----
e Sequential: B & C I
Time | I ______




Concurrent Thread Execution

* Single Core Processor * Multi Core Processor
« Simulate parallelism e Threads can have
by time slicing true parallelisms
Thread A Thread B Thread C Thread A Thread B Thread C
_________________________________ I Time |

Run 3 threads on 2 cores



Threads vs. Processes

e How threads and processes are similar
« Each has its own logical control flow
« Each can run concurrently with others (possibly on different cores)
« Each is context switched, controlled by kernel



Threads vs. Processes

e How threads and processes are similar
« Each has its own logical control flow
« Each can run concurrently with others (possibly on different cores)
« Each is context switched, controlled by kernel

e How threads and processes are different

« Threads share all code and data (except local stacks)
* Processes (typically) do not

« Threads are less expensive than processes

* Process control (creating and reaping) twice as expensive as thread
control

« Typical Linux numbers:
- ~20K cycles to create and reap a process
- ~10K cycles (or less) to create and reap a thread



Posix Threads (Pthreads) Interface

e Pthreads: Standard interface for ~60 functions that manipulate
threads from C programs

» Creating and reaping threads
e pthread create()
« pthread join()
» Determining your thread ID
« pthread self ()
« Terminating threads
« pthread cancel ()
« pthread exit ()

« exit () [terminates all threads], RET [terminates current thread]

» Synchronizing access to shared variables
e pthread mutex init

e pthread mutex [un]lock
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The Pthreads "hello, world" Program

/*
* hello.c - Pthreads "hello, world" program
*/

#include "csapp.h"

void xthread(void *vargp);

int main()

{
pthread_t tid;
Pthread_create(&tid, NULL, thread, NULL);
Pthread_join(tid, NULL);
exit(0);
} hello.c

void xthread(void xvargp) /* thread routine x/

{
printf("Hello, world!\n");
return NULL;

hello.c
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/*
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The Pthreads "hello, world" Program

/*
* hello.c - Pthreads "hello, world" program
*/ Thread attributes
#include “csapp.h" Thread ID
void xthread(void *vargp); (usually NULL)
int main()
{ Thread routine
pthread_t tid; p
Pthread_create(&tid, NULL, thread, NULL);
Pthread join(tid, NULL); | Thread arguments
ex1t(0); (void *p)
} hello.c

void xthread(void xvargp) /* thread routine x/

{
printf("Hello, world!\n");
return NULL;

hello.c
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The Pthreads "hello, world" Program

/*
* hello.c - Pthreads "hello, world" program
5 Thread attributes
#include “csapp.h" Thread ID
void *thread(void xvargp); (usually NULL)
int main()
{ Thread routine
pthread_t tid;
Pthread_create(&tid, NULL thread, NULL)
Pthread_join(tid, NULL); \ Thread arguments
exit(0); (void *p)
} hello.c

void xthread(void xvargp) /* thread routine x/

{
printf("Hello, world!\n");
return NULL;

Return value

(void **p)

hello.c
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Execution of Threaded “hello, world”

Main thread
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Execution of Threaded “hello, world”

Main thread

call Pthread_create()
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Execution of Threaded “hello, world”

Main thread

call Pthread_create()

................................... Peer thread
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Execution of Threaded “hello, world”

Main thread

call Pthread_create()
Pthread_create() returns

.................................. Peer thread

,,,,, 1

v
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Execution of Threaded “hello, world”

Main thread

call Pthread_create()
Pthread_create() returns

.................................. Peer thread

,,,,, 1

v

call Pthread_join()
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Execution of Threaded “hello, world”

Main

thread

call Pthread_create()
Pthread_create() returns

call Pthread_join()

Main thread waits for
peer thread to terminate

.................................. Peer thread

,,,,, 1

v
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Execution of Threaded “hello, world”

Main thread

call Pthread_create()
Pthread_create() returns

call Pthread_join()

Main thread waits for
peer thread to terminate

.................................. Peer thread

..... “printf()

return NULL;
Peer thread
terminates

v
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Execution of Threaded “hello, world”

Main thread

call Pthread_create()
Pthread_create() returns

call Pthread_join()

