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Action Items: 
• Programming Assignment 5 grades are out 
• Programming Assignment 6 is due soon
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Announcement
• Grades for Lab 4 and 5 are out. Talk to Yu and Amir.

• Lab 6 is out. Due 11:59pm, Thursday, May 2. 
• Take a look at the cache and virtual memory problem sets.
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Due

Today
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Today
• From process to threads


• Basic thread execution model 
•Multi-threading programming

• Hardware support of threads


• Multi-core 
• Hyper-threading 
• Cache coherence
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We will be scratching the surface.
Take CSC 2/458 to learn more!!
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Programmers View of A Process

• Process = process context + code, data, and stack
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Shared libraries

Run-time heap

0

Read/write data

Program context: 
    Data registers 
    Condition codes 
    Stack pointer (SP) 
    Program counter (PC)

Code, data, and stack

Read-only code/data

Stack
SP

PC

brk

Process context

Kernel context: 
    VM structures 
    Descriptor table 
    brk pointer
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A Process With Multiple Threads
• Multiple threads can be associated with a process


• Each thread has its own logical control flow 
• Each thread shares the same code, data, and kernel context
• Each thread has its own stack for local variables 

• but not protected from other threads
• Each thread has its own thread id (TID)
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Thread 1 context: 
    Data registers 
    Condition codes 
    SP1 
    PC1

stack 1

Thread 1 (main thread)

shared libraries

run-time heap

0

read/write data

 Shared code and data

read-only code/data

Kernel context: 
   VM structures 
   Descriptor table 
   brk pointer

Thread 2 context: 
    Data registers 
    Condition codes 
    SP2 
    PC2

stack 2

Thread 2 (peer thread)
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Logical View of Threads

• Threads associated with process form a pool of peers

• Unlike processes which form a tree hierarchy
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P0

P1

sh sh sh

foo

bar

T1

Process hierarchyThreads associated with process foo

T2
T4

T5 T3

shared code, data 
and kernel context
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Concurrent Threads

• Two threads are concurrent if their flows overlap in 
time


• Otherwise, they are sequential


• Examples:

• Concurrent: A & B, A&C
• Sequential: B & C
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Time

Thread A Thread B Thread C
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Concurrent Thread Execution
• Single Core Processor


• Simulate parallelism 
by time slicing
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Time

Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on 2 cores

•Multi Core Processor

• Threads can have 

true parallelisms
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Threads vs. Processes

• How threads and processes are similar

• Each has its own logical control flow
• Each can run concurrently with others (possibly on different cores)
• Each is context switched, controlled by kernel
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Threads vs. Processes

• How threads and processes are similar

• Each has its own logical control flow
• Each can run concurrently with others (possibly on different cores)
• Each is context switched, controlled by kernel

• How threads and processes are different

• Threads share all code and data (except local stacks)

• Processes (typically) do not
• Threads are less expensive than processes

• Process control (creating and reaping) twice as expensive as thread 
control

• Typical Linux numbers:
• ~20K cycles to create and reap a process
• ~10K cycles (or less) to create and reap a thread
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Posix Threads (Pthreads) Interface
• Pthreads: Standard interface for ~60 functions that manipulate 

threads from C programs
• Creating and reaping threads

• pthread_create()
• pthread_join()

• Determining your thread ID
• pthread_self()

• Terminating threads
• pthread_cancel()
• pthread_exit()

• exit() [terminates all threads] , RET [terminates current thread]
• Synchronizing access to shared variables

• pthread_mutex_init 
• pthread_mutex_[un]lock
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The Pthreads "hello, world" Program
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void *thread(void *vargp) /* thread routine */ 
{ 
    printf("Hello, world!\n"); 
    return NULL;                  
} 

/*                                                                                                                
 * hello.c - Pthreads "hello, world" program                                                                      
 */ 
#include "csapp.h" 
void *thread(void *vargp);                     

int main() 
{ 
    pthread_t tid;                             
    Pthread_create(&tid, NULL, thread, NULL);  
    Pthread_join(tid, NULL);                   
    exit(0);                                   
}

hello.c

hello.c
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The Pthreads "hello, world" Program
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void *thread(void *vargp) /* thread routine */ 
{ 
    printf("Hello, world!\n"); 
    return NULL;                  
} 

