
CSC 252: Computer Organization 
 Spring 2018: Lecture 25 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Action Items:
• Programming Assignment 5 grades are out
• Programming Assignment 6 is due soon

Carnegie Mellon

Announcement
• Grades for Lab 4 and 5 are out. Talk to Yu and Amir.

• Lab 6 is out. Due 11:59pm, Thursday, May 2.
• Take a look at the cache and virtual memory problem sets.

!2

Due

Today

Carnegie Mellon

Today
• From process to threads

• Basic thread execution model
•Multi-threading programming

• Hardware support of threads

• Multi-core
• Hyper-threading
• Cache coherence

!3

Carnegie Mellon

Today
• From process to threads

• Basic thread execution model
•Multi-threading programming

• Hardware support of threads

• Multi-core
• Hyper-threading
• Cache coherence

!3

We will be scratching the surface.
Take CSC 2/458 to learn more!!

Carnegie Mellon

Programmers View of A Process

• Process = process context + code, data, and stack

!4

Shared libraries

Run-time heap

0

Read/write data

Program context:
 Data registers
 Condition codes
 Stack pointer (SP)
 Program counter (PC)

Code, data, and stack

Read-only code/data

Stack
SP

PC

brk

Process context

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Carnegie Mellon

A Process With Multiple Threads
• Multiple threads can be associated with a process

• Each thread has its own logical control flow
• Each thread shares the same code, data, and kernel context
• Each thread has its own stack for local variables

• but not protected from other threads
• Each thread has its own thread id (TID)

!5

Thread 1 context:
 Data registers
 Condition codes
 SP1
 PC1

stack 1

Thread 1 (main thread)

shared libraries

run-time heap

0

read/write data

 Shared code and data

read-only code/data

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Thread 2 context:
 Data registers
 Condition codes
 SP2
 PC2

stack 2

Thread 2 (peer thread)

Carnegie Mellon

Logical View of Threads

• Threads associated with process form a pool of peers

• Unlike processes which form a tree hierarchy

!6

P0

P1

sh sh sh

foo

bar

T1

Process hierarchyThreads associated with process foo

T2
T4

T5 T3

shared code, data
and kernel context

Carnegie Mellon

Concurrent Threads

• Two threads are concurrent if their flows overlap in
time

• Otherwise, they are sequential

• Examples:

• Concurrent: A & B, A&C
• Sequential: B & C

!7

Time

Thread A Thread B Thread C

Carnegie Mellon

Concurrent Thread Execution
• Single Core Processor

• Simulate parallelism
by time slicing

!8

Time

Thread A Thread B Thread C Thread A Thread B Thread C

Run 3 threads on 2 cores

•Multi Core Processor

• Threads can have

true parallelisms

Carnegie Mellon

Threads vs. Processes

• How threads and processes are similar

• Each has its own logical control flow
• Each can run concurrently with others (possibly on different cores)
• Each is context switched, controlled by kernel

!9

Carnegie Mellon

Threads vs. Processes

• How threads and processes are similar

• Each has its own logical control flow
• Each can run concurrently with others (possibly on different cores)
• Each is context switched, controlled by kernel

• How threads and processes are different

• Threads share all code and data (except local stacks)

• Processes (typically) do not
• Threads are less expensive than processes

• Process control (creating and reaping) twice as expensive as thread
control

• Typical Linux numbers:
• ~20K cycles to create and reap a process
• ~10K cycles (or less) to create and reap a thread

!9

Carnegie Mellon

Posix Threads (Pthreads) Interface
• Pthreads: Standard interface for ~60 functions that manipulate

threads from C programs
• Creating and reaping threads

• pthread_create()
• pthread_join()

• Determining your thread ID
• pthread_self()

• Terminating threads
• pthread_cancel()
• pthread_exit()

• exit() [terminates all threads] , RET [terminates current thread]
• Synchronizing access to shared variables

• pthread_mutex_init
• pthread_mutex_[un]lock

!10

Carnegie Mellon

The Pthreads "hello, world" Program

!11

void *thread(void *vargp) /* thread routine */
{
 printf("Hello, world!\n");
 return NULL;
}

/*
 * hello.c - Pthreads "hello, world" program
 */
#include "csapp.h"
void *thread(void *vargp);

int main()
{
 pthread_t tid;
 Pthread_create(&tid, NULL, thread, NULL);
 Pthread_join(tid, NULL);
 exit(0);
}

hello.c

hello.c

Carnegie Mellon

The Pthreads "hello, world" Program

!11

void *thread(void *vargp) /* thread routine */
{
 printf("Hello, world!\n");
 return NULL;
}

/*
 * hello.c - Pthreads "hello, world" program
 */
#include "csapp.h"
void *thread(void *vargp);

int main()
{
 pthread_t tid;
 Pthread_create(&tid, NULL, thread, NULL);
 Pthread_join(tid, NULL);
 exit(0);
}

hello.c

Thread ID

hello.c

Carnegie Mellon

The Pthreads "hello, world" Program

!11

void *thread(void *vargp) /* thread routine */
{
 printf("Hello, world!\n");
 return NULL;
}

/*
 * hello.c - Pthreads "hello, world" program
 */
#include "csapp.h"
void *thread(void *vargp);

int main()
{
 pthread_t tid;
 Pthread_create(&tid, NULL, thread, NULL);
 Pthread_join(tid, NULL);
 exit(0);
}

Thread attributes
(usually NULL)

hello.c

Thread ID

hello.c

Carnegie Mellon

The Pthreads "hello, world" Program

!11

void *thread(void *vargp) /* thread routine */
{
 printf("Hello, world!\n");
 return NULL;
}

/*
 * hello.c - Pthreads "hello, world" program
 */
#include "csapp.h"
void *thread(void *vargp);

int main()
{
 pthread_t tid;
 Pthread_create(&tid, NULL, thread, NULL);
 Pthread_join(tid, NULL);
 exit(0);
}

Thread attributes
(usually NULL)

hello.c

Thread ID

Thread routine

hello.c

Carnegie Mellon

The Pthreads "hello, world" Program

!11

void *thread(void *vargp) /* thread routine */
{
 printf("Hello, world!\n");
 return NULL;
}

/*
 * hello.c - Pthreads "hello, world" program
 */
#include "csapp.h"
void *thread(void *vargp);

int main()
{
 pthread_t tid;
 Pthread_create(&tid, NULL, thread, NULL);
 Pthread_join(tid, NULL);
 exit(0);
}