Main thread waits for
peer thread to terminate

Pthread_join() returns

................................... Peer thread

..... “ printf ()

¥ return NULL;
......................... Peer thread
......................... torminates
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Execution of Threaded “hello, world”

Main thread

call Pthread_create()
Pthread_create() returns

................................... Peer thread

call Pthread_join() | e
“printf()
Main thread waits for y return NULL;
peer thread to terminate| e Peer thread
.......................... terminates

Pthread_join() returns |a

exit ()
Terminates '
main thread and
any peer threads

12



Today

Multi-threading programming
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Shared Variables in Threaded C Programs

* One great thing about threads is that they can share same
program variables.
e Question: Which variables in a threaded C program are shared?
* |ntuitively, the answer is as simple as “global variables are
shared” and “stack variables are private”. Not so simple in reality.
Shared code and data

Thread 1 (main thread) Thread 2 (peer thread) shared libraries

run-time hean
read/write data

read-only code/data

stack 1 stack 2

Thread 1 context:
Data registers
Condition codes
SP1
PC1

Thread 2 context:
Data registers
Condition codes
SP2
PC2

Kernel context:
VM structures
Descriptor table
brk pointer
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Example Program to lllustrate Sharing

char *xxptr; /x global var x/

void xthread(void *vargp)
{
long myid = (long)vargp;
static int cnt = 0;
printf("[%1d]: %s (cnt=%d)\n",
myid, ptrlmyid], ++cnt);
return NULL;

int main()

long 1ij;
pthread_t tid;
char smsgs[2] = {
"Hello from foo",
"Hello from bar"
h
ptr = msgs;
for (1 =0; 1 < 2; 1i++)
pthread_create(&tid,
NULL,
thread,
(void %)i);
pthread_exit(NULL);

by sharing.

Main thread stack

Peer thread O stack

Peer thread 1 stack

|
v

Memory mapped region
for shared libraries

t

Runtime heap (malloc)

Uninitialized data (.bss)

Initialized data (.data)

Program text (.text)
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Example Program to lllustrate Sharing
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Main thread stack
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msgs
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for shared libraries

t

Runtime heap (malloc)

Uninitialized data (.bss)
ptr
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p0 p1
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Synchronizing Threads

* Shared variables are handy...

e _..but introduce the possibility of nasty synchronization errors.

16



Improper Synchronization

/* Global shared variable x/
volatile long cnt @; /* Counter x/

int main(int argc, char xxargv)
{
pthread_t tidl, tid2;
long niters 10000,

Pthread_create(&tidl, NULL,
thread, &niters);

Pthread_create(&tid2, NULL,
thread, &niters);

/* Thread routine x/
void xthread(void xvargp)

{

long 1, niters
x((long *)vargp);

for (i 0; i++)

cnt++;

1 < niters;

return NULL;

Pthread_join(tidl, NULL);
Pthread_join(tid2, NULL);

/* Check result x/
if (cnt !'= (2 x 10000))
printf("BOOM! cnt=%ld\n", cnt);
else
printf("0K cnt=%1d\n", cnt);
exit(0);

badcnty
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Improper Synchronization

/* Global shared variable x/
volatile long cnt = @; /% Counter x/

/* Thread routine x/
void xthread(void xvargp)

{
int main(int argc, char *xargv) long i, niters =
{ x((long *)vargp);
pthread_t tidl, tid2;
long niters = 10000; for (1 = @; i < niters; i++)
. cnt++;
Pthread_create(&tidl, NULL,
thread, &niters); .
Pthread_create(&tid2, NULL, ) DU AL
thread, &niters);
Pthread_join(tidl, NULL);
Pthread_join(tid2, NULL); linux> ./badcnt
OK cnt=20000
/* Check result x/
if (cnt !'= (2 * 10000)) linux> ./badcnt
printf("BOOM! cnt=%ld\n", cnt); BOOM! cnt=13051
else
printf("0K cnt=%1d\n", cnt);
¥ badcnt.¢

What went wrong?
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Assembly Code for Counter Loop

C code for counter loop in thread i

for

(1 =

0; i < niters; i++)
cnt++;