/*                                                                                                                
 * hello.c - Pthreads "hello, world" program                                                                      
 */ 
#include "csapp.h" 
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(usually NULL)
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Thread ID
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Execution of Threaded “hello, world”
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Main thread
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Execution of Threaded “hello, world”
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Main thread

call Pthread_create()
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Execution of Threaded “hello, world”
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Main thread

call Pthread_create()
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Execution of Threaded “hello, world”
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Main thread

Peer thread
call Pthread_create()
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Execution of Threaded “hello, world”
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Main thread

Peer thread
call Pthread_create()

Pthread_create() returns
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Execution of Threaded “hello, world”
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Main thread

Peer thread
call Pthread_create()

call Pthread_join()

Pthread_create() returns
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Execution of Threaded “hello, world”
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Main thread

Peer thread

Main thread waits for  
peer  thread to terminate

call Pthread_create()

call Pthread_join()

Pthread_create() returns
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Execution of Threaded “hello, world”
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Main thread

Peer thread

return NULL;Main thread waits for  
peer  thread to terminate

call Pthread_create()

call Pthread_join()
printf()

Peer thread 
terminates

Pthread_create() returns
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Execution of Threaded “hello, world”
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Main thread

Peer thread

return NULL;Main thread waits for  
peer  thread to terminate

call Pthread_create()

call Pthread_join()

Pthread_join() returns

printf()

Peer thread 
terminates

Pthread_create() returns
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Execution of Threaded “hello, world”
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Main thread

Peer thread

return NULL;Main thread waits for  
peer  thread to terminate

exit() 
Terminates 

main thread and 
any peer threads

call Pthread_create()

call Pthread_join()

Pthread_join() returns

printf()

Peer thread 
terminates

Pthread_create() returns



Carnegie Mellon

Today
• From process to threads


• Basic thread execution model 
•Multi-threading programming

• Hardware support of threads


• Multi-core 
• Hyper-threading 
• Cache coherence
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Shared Variables in Threaded C Programs
• One great thing about threads is that they can share same 

program variables.

• Question: Which variables in a threaded C program are shared?

• Intuitively, the answer is as simple as “global variables are 

shared” and “stack variables are private”. Not so simple in reality.
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Thread 1 context: 
    Data registers 
    Condition codes 
    SP1 
    PC1

stack 1

Thread 1 (main thread) shared libraries

run-time heap

0

read/write data

 Shared code and data

read-only code/data

Kernel context: 
   VM structures 
   Descriptor table 
   brk pointer

Thread 2 context: 
    Data registers 
    Condition codes 
    SP2 
    PC2

stack 2

Thread 2 (peer thread)
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Example Program to Illustrate Sharing

!15

char **ptr;  /* global var */ 

void *thread(void *vargp) 
{ 
    long myid = (long)vargp; 
    static int cnt = 0; 
    printf("[%ld]:  %s (cnt=%d)\n",  
         myid, ptr[myid], ++cnt); 
    return NULL; 
} 

int main() 
{ 
    long i; 
    pthread_t tid; 
    char *msgs[2] = { 
        "Hello from foo", 
        "Hello from bar" 
    }; 
    ptr = msgs; 
    for (i = 0; i < 2; i++) 
        pthread_create(&tid,  
            NULL,  
            thread,  
            (void *)i); 
    pthread_exit(NULL); 
} sharing.c

Memory mapped region  
for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

Main thread stack

Peer thread 0 stack

Peer thread 1 stack
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Synchronizing Threads  
• Shared variables are handy...


•…but introduce the possibility of nasty synchronization errors.
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Improper Synchronization

!17

/* Global shared variable */ 
volatile long cnt = 0; /* Counter */ 

int main(int argc, char **argv) 
{ 
   pthread_t tid1, tid2; 
   long niters = 10000; 

   Pthread_create(&tid1, NULL, 
        thread, &niters); 
    Pthread_create(&tid2, NULL, 
        thread, &niters); 
    Pthread_join(tid1, NULL); 
    Pthread_join(tid2, NULL); 

    /* Check result */ 
    if (cnt != (2 * 10000)) 
        printf("BOOM! cnt=%ld\n", cnt); 
    else 
        printf("OK cnt=%ld\n", cnt); 
    exit(0); 
}

/* Thread routine */                                                                                              
void *thread(void *vargp)                                                                                         
{                                                                                                                 
    long i, niters =  
               *((long *)vargp);                                                                            
                                                                                                                  
    for (i = 0; i < niters; i++) 
        cnt++;                    
                                                                                                                  
    return NULL;                                                                                                  
} 

badcnt.c
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Improper Synchronization