Thread attributes
(usually NULL)

Thread arguments
(void *p)

hello.c

Thread ID

Thread routine

hello.c

Carnegie Mellon

The Pthreads "hello, world" Program

!11

void *thread(void *vargp) /* thread routine */
{
 printf("Hello, world!\n");
 return NULL;
}

/*
 * hello.c - Pthreads "hello, world" program
 */
#include "csapp.h"
void *thread(void *vargp);

int main()
{
 pthread_t tid;
 Pthread_create(&tid, NULL, thread, NULL);
 Pthread_join(tid, NULL);
 exit(0);
}

Thread attributes
(usually NULL)

Thread arguments
(void *p)

Return value
(void **p)

hello.c

Thread ID

Thread routine

hello.c

Carnegie Mellon

Execution of Threaded “hello, world”

!12

Main thread

Carnegie Mellon

Execution of Threaded “hello, world”

!12

Main thread

call Pthread_create()

Carnegie Mellon

Execution of Threaded “hello, world”

!12

Main thread

call Pthread_create()

Carnegie Mellon

Execution of Threaded “hello, world”

!12

Main thread

Peer thread
call Pthread_create()

Carnegie Mellon

Execution of Threaded “hello, world”

!12

Main thread

Peer thread
call Pthread_create()

Pthread_create() returns

Carnegie Mellon

Execution of Threaded “hello, world”

!12

Main thread

Peer thread
call Pthread_create()

call Pthread_join()

Pthread_create() returns

Carnegie Mellon

Execution of Threaded “hello, world”

!12

Main thread

Peer thread

Main thread waits for
peer thread to terminate

call Pthread_create()

call Pthread_join()

Pthread_create() returns

Carnegie Mellon

Execution of Threaded “hello, world”

!12

Main thread

Peer thread

return NULL;Main thread waits for
peer thread to terminate

call Pthread_create()

call Pthread_join()
printf()

Peer thread
terminates

Pthread_create() returns

Carnegie Mellon

Execution of Threaded “hello, world”

!12

Main thread

Peer thread

return NULL;Main thread waits for
peer thread to terminate

call Pthread_create()

call Pthread_join()

Pthread_join() returns

printf()

Peer thread
terminates

Pthread_create() returns

Carnegie Mellon

Execution of Threaded “hello, world”

!12

Main thread

Peer thread

return NULL;Main thread waits for
peer thread to terminate

exit()
Terminates

main thread and
any peer threads

call Pthread_create()

call Pthread_join()

Pthread_join() returns

printf()

Peer thread
terminates

Pthread_create() returns

Carnegie Mellon

Today
• From process to threads

• Basic thread execution model
•Multi-threading programming

• Hardware support of threads

• Multi-core
• Hyper-threading
• Cache coherence

!13

Carnegie Mellon

Shared Variables in Threaded C Programs
• One great thing about threads is that they can share same

program variables.

• Question: Which variables in a threaded C program are shared?

• Intuitively, the answer is as simple as “global variables are

shared” and “stack variables are private”. Not so simple in reality.

!14

Thread 1 context:
 Data registers
 Condition codes
 SP1
 PC1

stack 1

Thread 1 (main thread) shared libraries

run-time heap

0

read/write data

 Shared code and data

read-only code/data

Kernel context:
 VM structures
 Descriptor table
 brk pointer

Thread 2 context:
 Data registers
 Condition codes
 SP2
 PC2

stack 2

Thread 2 (peer thread)

Carnegie Mellon

Example Program to Illustrate Sharing

!15

char **ptr; /* global var */

void *thread(void *vargp)
{
 long myid = (long)vargp;
 static int cnt = 0;
 printf("[%ld]: %s (cnt=%d)\n",
 myid, ptr[myid], ++cnt);
 return NULL;
}

int main()
{
 long i;
 pthread_t tid;
 char *msgs[2] = {
 "Hello from foo",
 "Hello from bar"
 };
 ptr = msgs;
 for (i = 0; i < 2; i++)
 pthread_create(&tid,
 NULL,
 thread,
 (void *)i);
 pthread_exit(NULL);
} sharing.c

Memory mapped region
for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

Main thread stack

Peer thread 0 stack

Peer thread 1 stack

Carnegie Mellon

Example Program to Illustrate Sharing

!15

char **ptr; /* global var */

void *thread(void *vargp)
{
 long myid = (long)vargp;
 static int cnt = 0;
 printf("[%ld]: %s (cnt=%d)\n",
 myid, ptr[myid], ++cnt);
 return NULL;
}

int main()
{
 long i;
 pthread_t tid;
 char *msgs[2] = {
 "Hello from foo",
 "Hello from bar"
 };
 ptr = msgs;
 for (i = 0; i < 2; i++)
 pthread_create(&tid,
 NULL,
 thread,
 (void *)i);
 pthread_exit(NULL);
} sharing.c

Memory mapped region
for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

Main thread stack

ptr

Peer thread 0 stack

Peer thread 1 stack

Carnegie Mellon

Example Program to Illustrate Sharing

!15

char **ptr; /* global var */

void *thread(void *vargp)
{
 long myid = (long)vargp;
 static int cnt = 0;
 printf("[%ld]: %s (cnt=%d)\n",
 myid, ptr[myid], ++cnt);
 return NULL;
}

int main()
{
 long i;
 pthread_t tid;
 char *msgs[2] = {
 "Hello from foo",
 "Hello from bar"
 };
 ptr = msgs;
 for (i = 0; i < 2; i++)
 pthread_create(&tid,
 NULL,
 thread,
 (void *)i);
 pthread_exit(NULL);
} sharing.c

Memory mapped region
for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

Main thread stack

ptr

i tid

msgs

Peer thread 0 stack

Peer thread 1 stack

Carnegie Mellon

Example Program to Illustrate Sharing

!15

char **ptr; /* global var */

void *thread(void *vargp)
{
 long myid = (long)vargp;
 static int cnt = 0;
 printf("[%ld]: %s (cnt=%d)\n",
 myid, ptr[myid], ++cnt);
 return NULL;
}

int main()
{
 long i;
 pthread_t tid;
 char *msgs[2] = {
 "Hello from foo",
 "Hello from bar"
 };
 ptr = msgs;
 for (i = 0; i < 2; i++)
 pthread_create(&tid,
 NULL,
 thread,
 (void *)i);
 pthread_exit(NULL);
} sharing.c