Asm code for thread i

movqg

$rdi) , %rcx

testqg %rcx, srcx

jle

.L2:

.L2

cnt (%rip) , Srdx
$1, %rdx
$rdx, cnt(%rip)

: Head

: Load cnt
: Update cnt
: Store cnt

: Tail

18



Concurrent Execution

* Key observation: In general, any sequentially consistent
interleaving is possible, but some give an unexpected result!

| (thread) instr; %rdx, %rdx, cnt

1 L, 0 = 0 I:’Ilecaacll ;ection
1 U1 1 - 0

1 S, 1 - 1 Thread 2

2 L, - 1 1 critical section
2 U, i 2 1

2 S, - 2 2
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Concurrent Execution (cont)

* |[ncorrect ordering: two threads increment the counter, but the
result is 1 instead of 2

i (thread) instr;, %rdx, 9%rdx, cnt

=

N

N

NN (=N |=
wclorcr
1 [ = |
—t k[ O] |0
- alaloo|o

N
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Concurrent Execution (cont)

i (thread) instr, %rdx, %rdx, cnt

SN

N

N

(DCNSDCI—I—

ot f—h
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Concurrent Execution (cont)

i (thread) instr, %rdx, %rdx, cnt

0

SN

N

N

(DCNSDCI—I—

ot f—h
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Concurrent Execution (cont)
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0

SN

N

N

(DCNSDCI—I—

ot f—h
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Concurrent Execution (cont)

i (thread) instr, %rdx, %rdx, cnt

0

SN

N

)
- O

(DCNSDCI—I—

ot f—h
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Concurrent Execution (cont)

i (thread) instr, %rdx, %rdx, cnt

0

SN

N

)
- O

N

nwacwncrir
-

ot f—h
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Concurrent Execution (cont)

i (thread) instr, %rdx, %rdx, cnt

0

SN

N

)
- O

N

nwacwncrir
-
-

ot f—h
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Concurrent Execution (cont)

i (thread) instr, %rdx, %rdx, cnt

0

SN

N

)
- O

N

nwacwncrir
-
-

ot f—h
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Concurrent Execution (cont)

i (thread) instr, %rdx, %rdx, cnt

0

SN

N

)
- O

N

nwacwncrir
-
-

ot f—h
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Concurrent Execution (cont)

i (thread) instr, %rdx, %rdx, cnt

0

SN

N

)
- O

N

nwacwncrir
-
-

ot f—h
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Concurrent Execution (cont)

* Another undesired, but legal, interleaving

i (thread) instr, %rdx, %rdx, cnt

0

SN

N

)
- O

N

==Y

nwacwncrir
-
-

—h
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Assembly Code for Counter Loop

C code for counter loop in thread i

for (1 = 0; i < niters; i++)
cnt++;

Asm code for thread i

movq $rdi) , %Srcx
testqg %rcx, srcx
jle .L2

movqg cnt(%rip) ,%rdx
addg $1, %$rdx
movqg %rdx, cnt(%rip)

.L2:

: Head

: Load cnt
: Update cnt
: Store cnt

: Tail
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Assembly Code for Counter Loop

critical
section
wrt cnt

for (1 = 0; 1 < niters; i++)
cnt++;
Asm code for thread i
movqg (%rdi), Srcx
testqg %rcx,srcx
jle .L2  Hi
movl $0, %eax N
.L.3:
movqg cnt(%rip) ,%rdx h
addg $1, %rdx » U,
movqg %rdx, cnt(%rip) S.
"""" addq $1, $rax 1)
cmpqg S3rcx, 3rax
jne .L3 T

.L2:

C code for counter loop in thread i

: Head

: Load cnt
: Update cnt
: Store cnt

: Tail

22



Critical Section

e Code section (a sequence of instructions) where no more than one
thread should be executing concurrently.

e Critical section refers to code, but its intention is to protect data!
* Threads need to have mutually exclusive access to critical section

Asm code for thread i

movqg (%rdi), Srcx
testqg %rcx,srcx

jle L2 » H,: Head
_______ movl 350, %eax |
critical ) | :

_ movqg cnt(%rip),%rdx L;:Load ent
section addg $1, %$rdx » U;: Update cnt
wrt cnt movqg %rdx, cnt(%rip) S.: Store ent

"""" addg $1, %$rax ) '
cmpg 3rcx, 5srax
jne  .L3 ( T,: Tail

.L2:
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Enforcing Mutual Exclusion

* We must synchronize the execution of the threads so that they
can never have an unsafe trajectory.

e i.e., need to guarantee mutually exclusive access for each critical
section.