!17

/* Global shared variable */ 
volatile long cnt = 0; /* Counter */ 

int main(int argc, char **argv) 
{ 
   pthread_t tid1, tid2; 
   long niters = 10000; 

   Pthread_create(&tid1, NULL, 
        thread, &niters); 
    Pthread_create(&tid2, NULL, 
        thread, &niters); 
    Pthread_join(tid1, NULL); 
    Pthread_join(tid2, NULL); 

    /* Check result */ 
    if (cnt != (2 * 10000)) 
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    else 
        printf("OK cnt=%ld\n", cnt); 
    exit(0); 
}

/* Thread routine */                                                                                              
void *thread(void *vargp)                                                                                         
{                                                                                                                 
    long i, niters =  
               *((long *)vargp);                                                                            
                                                                                                                  
    for (i = 0; i < niters; i++) 
        cnt++;                    
                                                                                                                  
    return NULL;                                                                                                  
} 

linux> ./badcnt 
OK cnt=20000 

linux> ./badcnt 
BOOM! cnt=13051

cnt should be 20,000. 

What went wrong?
badcnt.c
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Assembly Code for Counter Loop

!18

for (i = 0; i < niters; i++) 
    cnt++; 

C code for counter loop in thread i

    movq  (%rdi), %rcx 
    testq %rcx,%rcx 
    jle   .L2 
    movl  $0, %eax 
.L3: 
    movq  cnt(%rip),%rdx 
    addq  $1, %rdx 
    movq  %rdx, cnt(%rip) 
    addq  $1, %rax 
    cmpq  %rcx, %rax 
    jne   .L3 
.L2:

Hi : Head

Ti : Tail

Li  : Load cnt 
Ui : Update cnt 
Si : Store cnt

Asm code for thread i
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Concurrent Execution
• Key observation: In general, any sequentially consistent 

interleaving is possible, but some give an unexpected result!

!19

L1
U1
S1
L2
U2
S2

1
1
1
2
2
2

0
1
1
-
-
-

0
0
1
1
1
2

i (thread) instri cnt%rdx1

-
-
-
1
2
2

%rdx2

Thread 1 
critical section
Thread 2 
critical section
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Concurrent Execution (cont)
• Incorrect ordering: two threads increment the counter, but the 

result is 1 instead of 2
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L1
U1
L2
S1
U2
S2

1
1
2
1
2
2

0
1
-
1
-
-

0
0
0
1
1
1
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-
-
0
-
1
1

%rdx2
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Concurrent Execution (cont)

!21

L1
L2
U2
S2
U1
S1

1
2
2
2
1
1

i (thread) instri cnt%rdx1 %rdx2
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Concurrent Execution (cont)
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Concurrent Execution (cont)
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Concurrent Execution (cont)
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Concurrent Execution (cont)
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Concurrent Execution (cont)
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Concurrent Execution (cont)

!21

L1
L2
U2
S2
U1
S1

1
2
2
2
1
1

i (thread) instri cnt%rdx1 %rdx2

0
0
1
1 1

1
1 1



Carnegie Mellon

Concurrent Execution (cont)
• Another undesired, but legal, interleaving
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L1
L2
U2
S2
U1
S1

1
2
2
2
1
1

i (thread) instri cnt%rdx1 %rdx2

0
0
1
1 1

1
1 1
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Assembly Code for Counter Loop

!22

for (i = 0; i < niters; i++) 
    cnt++; 

    movq  (%rdi), %rcx 
    testq %rcx,%rcx 
    jle   .L2 
    movl  $0, %eax 
.L3: 
    movq  cnt(%rip),%rdx 
    addq  $1, %rdx 
    movq  %rdx, cnt(%rip) 
    addq  $1, %rax 
    cmpq  %rcx, %rax 
    jne   .L3 
.L2:

Hi : Head

Ti : Tail

Li  : Load cnt 
Ui : Update cnt 
Si : Store cnt

Asm code for thread i

C code for counter loop in thread i
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for (i = 0; i < niters; i++) 
    cnt++; 

    movq  (%rdi), %rcx 
    testq %rcx,%rcx 
    jle   .L2 
    movl  $0, %eax 
.L3: 
    movq  cnt(%rip),%rdx 
    addq  $1, %rdx 
    movq  %rdx, cnt(%rip) 
    addq  $1, %rax 
    cmpq  %rcx, %rax 
    jne   .L3 
.L2:

Hi : Head

Ti : Tail

Li  : Load cnt 
Ui : Update cnt 
Si : Store cnt

Asm code for thread i
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section 
wrt cnt

C code for counter loop in thread i
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Critical Section

!23

• Code section (a sequence of instructions) where no more than one 
thread should be executing concurrently.