Memory mapped region
for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

Main thread stack

ptr

i tid

msgs

Peer thread 0 stack
myid

Peer thread 1 stack

Carnegie Mellon

Example Program to Illustrate Sharing

!15

char **ptr; /* global var */

void *thread(void *vargp)
{
 long myid = (long)vargp;
 static int cnt = 0;
 printf("[%ld]: %s (cnt=%d)\n",
 myid, ptr[myid], ++cnt);
 return NULL;
}

int main()
{
 long i;
 pthread_t tid;
 char *msgs[2] = {
 "Hello from foo",
 "Hello from bar"
 };
 ptr = msgs;
 for (i = 0; i < 2; i++)
 pthread_create(&tid,
 NULL,
 thread,
 (void *)i);
 pthread_exit(NULL);
} sharing.c

Memory mapped region
for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

Main thread stack

ptr

i tid

msgs

Peer thread 0 stack
myid

myid
Peer thread 1 stack

Carnegie Mellon

Example Program to Illustrate Sharing

!15

char **ptr; /* global var */

void *thread(void *vargp)
{
 long myid = (long)vargp;
 static int cnt = 0;
 printf("[%ld]: %s (cnt=%d)\n",
 myid, ptr[myid], ++cnt);
 return NULL;
}

int main()
{
 long i;
 pthread_t tid;
 char *msgs[2] = {
 "Hello from foo",
 "Hello from bar"
 };
 ptr = msgs;
 for (i = 0; i < 2; i++)
 pthread_create(&tid,
 NULL,
 thread,
 (void *)i);
 pthread_exit(NULL);
} sharing.c

Memory mapped region
for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

Main thread stack

ptr

i tid

msgs

Peer thread 0 stack
myid

cnt

myid
Peer thread 1 stack

Carnegie Mellon

Example Program to Illustrate Sharing

!15

char **ptr; /* global var */

void *thread(void *vargp)
{
 long myid = (long)vargp;
 static int cnt = 0;
 printf("[%ld]: %s (cnt=%d)\n",
 myid, ptr[myid], ++cnt);
 return NULL;
}

int main()
{
 long i;
 pthread_t tid;
 char *msgs[2] = {
 "Hello from foo",
 "Hello from bar"
 };
 ptr = msgs;
 for (i = 0; i < 2; i++)
 pthread_create(&tid,
 NULL,
 thread,
 (void *)i);
 pthread_exit(NULL);
} sharing.c

Memory mapped region
for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

Main thread stack

ptr

i tid

msgs

Peer thread 0 stack
myid

cnt

myid
Peer thread 1 stack

main

Carnegie Mellon

Example Program to Illustrate Sharing

!15

char **ptr; /* global var */

void *thread(void *vargp)
{
 long myid = (long)vargp;
 static int cnt = 0;
 printf("[%ld]: %s (cnt=%d)\n",
 myid, ptr[myid], ++cnt);
 return NULL;
}

int main()
{
 long i;
 pthread_t tid;
 char *msgs[2] = {
 "Hello from foo",
 "Hello from bar"
 };
 ptr = msgs;
 for (i = 0; i < 2; i++)
 pthread_create(&tid,
 NULL,
 thread,
 (void *)i);
 pthread_exit(NULL);
} sharing.c

Memory mapped region
for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

Main thread stack

ptr

i tid

msgs

Peer thread 0 stack
myid

cnt

myid
Peer thread 1 stack

main

p0 p1 main

Carnegie Mellon

Example Program to Illustrate Sharing

!15

char **ptr; /* global var */

void *thread(void *vargp)
{
 long myid = (long)vargp;
 static int cnt = 0;
 printf("[%ld]: %s (cnt=%d)\n",
 myid, ptr[myid], ++cnt);
 return NULL;
}

int main()
{
 long i;
 pthread_t tid;
 char *msgs[2] = {
 "Hello from foo",
 "Hello from bar"
 };
 ptr = msgs;
 for (i = 0; i < 2; i++)
 pthread_create(&tid,
 NULL,
 thread,
 (void *)i);
 pthread_exit(NULL);
} sharing.c

Memory mapped region
for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

Main thread stack

ptr

i tid

msgs

Peer thread 0 stack
myid

cnt

myid
Peer thread 1 stack

p0

main

p0 p1 main

Carnegie Mellon

Example Program to Illustrate Sharing

!15

char **ptr; /* global var */

void *thread(void *vargp)
{
 long myid = (long)vargp;
 static int cnt = 0;
 printf("[%ld]: %s (cnt=%d)\n",
 myid, ptr[myid], ++cnt);
 return NULL;
}

int main()
{
 long i;
 pthread_t tid;
 char *msgs[2] = {
 "Hello from foo",
 "Hello from bar"
 };
 ptr = msgs;
 for (i = 0; i < 2; i++)
 pthread_create(&tid,
 NULL,
 thread,
 (void *)i);
 pthread_exit(NULL);
} sharing.c

Memory mapped region
for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

Main thread stack

ptr

i tid

msgs

Peer thread 0 stack
myid

cnt

myid
Peer thread 1 stack

p0

p1

main

p0 p1 main

Carnegie Mellon

Example Program to Illustrate Sharing

!15

char **ptr; /* global var */

void *thread(void *vargp)
{
 long myid = (long)vargp;
 static int cnt = 0;
 printf("[%ld]: %s (cnt=%d)\n",
 myid, ptr[myid], ++cnt);
 return NULL;
}

int main()
{
 long i;
 pthread_t tid;
 char *msgs[2] = {
 "Hello from foo",
 "Hello from bar"
 };
 ptr = msgs;
 for (i = 0; i < 2; i++)
 pthread_create(&tid,
 NULL,
 thread,
 (void *)i);
 pthread_exit(NULL);
} sharing.c

Memory mapped region
for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

Main thread stack

ptr

i tid

msgs

Peer thread 0 stack
myid

cnt

myid
Peer thread 1 stack

p0

p1

p0 p1 main

main

p0 p1 main

Carnegie Mellon

Example Program to Illustrate Sharing

!15

char **ptr; /* global var */

void *thread(void *vargp)
{
 long myid = (long)vargp;
 static int cnt = 0;
 printf("[%ld]: %s (cnt=%d)\n",
 myid, ptr[myid], ++cnt);
 return NULL;
}

int main()
{
 long i;
 pthread_t tid;
 char *msgs[2] = {
 "Hello from foo",
 "Hello from bar"
 };
 ptr = msgs;
 for (i = 0; i < 2; i++)
 pthread_create(&tid,
 NULL,
 thread,
 (void *)i);
 pthread_exit(NULL);
} sharing.c

Memory mapped region
for shared libraries

Runtime heap (malloc)

Program text (.text)

Initialized data (.data)

Uninitialized data (.bss)

Main thread stack

ptr

i tid

msgs

Peer thread 0 stack
myid

cnt

myid
Peer thread 1 stack

p0

p1

p0 p1

p0 p1 main

main

p0 p1 main

Carnegie Mellon

Synchronizing Threads
• Shared variables are handy...