* Classic solution:
« Semaphores (Edsger Dijkstra)

* Other approaches
« Mutex and condition variables
« Monitors (Java)
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Enforcing Mutual Exclusion

* We must synchronize the execution of the threads so that they
can never have an unsafe trajectory.

e i.e., need to guarantee mutually exclusive access for each critical
section.

* Classic solution:
« Semaphores (Edsger Dijkstra)

* Other approaches
« Mutex and condition variables
« Monitors (Java)

Again, take CSC 2/458 to learn more!!
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Using Semaphores for Mutual Exclusion

¢ Basic idea:
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Using Semaphores for Mutual Exclusion

¢ Basic idea:

« Associate each shared variable (or related set of shared variables) with
a unique variable, called semaphore, initially 1

» Every time a thread tries to enter the critical section, it first checks the
semaphore value. If it’s still 1, the thread decrements the mutex value
to O (through a P operation) and enters the critical section

« Every time a thread exits the critical section, it increments the
semaphore value to 1 (through a V operation) so that other threads
are now allowed to enter the critical section

 NOo more than one thread can be in the critical section at a time

* Terminology

« Binary semaphore is also called mutex (i.e., the semaphore value
could only be O or 1)

« Think of P operation as “locking”, and V as “unlocking”.
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Proper Synchronization

e Define and initialize a mutex for the shared variable cnt :

volatile long cnt = 0; /% Counter x/
sem_t mutex; /* Semaphore that protects cnt */

Sem_init(&mutex, 0, 1); /* mutex = 1 %/

« Surround critical section with P and V:

for (1 = 0; 1 < niters; 1++) { linux> ./goodecnt 10000
P(&mutex) ; OK cnt=20000
cnt++; linux> ./goodent 10000
V(&mutex) ; OK cnt=20000
} linux>
goodcnt.c

Warning: It’s orders of magnitude
slower than badcnt.c.
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Today

Hardware support of threads
Multi-core
Hyper-threading
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Thread-level Parallelism (TLP)

* Thread-Level Parallelism
 Splitting a task into independent sub-tasks
« Each thread is responsible for a sub-task

* Example: Parallel summation of N number
« Should add up to ((n-1)*n)/2

* Partition values 7, ..., n-7 into t ranges
 Ln/t] values in each range

» Each of t threads processes one range (sub-task)
« Sum all sub-sums in the end

e Question: if you parallel you work N ways, do you always an N
times speedup?

28



Why the Sequential Bottleneck?

| * Maximum speedup limited by the
sequential portion

 Main cause: Non-parallelizable
operations on data
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Why the Sequential Bottleneck?
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* Maximum speedup limited by the
sequential portion

 Main cause: Non-parallelizable
operations on data

e Parallel portion is usually not
perfectly parallel as well

* e.g., Synchronization overhead
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Can A Single Core Support Multi-threading?

* Need to multiplex between different threads (time slicing)

Sequential Multi-threaded

Thread A Thread B Thread C
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Any benefits?

* Can single-core multi-threading provide any performance gains?

Thread A Thread B Thread C
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Any benefits?

* Can single-core multi-threading provide any performance gains?

e If Thread A has a cache miss and the pipeline gets stalled,
switch to Thread C. Improves the overall performance.