• Critical section refers to code, but its intention is to protect data!

• Threads need to have mutually exclusive access to critical section

    movq  (%rdi), %rcx 
    testq %rcx,%rcx 
    jle   .L2 
    movl  $0, %eax 
.L3: 
    movq  cnt(%rip),%rdx 
    addq  $1, %rdx 
    movq  %rdx, cnt(%rip) 
    addq  $1, %rax 
    cmpq  %rcx, %rax 
    jne   .L3 
.L2:

Hi : Head

Ti : Tail

Li  : Load cnt 
Ui : Update cnt 
Si : Store cnt

Asm code for thread i

critical 
section 
wrt cnt
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Enforcing Mutual Exclusion
•We must synchronize the execution of the threads so that they 

can never have an unsafe trajectory.	 

• i.e., need to guarantee mutually exclusive access for each critical 

section.

• Classic solution: 

• Semaphores (Edsger Dijkstra)

• Other approaches

• Mutex and condition variables
• Monitors (Java)

!24
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Enforcing Mutual Exclusion
•We must synchronize the execution of the threads so that they 

can never have an unsafe trajectory.	 

• i.e., need to guarantee mutually exclusive access for each critical 

section.

• Classic solution: 

• Semaphores (Edsger Dijkstra)

• Other approaches

• Mutex and condition variables
• Monitors (Java)

!24

Again, take CSC 2/458 to learn more!!
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Using Semaphores for Mutual Exclusion
• Basic idea:

• Associate each shared variable (or related set of shared variables) with 
a unique variable, called semaphore, initially 1

• Every time a thread tries to enter the critical section, it first checks the 
semaphore value. If it’s still 1, the thread decrements the mutex value 
to 0 (through a P operation) and enters the critical section

• Every time a thread exits the critical section, it increments the 
semaphore value to 1 (through a V operation) so that other threads 
are now allowed to enter the critical section

• No more than one thread can be in the critical section at a time
• Terminology

• Binary semaphore is also called mutex (i.e., the semaphore value 
could only be 0 or 1)

• Think of P operation as “locking”, and V as “unlocking”.

!25
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Proper Synchronization
• Define and initialize a mutex for the shared variable cnt:

!26

  volatile long cnt = 0;  /* Counter */ 
  sem_t mutex;            /* Semaphore that protects cnt */ 
  
  Sem_init(&mutex, 0, 1); /* mutex = 1 */

• Surround critical section with P and V:

 for (i = 0; i < niters; i++) { 
     P(&mutex); 
     cnt++; 
     V(&mutex); 
  }

linux> ./goodcnt 10000 
OK cnt=20000 
linux> ./goodcnt 10000 
OK cnt=20000 
linux>

Warning: It’s orders of magnitude 
slower than badcnt.c. 

goodcnt.c
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Today
• From process to threads


• Basic thread execution model 
•Multi-threading programming

• Hardware support of threads


• Multi-core 
• Hyper-threading 
• Cache coherence

!27
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Thread-level Parallelism (TLP)
• Thread-Level Parallelism


• Splitting a task into independent sub-tasks 
• Each thread is responsible for a sub-task 

• Example: Parallel summation of N number 
• Should add up to ((n-1)*n)/2 

• Partition values 1, …, n-1 into t ranges

• ⎣n/t⎦ values in each range 

• Each of t threads processes one range (sub-task) 
• Sum all sub-sums in the end 

• Question: if you parallel you work N ways, do you always an N 
times speedup?

!28
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• Maximum speedup limited by the 

sequential portion
• Main cause: Non-parallelizable 

operations on data
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Why the Sequential Bottleneck?
• Maximum speedup limited by the 
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• Main cause: Non-parallelizable 

operations on data
• Parallel portion is usually not 
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• e.g., Synchronization overhead
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Each thread: 
    loop { 
        Compute 
        P(A) 
            Update shared data 
        V(A) 
     }

N

C
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Can A Single Core Support Multi-threading?