•…but introduce the possibility of nasty synchronization errors.

!16

Carnegie Mellon

Improper Synchronization

!17

/* Global shared variable */
volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)
{
 pthread_t tid1, tid2;
 long niters = 10000;

 Pthread_create(&tid1, NULL,
 thread, &niters);
 Pthread_create(&tid2, NULL,
 thread, &niters);
 Pthread_join(tid1, NULL);
 Pthread_join(tid2, NULL);

 /* Check result */
 if (cnt != (2 * 10000))
 printf("BOOM! cnt=%ld\n", cnt);
 else
 printf("OK cnt=%ld\n", cnt);
 exit(0);
}

/* Thread routine */
void *thread(void *vargp)
{
 long i, niters =
 *((long *)vargp);

 for (i = 0; i < niters; i++)
 cnt++;

 return NULL;
}

badcnt.c

Carnegie Mellon

Improper Synchronization

!17

/* Global shared variable */
volatile long cnt = 0; /* Counter */

int main(int argc, char **argv)
{
 pthread_t tid1, tid2;
 long niters = 10000;

 Pthread_create(&tid1, NULL,
 thread, &niters);
 Pthread_create(&tid2, NULL,
 thread, &niters);
 Pthread_join(tid1, NULL);
 Pthread_join(tid2, NULL);

 /* Check result */
 if (cnt != (2 * 10000))
 printf("BOOM! cnt=%ld\n", cnt);
 else
 printf("OK cnt=%ld\n", cnt);
 exit(0);
}

/* Thread routine */
void *thread(void *vargp)
{
 long i, niters =
 *((long *)vargp);

 for (i = 0; i < niters; i++)
 cnt++;

 return NULL;
}

linux> ./badcnt
OK cnt=20000

linux> ./badcnt
BOOM! cnt=13051

cnt should be 20,000.

What went wrong?
badcnt.c

Carnegie Mellon

Assembly Code for Counter Loop

!18

for (i = 0; i < niters; i++)
 cnt++;

C code for counter loop in thread i

 movq (%rdi), %rcx
 testq %rcx,%rcx
 jle .L2
 movl $0, %eax
.L3:
 movq cnt(%rip),%rdx
 addq $1, %rdx
 movq %rdx, cnt(%rip)
 addq $1, %rax
 cmpq %rcx, %rax
 jne .L3
.L2:

Hi : Head

Ti : Tail

Li : Load cnt
Ui : Update cnt
Si : Store cnt

Asm code for thread i

Carnegie Mellon

Concurrent Execution
• Key observation: In general, any sequentially consistent

interleaving is possible, but some give an unexpected result!

!19

L1
U1
S1
L2
U2
S2

1
1
1
2
2
2

0
1
1
-
-
-

0
0
1
1
1
2

i (thread) instri cnt%rdx1

-
-
-
1
2
2

%rdx2

Thread 1
critical section
Thread 2
critical section

Carnegie Mellon

Concurrent Execution (cont)
• Incorrect ordering: two threads increment the counter, but the

result is 1 instead of 2

!20

L1
U1
L2
S1
U2
S2

1
1
2
1
2
2

0
1
-
1
-
-

0
0
0
1
1
1

i (thread) instri cnt%rdx1

-
-
0
-
1
1

%rdx2

Carnegie Mellon

Concurrent Execution (cont)

!21

L1
L2
U2
S2
U1
S1

1
2
2
2
1
1

i (thread) instri cnt%rdx1 %rdx2

Carnegie Mellon

Concurrent Execution (cont)

!21

L1
L2
U2
S2
U1
S1

1
2
2
2
1
1

i (thread) instri cnt%rdx1 %rdx2

0

Carnegie Mellon

Concurrent Execution (cont)

!21

L1
L2
U2
S2
U1
S1

1
2
2
2
1
1

i (thread) instri cnt%rdx1 %rdx2

0
0

Carnegie Mellon

Concurrent Execution (cont)

!21

L1
L2
U2
S2
U1
S1

1
2
2
2
1
1

i (thread) instri cnt%rdx1 %rdx2

0
0
1

Carnegie Mellon

Concurrent Execution (cont)

!21

L1
L2
U2
S2
U1
S1

1
2
2
2
1
1

i (thread) instri cnt%rdx1 %rdx2

0
0
1
1

Carnegie Mellon

Concurrent Execution (cont)

!21

L1
L2
U2
S2
U1
S1

1
2
2
2
1
1

i (thread) instri cnt%rdx1 %rdx2

0
0
1
1 1

Carnegie Mellon

Concurrent Execution (cont)

!21

L1
L2
U2
S2
U1
S1

1
2
2
2
1
1

i (thread) instri cnt%rdx1 %rdx2

0
0
1
1 1

1

Carnegie Mellon

Concurrent Execution (cont)

!21

L1
L2
U2
S2
U1
S1

1
2
2
2
1
1

i (thread) instri cnt%rdx1 %rdx2

0
0
1
1 1

1
1

Carnegie Mellon

Concurrent Execution (cont)

!21

L1
L2
U2
S2
U1
S1

1
2
2
2
1
1

i (thread) instri cnt%rdx1 %rdx2

0
0
1
1 1

1
1 1

Carnegie Mellon

Concurrent Execution (cont)
• Another undesired, but legal, interleaving

!21

L1
L2
U2
S2
U1
S1

1
2
2
2
1
1

i (thread) instri cnt%rdx1 %rdx2

0
0
1
1 1

1
1 1

Carnegie Mellon

Assembly Code for Counter Loop

!22

for (i = 0; i < niters; i++)
 cnt++;

 movq (%rdi), %rcx
 testq %rcx,%rcx
 jle .L2
 movl $0, %eax
.L3:
 movq cnt(%rip),%rdx
 addq $1, %rdx
 movq %rdx, cnt(%rip)
 addq $1, %rax
 cmpq %rcx, %rax
 jne .L3
.L2:

Hi : Head

Ti : Tail

Li : Load cnt
Ui : Update cnt
Si : Store cnt

Asm code for thread i

C code for counter loop in thread i

Carnegie Mellon

Assembly Code for Counter Loop

!22

for (i = 0; i < niters; i++)
 cnt++;

 movq (%rdi), %rcx
 testq %rcx,%rcx
 jle .L2
 movl $0, %eax
.L3:
 movq cnt(%rip),%rdx
 addq $1, %rdx
 movq %rdx, cnt(%rip)
 addq $1, %rax
 cmpq %rcx, %rax
 jne .L3
.L2:

Hi : Head

Ti : Tail

Li : Load cnt
Ui : Update cnt
Si : Store cnt

Asm code for thread i

critical
section
wrt cnt

C code for counter loop in thread i

Carnegie Mellon

Critical Section

!23

• Code section (a sequence of instructions) where no more than one
thread should be executing concurrently.

• Critical section refers to code, but its intention is to protect data!

• Threads need to have mutually exclusive access to critical section

 movq (%rdi), %rcx
 testq %rcx,%rcx
 jle .L2
 movl $0, %eax
.L3:
 movq cnt(%rip),%rdx
 addq $1, %rdx
 movq %rdx, cnt(%rip)
 addq $1, %rax
 cmpq %rcx, %rax
 jne .L3
.L2:

Hi : Head

Ti : Tail

Li : Load cnt
Ui : Update cnt
Si : Store cnt

Asm code for thread i

critical
section
wrt cnt

Carnegie Mellon

Enforcing Mutual Exclusion
•We must synchronize the execution of the threads so that they

can never have an unsafe trajectory.	

• i.e., need to guarantee mutually exclusive access for each critical

section.

• Classic solution:

• Semaphores (Edsger Dijkstra)

• Other approaches

• Mutex and condition variables
• Monitors (Java)

!24

Carnegie Mellon

Enforcing Mutual Exclusion
•We must synchronize the execution of the threads so that they

can never have an unsafe trajectory.	

• i.e., need to guarantee mutually exclusive access for each critical

section.

• Classic solution:

• Semaphores (Edsger Dijkstra)

• Other approaches

• Mutex and condition variables
• Monitors (Java)

!24

Again, take CSC 2/458 to learn more!!

Carnegie Mellon

Using Semaphores for Mutual Exclusion
• Basic idea:

!25

Carnegie Mellon

Using Semaphores for Mutual Exclusion
• Basic idea:

• Associate each shared variable (or related set of shared variables) with
a unique variable, called semaphore, initially 1

!25

Carnegie Mellon

Using Semaphores for Mutual Exclusion
• Basic idea:

• Associate each shared variable (or related set of shared variables) with
a unique variable, called semaphore, initially 1

• Every time a thread tries to enter the critical section, it first checks the
semaphore value. If it’s still 1, the thread decrements the mutex value
to 0 (through a P operation) and enters the critical section

!25

Carnegie Mellon

Using Semaphores for Mutual Exclusion
• Basic idea:

• Associate each shared variable (or related set of shared variables) with
a unique variable, called semaphore, initially 1

• Every time a thread tries to enter the critical section, it first checks the
semaphore value. If it’s still 1, the thread decrements the mutex value
to 0 (through a P operation) and enters the critical section

• Every time a thread exits the critical section, it increments the
semaphore value to 1 (through a V operation) so that other threads
are now allowed to enter the critical section

!25

Carnegie Mellon

Using Semaphores for Mutual Exclusion
• Basic idea:

• Associate each shared variable (or related set of shared variables) with
a unique variable, called semaphore, initially 1

• Every time a thread tries to enter the critical section, it first checks the
semaphore value. If it’s still 1, the thread decrements the mutex value
to 0 (through a P operation) and enters the critical section

• Every time a thread exits the critical section, it increments the
semaphore value to 1 (through a V operation) so that other threads
are now allowed to enter the critical section

• No more than one thread can be in the critical section at a time

!25

Carnegie Mellon

Using Semaphores for Mutual Exclusion
• Basic idea:

• Associate each shared variable (or related set of shared variables) with
a unique variable, called semaphore, initially 1

• Every time a thread tries to enter the critical section, it first checks the
semaphore value. If it’s still 1, the thread decrements the mutex value
to 0 (through a P operation) and enters the critical section

• Every time a thread exits the critical section, it increments the
semaphore value to 1 (through a V operation) so that other threads
are now allowed to enter the critical section

• No more than one thread can be in the critical section at a time
• Terminology

!25

Carnegie Mellon

Using Semaphores for Mutual Exclusion
• Basic idea:

• Associate each shared variable (or related set of shared variables) with
a unique variable, called semaphore, initially 1

• Every time a thread tries to enter the critical section, it first checks the
semaphore value. If it’s still 1, the thread decrements the mutex value
to 0 (through a P operation) and enters the critical section

• Every time a thread exits the critical section, it increments the
semaphore value to 1 (through a V operation) so that other threads
are now allowed to enter the critical section

• No more than one thread can be in the critical section at a time
• Terminology

• Binary semaphore is also called mutex (i.e., the semaphore value
could only be 0 or 1)

!25

Carnegie Mellon

Using Semaphores for Mutual Exclusion
• Basic idea:

• Associate each shared variable (or related set of shared variables) with
a unique variable, called semaphore, initially 1

• Every time a thread tries to enter the critical section, it first checks the
semaphore value. If it’s still 1, the thread decrements the mutex value
to 0 (through a P operation) and enters the critical section

• Every time a thread exits the critical section, it increments the
semaphore value to 1 (through a V operation) so that other threads
are now allowed to enter the critical section

• No more than one thread can be in the critical section at a time
• Terminology

• Binary semaphore is also called mutex (i.e., the semaphore value
could only be 0 or 1)

• Think of P operation as “locking”, and V as “unlocking”.