Thread A Thread B Thread C
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When to Switch?

e Coarse grained
* BEvent based, e.g., switch on L3 cache miss
* Quantum based (every thousands of cycles)
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When to Switch?

e Coarse grained
* BEvent based, e.g., switch on L3 cache miss
* Quantum based (every thousands of cycles)

* Fine grained
» Cycle by cycle
e Thornton, “CDC 6600: Design of a Computer,” 1970.
e Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP

1978. Seminal paper that shows that using multi-threading can avoid
branch prediction.

e Either way, need to save/restore thread context upon
switching

* One great thing about fine-grained switching: no need for
branch prediction!!
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Single-Core Internals

* Typically has multiple function units to allow for issuing multiple
instructions at the same time

e Called “Superscalar” Microarchitecture

Instruction Control

Instruction
Cache
Registers Instructions
2 PC
\4 \4

Functional Units

" Data Cache




Conventional Multi-threading

]
Thread 1
a N
Context
Switch

- Thread 2
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Conventional Multi-threading

Functional Units

/11N

- Thread 1

Context
Switch

- Thread 2
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Hyper-threading

e Intel’s terminology. More commonly known as: Simultaneous Multi-
threading (SMT)
* Replicate enough hardware structures to process K instruction streams

» K copies of all registers. Share functional units

Instruction Control
Instruction
Reg A Instructions Cache

1 A

I

PC A
A 4 ) 4
Functional Units




Hyper-threading

e Intel’s terminology. More commonly known as: Simultaneous Multi-
threading (SMT)
* Replicate enough hardware structures to process K instruction streams

» K copies of all registers. Share functional units

Instruction Control
Instruction
Reg A Instructions Cache
A ] I
Reg B Instructions SCA |
T PCB
A 4 l vV
Functional Units




Conventional Multi-threading vs. Hyper-threading

Conventional
Multi-threading

- Thread 1 E

Hyper-threading

Context
Switch

- Thread 2




Conventional Multi-threading vs. Hyper-threading

Conventional
Multi-threading

- Thread 1 E

Hyper-threading

Multiple threads
actually execute In
parallel (even with
one single core)

Switch

Context
- Thread 2
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Conventional Multi-threading vs. Hyper-threading

Conventional
Multi-threading

- Thread 1 E

Hyper-threading

Multiple threads
actually execute In
parallel (even with
one single core)

Context
Switch

- Thread 2 No/little context

switch overhead
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Typical Multi-core Processor

Core 0
Regs
L1 L1
d-cache |i-cache

L2 unified
cache

Core n-1 :
Regs
L1 L1
d-cache |i-cache

L2 unified
cache

L3 unified cache
(shared by all cores)

Main memory

* Traditional
multiprocessing:
symmetric
multiprocessor (SMP)

e Every core is exactly
the same. Private
registers, L1/L2
caches, etc.

* Share L3 (LLC) and
main memory
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Asymmetric Multiprocessor (AMP)

o Offer a large performance-energy trade-off space
O Big Core O Small Core

Frequency
Levels /§'

;

00O

Performance

Energy Consumption
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Asymmetric Chip-Multiprocessor (ACMP)

¢ Already used in commodity devices (e.g., Samsung Galaxy S6, iPhone 7)

Four-core CPU

Two high-performance cores

Two high-efficiency cores

39



Combine Multi-core with Hyper-threading

* Common for laptop/desktop/server machine. E.g., 2 physical
cores, each core has 2 hyper-threads => 4 virtual cores.

e Not for mobile processors (Hyper-threading costly to implement)

AES, AVX, AVX2, FMA3

Processor
Name Intel Core i3
Code Name Skylake Max TDP | 65.0 W
Package Socket 1151 LGA
Technology | 14nm Core Voltage 1.376 V
Specification Intel(R) Core(TM) i3-6100 CPU @ 3.70GHz
Family 6 Model E Stepping 3
Ext. Family 6 Ext. Model 5E Revision RO

Instructions |MMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, EM&4T, VT,

CPU lCaches ] Mainboard ] Memory I SPD ] Graphics I Bench ] About I

Selection |Processor £1 Cores | 2

Clocks (Core #0) Cache
Core Speed 4439.81 MHz L1Data 2 x 32 KBytes 8-way
Multiplier | x 37.0 (8-37) LiInst. | 2x 32KBytes 8-way
Bus Speed 120.00 MHz Level 2 | 2x256KBytes | 4-way

3 MBytes 12-way

Threads | 4

Ver. 1.76.0.x64

Tools =seaglglidate | __ Closs
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Today

Hardware support of threads

e Cache coherence
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The Issue

e Assume that we have a multi-core processor. Thread 0 runs on Core 0,
and Thread 1 runs on Core 1.
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The Issue

e Assume that we have a multi-core processor. Thread 0 runs on Core 0,
and Thread 1 runs on Core 1.

e Threads share variables: e.g., Thread 0 writes to an address, followed
by Thread 1 reading.