• Need to multiplex between different threads (time slicing)

!30

Thread A Thread B Thread C

Sequential Multi-threaded
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• Can single-core multi-threading provide any performance gains?
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Any benefits?
• Can single-core multi-threading provide any performance gains?
• If Thread A has a cache miss and the pipeline gets stalled, 

switch to Thread C. Improves the overall performance.

!31

Thread A Thread B Thread C

Cache

Miss!
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When to Switch?

!32

• Coarse grained

• Event based, e.g., switch on L3 cache miss 
• Quantum based (every thousands of cycles)
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When to Switch?

!32

• Coarse grained

• Event based, e.g., switch on L3 cache miss 
• Quantum based (every thousands of cycles)

• Fine grained

• Cycle by cycle 
• Thornton, “CDC 6600: Design of a Computer,” 1970. 
• Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP 

1978. Seminal paper that shows that using multi-threading can avoid 
branch prediction.

•Either way, need to save/restore thread context upon 
switching
•One great thing about fine-grained switching: no need for 

branch prediction!!
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Single-Core Internals

!33

Instruction Control

Registers

Instruction 
Decoder

Instructions

Instruction 
Cache

PC

Functional Units

Int
Arith

Int
Arith

FP 
Arith

Load / 
Store Data Cache

• Typically has multiple function units to allow for issuing multiple 
instructions at the same time


• Called “Superscalar” Microarchitecture
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Conventional Multi-threading
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Functional Units

Thread 1

Context 
Switch

Thread 2
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Hyper-threading
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Functional Units

Int
Arith

Int
Arith

FP 
Arith

Load / 
Store

Instruction Control
Instruction 

Decoder

Data Cache

Instruction 
Cache

• Intel’s terminology. More commonly known as: Simultaneous Multi-
threading (SMT)


• Replicate enough hardware structures to process K instruction streams

• K copies of all registers. Share functional units

Reg A Instructions

PC A
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Hyper-threading

!35

Functional Units

Int
Arith

Int
Arith

FP 
Arith

Load / 
Store

Instruction Control
Instruction 

Decoder

Data Cache

Instruction 
Cache

• Intel’s terminology. More commonly known as: Simultaneous Multi-
threading (SMT)


• Replicate enough hardware structures to process K instruction streams

• K copies of all registers. Share functional units

Reg A Instructions

PC A
Reg B Instructions

PC B
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Conventional Multi-threading vs. Hyper-threading
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Conventional Multi-threading vs. Hyper-threading

!36

Thread 1

Context 
Switch

Thread 2

Conventional
Multi-threading Hyper-threading

Multiple threads 
actually execute in 
parallel (even with 
one single core)

No/little context 
switch overhead
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Typical Multi-core Processor

• Traditional 
multiprocessing: 
symmetric 
multiprocessor (SMP)


• Every core is exactly 
the same. Private 
registers, L1/L2 
caches, etc.


• Share L3 (LLC) and 
main memory

!37

Regs

L1  
d-cache

L1  
i-cache

L2 unified 
cache

Core 0

Regs

L1  
d-cache

L1  
i-cache

L2 unified 
cache

Core n-1

…

L3 unified cache 
(shared by all cores)

Main memory
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Asymmetric Multiprocessor (AMP)

!38

En
er

gy
 C

on
su

m
pt

io
n

Performance

Big Core Small Core

Frequency 
Levels

• Offer a large performance-energy trade-off space
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Asymmetric Chip-Multiprocessor (ACMP)

!39

• Already used in commodity devices (e.g., Samsung Galaxy S6, iPhone 7)
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Combine Multi-core with Hyper-threading
• Common for laptop/desktop/server machine. E.g., 2 physical 

cores, each core has 2 hyper-threads => 4 virtual cores.

• Not for mobile processors (Hyper-threading costly to implement)

!40
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Today
• From process to threads


• Basic thread execution model 
•Multi-threading programming

• Hardware support of threads


• Multi-core 
• Hyper-threading 
• Cache coherence

!41



Carnegie Mellon

The Issue
• Assume that we have a multi-core processor. Thread 0 runs on Core 0, 
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The Issue
• Assume that we have a multi-core processor. Thread 0 runs on Core 0, 

and Thread 1 runs on Core 1.
• Threads share variables: e.g., Thread 0 writes to an address, followed 

by Thread 1 reading.
• Each read should receive the value last written by anyone
• Basic question: If multiple cores access the same data, how do they 

ensure they all see a consistent state?