!25

Carnegie Mellon

Proper Synchronization
• Define and initialize a mutex for the shared variable cnt:

!26

 volatile long cnt = 0; /* Counter */
 sem_t mutex; /* Semaphore that protects cnt */

 Sem_init(&mutex, 0, 1); /* mutex = 1 */

• Surround critical section with P and V:

 for (i = 0; i < niters; i++) {
 P(&mutex);
 cnt++;
 V(&mutex);
 }

linux> ./goodcnt 10000
OK cnt=20000
linux> ./goodcnt 10000
OK cnt=20000
linux>

Warning: It’s orders of magnitude
slower than badcnt.c.

goodcnt.c

Carnegie Mellon

Today
• From process to threads

• Basic thread execution model
•Multi-threading programming

• Hardware support of threads

• Multi-core
• Hyper-threading
• Cache coherence

!27

Carnegie Mellon

Thread-level Parallelism (TLP)
• Thread-Level Parallelism

• Splitting a task into independent sub-tasks
• Each thread is responsible for a sub-task

• Example: Parallel summation of N number
• Should add up to ((n-1)*n)/2

• Partition values 1, …, n-1 into t ranges

• ⎣n/t⎦ values in each range

• Each of t threads processes one range (sub-task)
• Sum all sub-sums in the end

• Question: if you parallel you work N ways, do you always an N
times speedup?

!28

Carnegie Mellon

Why the Sequential Bottleneck?
• Maximum speedup limited by the

sequential portion
• Main cause: Non-parallelizable

operations on data

!29

Carnegie Mellon

Why the Sequential Bottleneck?
• Maximum speedup limited by the

sequential portion
• Main cause: Non-parallelizable

operations on data
• Parallel portion is usually not

perfectly parallel as well

• e.g., Synchronization overhead

!29

Carnegie Mellon

Why the Sequential Bottleneck?
• Maximum speedup limited by the

sequential portion
• Main cause: Non-parallelizable

operations on data
• Parallel portion is usually not

perfectly parallel as well

• e.g., Synchronization overhead

!29

Each thread:
 loop {
 Compute
 P(A)
 Update shared data
 V(A)
 }

Carnegie Mellon

Why the Sequential Bottleneck?
• Maximum speedup limited by the

sequential portion
• Main cause: Non-parallelizable

operations on data
• Parallel portion is usually not

perfectly parallel as well

• e.g., Synchronization overhead

!29

Each thread:
 loop {
 Compute
 P(A)
 Update shared data
 V(A)
 }

N

Carnegie Mellon

Why the Sequential Bottleneck?
• Maximum speedup limited by the

sequential portion
• Main cause: Non-parallelizable

operations on data
• Parallel portion is usually not

perfectly parallel as well

• e.g., Synchronization overhead

!29

Each thread:
 loop {
 Compute
 P(A)
 Update shared data
 V(A)
 }

N

C

Carnegie Mellon

Why the Sequential Bottleneck?
• Maximum speedup limited by the

sequential portion
• Main cause: Non-parallelizable

operations on data
• Parallel portion is usually not

perfectly parallel as well

• e.g., Synchronization overhead

!29

Each thread:
 loop {
 Compute
 P(A)
 Update shared data
 V(A)
 }

N

C

Carnegie Mellon

Can A Single Core Support Multi-threading?

• Need to multiplex between different threads (time slicing)

!30

Thread A Thread B Thread C

Sequential Multi-threaded

Carnegie Mellon

Any benefits?
• Can single-core multi-threading provide any performance gains?

!31

Thread A Thread B Thread C

Carnegie Mellon

Any benefits?
• Can single-core multi-threading provide any performance gains?

!31

Thread A Thread B Thread C

Cache

Miss!

Carnegie Mellon

Any benefits?
• Can single-core multi-threading provide any performance gains?

!31

Thread A Thread B Thread C

Cache

Miss!

Carnegie Mellon

Any benefits?
• Can single-core multi-threading provide any performance gains?
• If Thread A has a cache miss and the pipeline gets stalled,

switch to Thread C. Improves the overall performance.

!31

Thread A Thread B Thread C

Cache

Miss!

Carnegie Mellon

When to Switch?

!32

• Coarse grained

• Event based, e.g., switch on L3 cache miss
• Quantum based (every thousands of cycles)

Carnegie Mellon

When to Switch?

!32

• Coarse grained

• Event based, e.g., switch on L3 cache miss
• Quantum based (every thousands of cycles)

• Fine grained

• Cycle by cycle
• Thornton, “CDC 6600: Design of a Computer,” 1970.
• Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP

1978. Seminal paper that shows that using multi-threading can avoid
branch prediction.

Carnegie Mellon

When to Switch?

!32

• Coarse grained

• Event based, e.g., switch on L3 cache miss
• Quantum based (every thousands of cycles)

• Fine grained

• Cycle by cycle
• Thornton, “CDC 6600: Design of a Computer,” 1970.
• Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP

1978. Seminal paper that shows that using multi-threading can avoid
branch prediction.

•Either way, need to save/restore thread context upon
switching

Carnegie Mellon

When to Switch?

!32

• Coarse grained

• Event based, e.g., switch on L3 cache miss
• Quantum based (every thousands of cycles)

• Fine grained

• Cycle by cycle
• Thornton, “CDC 6600: Design of a Computer,” 1970.
• Burton Smith, “A pipelined, shared resource MIMD computer,” ICPP

1978. Seminal paper that shows that using multi-threading can avoid
branch prediction.

•Either way, need to save/restore thread context upon
switching
•One great thing about fine-grained switching: no need for

branch prediction!!