* Each read should receive the value last written by anyone

e Basic question: If multiple cores access the same data, how do they
ensure they all see a consistent state?

Thread 0 Thread 1
Mem[A] = 1 v

Print Mem[A]

42



The Issue

e Without cache, the issue is (theoretically) solvable by using mutex.

e ...because there is only one copy of x in the entire system. Accesses
to x in memory are serialized by mutex.

Write: x=1000 @ @ Read: X
[ Bus ]

. 1000
Main Memory
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The Issue

* What if each core cache the same data, how do they ensure they all
see a consistent state? (assuming a write-back cache)

e

« 1000
Main Memory
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© ©-

1000 e

e

« 1000
Main Memory
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The Issue

* What if each core cache the same data, how do they ensure they all
see a consistent state? (assuming a write-back cache)

Read: x
@ @ Read: X
| |

1000 e

e

« 1000
Main Memory
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The Issue

* What if each core cache the same data, how do they ensure they all
see a consistent state? (assuming a write-back cache)

Read: x
@ @ Read: X
| |

1000 e 1000 s

e

« 1000
Main Memory
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The Issue

* What if each core cache the same data, how do they ensure they all
see a consistent state? (assuming a write-back cache)

Read: x _
x=x+1000 Read: x
Write: x | |

1000 e 1000 s

e

« 1000
Main Memory
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The Issue

* What if each core cache the same data, how do they ensure they all
see a consistent state? (assuming a write-back cache)

Read: x _
x=x+1000 Read: x
Write: x | |

2000 1000 s

e

« 1000
Main Memory
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The Issue

* What if each core cache the same data, how do they ensure they all
see a consistent state? (assuming a write-back cache)

Read: X |
x=Xx+1000 Read: x
Write: x | | Read: x Should not

return 1000!

2000 jmm— 1000 prmmmeet

e

X 1000
Main Memory

44



Cache Coherence: The Idea

e Key issue: there are multiple copies of the same data in the
system, and they could have different values at the same time.
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Cache Coherence: The Idea

e Key issue: there are multiple copies of the same data in the
system, and they could have different values at the same time.
e Key idea: ensure multiple copies have same value, i.e., coherent
* How? Two options:
e Update: push new value to all copies (in other caches)
 Invalidate: invalidate other copies (in other caches)

45



Invalidate-Based Cache Coherence

Associate each cache line with 3
states: Modified, Invalid, Shared

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

0 () (@
[ we

Mo s

X oo

Main Memory
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Invalidate-Based Cache Coherence

Associate each cache line with 3 Read: x
states: Modified, Invalid, Shared

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

0 () (@
[ we

Mo s

X oo

Main Memory
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Invalidate-Based Cache Coherence

Associate each cache line with 3 Read: x
states: Modified, Invalid, Shared

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

B &
(e |
WS

X oo

PrRd/BusRd

Main Memory
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Invalidate-Based Cache Coherence

Associate each cache line with 3 Read: x Read: x
states: Modified, Invalid, Shared

Below: State Transition for x in C2’s cache;
Syntax: Event/Action
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Invalidate-Based Cache Coherence

Associate each cache line with 3 Read: x Read: x
states: Modified, Invalid, Shared

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

B &
.
Mo s)

X oo
BusRd/Supply Data

PrRd/BusRd

Main Memory
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Invalidate-Based Cache Coherence

Associate each cache line with 3 Read: x Read: x
states: Modified, Invalid, Shared

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

0 () (@
1000 || jemes] 1000
S
™ s)

X oo
BusRd/Supply Data

PrRd/BusRd

Main Memory
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Invalidate-Based Cache Coherence
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Syntax: Event/Action
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Invalidate-Based Cache Coherence