!42

Thread 0 
Mem[A] = 1

Thread 1 
…

Print Mem[A]



Carnegie Mellon

The Issue
• Without cache, the issue is (theoretically) solvable by using mutex.

• …because there is only one copy of x in the entire system. Accesses 

to x in memory are serialized by mutex.

!43

C1 C2

x
Main Memory

1000

Bus

Write: x=1000 Read: x
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The Issue
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The Issue
• What if each core cache the same data, how do they ensure they all 

see a consistent state? (assuming a write-back cache)
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The Issue
• What if each core cache the same data, how do they ensure they all 

see a consistent state? (assuming a write-back cache)

!44

C1 C2

Bus

1000

x
Main Memory

1000

Read: x
Read: x
x=x+1000 
Write: x

2000



Carnegie Mellon

The Issue
• What if each core cache the same data, how do they ensure they all 

see a consistent state? (assuming a write-back cache)

!44

C1 C2

Bus

1000

x
Main Memory

1000

Read: x
Read: x
x=x+1000 
Write: x Read: x Should not 

return 1000!
2000
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Cache Coherence: The Idea
• Key issue: there are multiple copies of the same data in the 

system, and they could have different values at the same time.
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Cache Coherence: The Idea
• Key issue: there are multiple copies of the same data in the 

system, and they could have different values at the same time.
• Key idea: ensure multiple copies have same value, i.e., coherent
• How? Two options:

• Update: push new value to all copies (in other caches)
• Invalidate: invalidate other copies (in other caches)

!45
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Invalidate-Based Cache Coherence

!46

C1 C2

Bus

x
Main Memory

1000

I

M S

Below: State Transition for x in C2’s cache; 
Syntax: Event/Action

Associate each cache line with 3 
states: Modified, Invalid, Shared
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Invalidate-Based Cache Coherence
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x
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I
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PrRd/BusRd
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Syntax: Event/Action

Associate each cache line with 3 
states: Modified, Invalid, Shared
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Invalidate-Based Cache Coherence
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C1 C2

Bus

10001000

x
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states: Modified, Invalid, Shared Read: x
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Below: State Transition for x in C2’s cache; 
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Readings: Cache Coherence
• Most helpful


• Culler and Singh, Parallel Computer Architecture 
• Chapter 5.1 (pp 269 – 283), Chapter 5.3 (pp 291 – 305) 

• Patterson&Hennessy, Computer Organization and Design 
• Chapter 5.8 (pp 534 – 538 in 4th and 4th revised eds.) 

• Papamarcos and Patel, “A low-overhead coherence solution for multiprocessors 
with private cache memories,” ISCA 1984. 

• Also very useful

• Censier and Feautrier, “A new solution to coherence problems in multicache 

systems,” IEEE Trans. Computers, 1978. 
• Goodman, “Using cache memory to reduce processor-memory traffic,” ISCA 1983. 
• Laudon and Lenoski, “The SGI Origin: a ccNUMA highly scalable server,” ISCA 

1997. 
• Martin et al, “Token coherence: decoupling performance and correctness,” ISCA 

2003. 
• Baer and Wang, “On the inclusion properties for multi-level cache hierarchies,” 

ISCA 1988.
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Does Hardware Have to Keep Cache Coherent?

• Hardware-guaranteed cache coherence is complex to implement.
• Can the programmers ensure cache coherence themselves?
• Key: ISA must provide cache flush/invalidate instructions


• FLUSH-LOCAL A: Flushes/invalidates the cache block containing 
address A from a processor’s local cache.  

• FLUSH-GLOBAL A: Flushes/invalidates the cache block containing 
address A from all other processors’ caches.  

• FLUSH-CACHE X: Flushes/invalidates all blocks in cache X.
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Does Hardware Have to Keep Cache Coherent?

• Hardware-guaranteed cache coherence is complex to implement.
• Can the programmers ensure cache coherence themselves?
• Key: ISA must provide cache flush/invalidate instructions


• FLUSH-LOCAL A: Flushes/invalidates the cache block containing 
address A from a processor’s local cache.  

• FLUSH-GLOBAL A: Flushes/invalidates the cache block containing 
address A from all other processors’ caches.  

• FLUSH-CACHE X: Flushes/invalidates all blocks in cache X.
•Classic example: TLB


• Hardware does not guarantee that TLBs of different core are coherent 
• ISA provides instructions for OS to flush PTEs 
• Called “TLB shootdown”
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