Carnegie Mellon

Single-Core Internals

!33

Instruction Control

Registers

Instruction
Decoder

Instructions

Instruction
Cache

PC

Functional Units

Int
Arith

Int
Arith

FP
Arith

Load /
Store Data Cache

• Typically has multiple function units to allow for issuing multiple
instructions at the same time

• Called “Superscalar” Microarchitecture

Carnegie Mellon

Conventional Multi-threading

!34

Thread 1

Context
Switch

Thread 2

Carnegie Mellon

Conventional Multi-threading

!34

Functional Units

Thread 1

Context
Switch

Thread 2

Carnegie Mellon

Hyper-threading

!35

Functional Units

Int
Arith

Int
Arith

FP
Arith

Load /
Store

Instruction Control
Instruction

Decoder

Data Cache

Instruction
Cache

• Intel’s terminology. More commonly known as: Simultaneous Multi-
threading (SMT)

• Replicate enough hardware structures to process K instruction streams

• K copies of all registers. Share functional units

Reg A Instructions

PC A

Carnegie Mellon

Hyper-threading

!35

Functional Units

Int
Arith

Int
Arith

FP
Arith

Load /
Store

Instruction Control
Instruction

Decoder

Data Cache

Instruction
Cache

• Intel’s terminology. More commonly known as: Simultaneous Multi-
threading (SMT)

• Replicate enough hardware structures to process K instruction streams

• K copies of all registers. Share functional units

Reg A Instructions

PC A
Reg B Instructions

PC B

Carnegie Mellon

Conventional Multi-threading vs. Hyper-threading

!36

Thread 1

Context
Switch

Thread 2

Conventional
Multi-threading Hyper-threading

Carnegie Mellon

Conventional Multi-threading vs. Hyper-threading

!36

Thread 1

Context
Switch

Thread 2

Conventional
Multi-threading Hyper-threading

Multiple threads
actually execute in
parallel (even with
one single core)

Carnegie Mellon

Conventional Multi-threading vs. Hyper-threading

!36

Thread 1

Context
Switch

Thread 2

Conventional
Multi-threading Hyper-threading

Multiple threads
actually execute in
parallel (even with
one single core)

No/little context
switch overhead

Carnegie Mellon

Typical Multi-core Processor

• Traditional
multiprocessing:
symmetric
multiprocessor (SMP)

• Every core is exactly
the same. Private
registers, L1/L2
caches, etc.

• Share L3 (LLC) and
main memory

!37

Regs

L1
d-cache

L1
i-cache

L2 unified
cache

Core 0

Regs

L1
d-cache

L1
i-cache

L2 unified
cache

Core n-1

…

L3 unified cache
(shared by all cores)

Main memory

Carnegie Mellon

Asymmetric Multiprocessor (AMP)

!38

En
er

gy
 C

on
su

m
pt

io
n

Performance

Big Core Small Core

Frequency
Levels

• Offer a large performance-energy trade-off space

Carnegie Mellon

Asymmetric Chip-Multiprocessor (ACMP)

!39

• Already used in commodity devices (e.g., Samsung Galaxy S6, iPhone 7)

Carnegie Mellon

Combine Multi-core with Hyper-threading
• Common for laptop/desktop/server machine. E.g., 2 physical

cores, each core has 2 hyper-threads => 4 virtual cores.

• Not for mobile processors (Hyper-threading costly to implement)

!40

Carnegie Mellon

Today
• From process to threads

• Basic thread execution model
•Multi-threading programming

• Hardware support of threads

• Multi-core
• Hyper-threading
• Cache coherence

!41

Carnegie Mellon

The Issue
• Assume that we have a multi-core processor. Thread 0 runs on Core 0,

and Thread 1 runs on Core 1.

!42

Carnegie Mellon

The Issue
• Assume that we have a multi-core processor. Thread 0 runs on Core 0,

and Thread 1 runs on Core 1.
• Threads share variables: e.g., Thread 0 writes to an address, followed

by Thread 1 reading.

!42

Carnegie Mellon

The Issue
• Assume that we have a multi-core processor. Thread 0 runs on Core 0,

and Thread 1 runs on Core 1.
• Threads share variables: e.g., Thread 0 writes to an address, followed

by Thread 1 reading.

!42

Thread 0
Mem[A] = 1

Thread 1
…

Print Mem[A]

Carnegie Mellon

The Issue
• Assume that we have a multi-core processor. Thread 0 runs on Core 0,

and Thread 1 runs on Core 1.
• Threads share variables: e.g., Thread 0 writes to an address, followed

by Thread 1 reading.
• Each read should receive the value last written by anyone

!42

Thread 0
Mem[A] = 1

Thread 1
…

Print Mem[A]

Carnegie Mellon

The Issue
• Assume that we have a multi-core processor. Thread 0 runs on Core 0,

and Thread 1 runs on Core 1.
• Threads share variables: e.g., Thread 0 writes to an address, followed

by Thread 1 reading.
• Each read should receive the value last written by anyone
• Basic question: If multiple cores access the same data, how do they

ensure they all see a consistent state?

!42

Thread 0
Mem[A] = 1

Thread 1
…

Print Mem[A]

Carnegie Mellon

The Issue
• Without cache, the issue is (theoretically) solvable by using mutex.

• …because there is only one copy of x in the entire system. Accesses

to x in memory are serialized by mutex.

!43

C1 C2

x
Main Memory

1000

Bus

Write: x=1000 Read: x

Carnegie Mellon

The Issue
• What if each core cache the same data, how do they ensure they all

see a consistent state? (assuming a write-back cache)

!44

C1 C2

Bus

x
Main Memory

1000

Carnegie Mellon

The Issue
• What if each core cache the same data, how do they ensure they all

see a consistent state? (assuming a write-back cache)

!44

C1 C2

Bus

x
Main Memory

1000

Read: x

Carnegie Mellon

The Issue
• What if each core cache the same data, how do they ensure they all

see a consistent state? (assuming a write-back cache)

!44

C1 C2

Bus

1000

x
Main Memory

1000

Read: x

Carnegie Mellon

The Issue
• What if each core cache the same data, how do they ensure they all

see a consistent state? (assuming a write-back cache)

!44

C1 C2

Bus

1000

x
Main Memory

1000

Read: x
Read: x

Carnegie Mellon

The Issue
• What if each core cache the same data, how do they ensure they all

see a consistent state? (assuming a write-back cache)

!44

C1 C2

Bus

10001000

x
Main Memory

1000

Read: x
Read: x

Carnegie Mellon

The Issue
• What if each core cache the same data, how do they ensure they all

see a consistent state? (assuming a write-back cache)

!44

C1 C2

Bus

10001000

x
Main Memory

1000

Read: x
Read: x
x=x+1000
Write: x

Carnegie Mellon

The Issue
• What if each core cache the same data, how do they ensure they all

see a consistent state? (assuming a write-back cache)

!44

C1 C2

Bus

1000

x
Main Memory

1000

Read: x
Read: x
x=x+1000
Write: x

2000

Carnegie Mellon

The Issue
• What if each core cache the same data, how do they ensure they all

see a consistent state? (assuming a write-back cache)

!44

C1 C2

Bus

1000

x
Main Memory

1000

Read: x
Read: x
x=x+1000
Write: x Read: x Should not

return 1000!
2000

Carnegie Mellon

Cache Coherence: The Idea
• Key issue: there are multiple copies of the same data in the

system, and they could have different values at the same time.