Associate each cache line with 3 Read: x Read: x
states: Modified, Invalid, Shared Read: x

Below: State Transition for x in C2’s cache;
Syntax: Event/Action
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Invalidate-Based Cache Coherence

Associate each cache line with 3 Read: x Read: x
states: Modified, Invalid, Shared Read: x
Below: State Transition for x in C2’s cache; Write: x = 5000

Syntax: Event/Action

0 () (@
1000 || jemes] 1000
S
™ s)

X oo
BusRd/Supply Data
PrRd/—

PrRd/BusRd

Main Memory
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Invalidate-Based Cache Coherence

Associate each cache line with 3 Read: x Read: x
states: Modified, Invalid, Shared Read: x
Below: State Transition for x in C2’s cache; Write: x = 5000

Syntax: Event/Action

(@) (=

@ orRd/Buskd 1000 |—| —|5ooo
e

LB

X oo
BusRd/Supply Data
PrRd/—

Main Memory
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Invalidate-Based Cache Coherence

Associate each cache line with 3 Read: x Read: x
states: Modified, Invalid, Shared Read: x
Below: State Transition for x in C2’s cache; Write: x = 5000

Syntax: Event/Action

@ | |
1000  |s— —l 5000
PrRd/BusRd | | |
[ Bus ]
@ ) PrWr/Invd @y} 1000

X oo
BusRd/Supply Data
PrRd/—

Main Memory
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Invalidate-Based Cache Coherence

Associate each cache line with 3 Read: x Read: x
states: Modified, Invalid, Shared Read: x
Below: State Transition for x in C2’s cache; Write: x = 5000

Syntax: Event/Action

|—| 5000
PrRd/BusRd
[ Bus ]
QU pe—
PrWr/Invd 1000

X oo
BusRd/Supply Data
PrRd/—

Main Memory
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Invalidate-Based Cache Coherence

Associate each cache line with 3 Read: x Read: x
states: Modified, Invalid, Shared Read: x
Below: State Transition for x in C2’s cache; Write: x = 5000

Syntax: Event/Action
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PrRd/BusRd
[ Bus ]
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Invalidate-Based Cache Coherence

Associate each cache line with 3 Read: x Read: x
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Invalidate-Based Cache Coherence

Associate each cache line with 3 Read: x Read: x
states: Modified, Invalid, Shared Read: x Read: x

Below: State Transition for x in C2’s cache; Write: x = 5000
Syntax: Event/Action
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Invalidate-Based Cache Coherence

Associate each cache line with 3 Read: x Read: x
states: Modified, Invalid, Shared Read: x Read: x
Below: State Transition for x in C2’s cache; Write: x = 5000

Syntax: Event/Action
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Invalidate-Based Cache Coherence

Associate each cache line with 3 Read: x Read: x
states: Modified, Invalid, Shared Read: x Read: x
Below: State Transition for x in C2’s cache; Write: x = 5000

Syntax: Event/Action

@ | |
5000 —l —l 5000
PrRd/BusRd | |
[ Bus ]
4 @
PrWr/Invd D 5000

X oo
BusRd/Supply Data
PrRd/—
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Invalidate-Based Cache Coherence

Associate each cache line with 3 Read: x Read: x
states: Modified, Invalid, Shared Read: x Read: x
Below: State Transition for x in C2’s cache; Write: x = 5000

Syntax: Event/Action

@ | |
5000 —l —|5000
PrRd/BusRd | |
[ Bus ]
BusRd/Flush @
>
<
PrWr/Invd D y 5000
BusRd/Supply Data
PrRd/—

PrRd/— Main Memory

PrWr/—
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Invalidate-Based Cache Coherence

Associate each cache line with 3 Write: x = 7000
states: Modified, Invalid, Shared

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

o () (=)

PrRd/BusRd >000 | |

[ Bus ]
BusRd/Flush @
>
<
PrWr/Invd y) y 1000
BusRd/Supply Data :
PrRd/— PrRA/— PPYY Main Memory
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Invalidate-Based Cache Coherence

Associate each cache line with 3 Write: x = 7000
states: Modified, Invalid, Shared

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

o () (=)

e 5000
PrRd/BusRd

BusRd/Flush @
>
<
PrWr/Invd y) y 1000
BusRd/Supply Data -
PrRd/— PrRA/— Main Memory
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Invalidate-Based Cache Coherence

Associate each cache line with 3 Write: x = 7000
states: Modified, Invalid, Shared

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

o () (=)

PrRd/BusRd | | 7000

[ Bus ]
BusRd/Flush @
>
<
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Invalidate-Based Cache Coherence

Associate each cache line with 3 Write: x = 7000
states: Modified, Invalid, Shared

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

o () (=)

|—( 7000
PrWr/BusRdX PrRd/BusRd

[ Bus ]
BusRd/Flush @
>
<
PrWr/Invd y) y 1000
BusRd/Supply Data :
PrRd/— PrRA/— PPYY Main Memory
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Invalidate-Based Cache Coherence

Associate each cache line with 3 Write: x = 7000

states: Modified, Invalid, Shared

Below: State Transition for x in C2’s cache;
Syntax: Event/Action
|—( 7000
PrWr/BusRdX PrRd/BusRd

BusRdX/Flush [ Bus ]
BusRd/Flush

>
PrWr/Invd @y} 1000

X oo
BusRd/Supply Data Mai
ain Memor
PrRd/— PrRd/— Y
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Invalidate-Based Cache Coherence

Associate each cache line with 3
states: Modified, Invalid, Shared

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

BusRd/—
BustX/—
Invd/—

PrWr/BusRdX PrRd/BusRd

Invd/—
BusRdX/

BusRdX/Flush
Invd/—

BusRd/ Flush

PrWr/Invd

Bust/SuppIy Data

PrWr/—

Write: x = 7000

() (=)

|—( 7000

(e

1000

X oo

Main Memory
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Readings: Cache Coherence

e Most helpful
e Culler and Singh, Parallel Computer Architecture
e Chapter 5.1 (pp 269 — 283), Chapter 5.3 (pp 291 — 305)
e Patterson&Hennessy, Computer Organization and Design
e Chapter 5.8 (pp 534 — 538 in 4t and 4th revised eds.)
e Papamarcos and Patel, “A low-overhead coherence solution for multiprocessors
with private cache memories,” ISCA 1984.

e Also very useful
* Censier and Feautrier, “A new solution to coherence problems in multicache
systems,” |IEEE Trans. Computers, 1978.
e Goodman, “Using cache memory to reduce processor-memory traffic,” ISCA 1983.
e | audon and Lenoski, “The SGI Origin: a ccNUMA highly scalable server,” ISCA

1997.

e Martin et al, “Token coherence: decoupling performance and correctness,” ISCA
2008.

e Baer and Wang, “On the inclusion properties for multi-level cache hierarchies,”
ISCA 1988.
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Does Hardware Have to Keep Cache Coherent?

* Hardware-guaranteed cache coherence is complex to implement.
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Does Hardware Have to Keep Cache Coherent?

* Hardware-guaranteed cache coherence is complex to implement.
* Can the programmers ensure cache coherence themselves?

* Key: ISA must provide cache flush/invalidate instructions

* FLUSH-LOCAL A: Flushes/invalidates the cache block containing
address A from a processor’s local cache.

* FLUSH-GLOBAL A: Flushes/invalidates the cache block containing
address A from all other processors’ caches.

* FLUSH-CACHE X: Flushes/invalidates all blocks in cache X.
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Does Hardware Have to Keep Cache Coherent?

* Hardware-guaranteed cache coherence is complex to implement.
* Can the programmers ensure cache coherence themselves?

* Key: ISA must provide cache flush/invalidate instructions

* FLUSH-LOCAL A: Flushes/invalidates the cache block containing
address A from a processor’s local cache.

* FLUSH-GLOBAL A: Flushes/invalidates the cache block containing
address A from all other processors’ caches.

* FLUSH-CACHE X: Flushes/invalidates all blocks in cache X.
e Classic example: TLB
* Hardware does not guarantee that TLBs of different core are coherent

* ISA provides instructions for OS to flush PTEs
e Called “TLB shootdown”
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Maybe Thinking is Hard