!45

Carnegie Mellon

Cache Coherence: The Idea
• Key issue: there are multiple copies of the same data in the

system, and they could have different values at the same time.
• Key idea: ensure multiple copies have same value, i.e., coherent

!45

Carnegie Mellon

Cache Coherence: The Idea
• Key issue: there are multiple copies of the same data in the

system, and they could have different values at the same time.
• Key idea: ensure multiple copies have same value, i.e., coherent
• How? Two options:

!45

Carnegie Mellon

Cache Coherence: The Idea
• Key issue: there are multiple copies of the same data in the

system, and they could have different values at the same time.
• Key idea: ensure multiple copies have same value, i.e., coherent
• How? Two options:

• Update: push new value to all copies (in other caches)

!45

Carnegie Mellon

Cache Coherence: The Idea
• Key issue: there are multiple copies of the same data in the

system, and they could have different values at the same time.
• Key idea: ensure multiple copies have same value, i.e., coherent
• How? Two options:

• Update: push new value to all copies (in other caches)
• Invalidate: invalidate other copies (in other caches)

!45

Carnegie Mellon

Invalidate-Based Cache Coherence

!46

C1 C2

Bus

x
Main Memory

1000

I

M S

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared

Carnegie Mellon

Invalidate-Based Cache Coherence

!46

C1 C2

Bus

x
Main Memory

1000

Read: x

I

M S

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared

Carnegie Mellon

Invalidate-Based Cache Coherence

!46

C1 C2

Bus

1000

x
Main Memory

1000

Read: x

I

M S

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared

Carnegie Mellon

Invalidate-Based Cache Coherence

!46

C1 C2

Bus

1000

x
Main Memory

1000

Read: x

I

M S

PrRd/BusRd

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared

Carnegie Mellon

Invalidate-Based Cache Coherence

!46

C1 C2

Bus

1000

x
Main Memory

1000

Read: xRead: x

I

M S

PrRd/BusRd

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared

Carnegie Mellon

Invalidate-Based Cache Coherence

!46

C1 C2

Bus

1000

x
Main Memory

1000

Read: xRead: x

I

M S

PrRd/BusRd

BusRd/Supply Data

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared

Carnegie Mellon

Invalidate-Based Cache Coherence

!46

C1 C2

Bus

10001000

x
Main Memory

1000

Read: xRead: x

I

M S

PrRd/BusRd

BusRd/Supply Data

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared

Carnegie Mellon

Invalidate-Based Cache Coherence

!46

C1 C2

Bus

10001000

x
Main Memory

1000

Read: xRead: x

I

M S

PrRd/BusRd

BusRd/Supply Data

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared Read: x

Carnegie Mellon

Invalidate-Based Cache Coherence

!46

C1 C2

Bus

10001000

x
Main Memory

1000

Read: xRead: x

I

M S

PrRd/BusRd

BusRd/Supply Data
PrRd/—

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared Read: x

Carnegie Mellon

Invalidate-Based Cache Coherence

!46

C1 C2

Bus

10001000

x
Main Memory

1000

Read: xRead: x

Write: x = 5000

I

M S

PrRd/BusRd

BusRd/Supply Data
PrRd/—

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared Read: x

Carnegie Mellon

Invalidate-Based Cache Coherence

!46

C1 C2

Bus

1000

x
Main Memory

1000

Read: xRead: x

Write: x = 5000

5000

I

M S

PrRd/BusRd

BusRd/Supply Data
PrRd/—

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared Read: x

Carnegie Mellon

Invalidate-Based Cache Coherence

!46

C1 C2

Bus

1000

x
Main Memory

1000

Read: xRead: x

Write: x = 5000

5000

I

M S

PrRd/BusRd

PrWr/Invd
BusRd/Supply Data
PrRd/—

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared Read: x

Carnegie Mellon

Invalidate-Based Cache Coherence

!46

C1 C2

Bus

x
Main Memory

1000

Read: xRead: x

Write: x = 5000

5000

I

M S

PrRd/BusRd

PrWr/Invd
BusRd/Supply Data
PrRd/—

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared Read: x

Carnegie Mellon

Invalidate-Based Cache Coherence

!46

C1 C2

Bus

x
Main Memory

1000

Read: xRead: x

Write: x = 5000

5000

I

M S

PrRd/BusRd

PrWr/Invd
BusRd/Supply Data
PrRd/—

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared Read: x

PrRd/—

Carnegie Mellon

Invalidate-Based Cache Coherence

!46

C1 C2

Bus

x
Main Memory

1000

Read: xRead: x

Write: x = 5000

5000

I

M S

PrRd/BusRd

PrWr/Invd
BusRd/Supply Data
PrRd/—

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared Read: x

PrRd/—
PrWr/—

Carnegie Mellon

Invalidate-Based Cache Coherence

!46

C1 C2

Bus

x
Main Memory

1000

Read: xRead: x

Write: x = 5000

5000

I

M S

PrRd/BusRd

PrWr/Invd
BusRd/Supply Data
PrRd/—

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared Read: x

PrRd/—
PrWr/—

Read: x

Carnegie Mellon

Invalidate-Based Cache Coherence

!46

C1 C2

Bus

x
Main Memory

1000

Read: xRead: x

Write: x = 5000

5000

I

M S

PrRd/BusRd

PrWr/Invd
BusRd/Supply Data
PrRd/—

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared Read: x

PrRd/—
PrWr/—

Read: x

5000

Carnegie Mellon

Invalidate-Based Cache Coherence

!46

C1 C2

Bus

x
Main Memory

Read: xRead: x

Write: x = 5000

5000

I

M S

PrRd/BusRd

PrWr/Invd
BusRd/Supply Data
PrRd/—

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared Read: x

PrRd/—
PrWr/—

Read: x

5000

5000

Carnegie Mellon

Invalidate-Based Cache Coherence

!46

C1 C2

Bus

x
Main Memory

Read: xRead: x

Write: x = 5000

5000

I

M S

PrRd/BusRd

PrWr/Invd
BusRd/Supply Data
PrRd/—

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared Read: x

PrRd/—
PrWr/—

Read: x

BusRd/Flush

5000

5000

Carnegie Mellon

5000

Write: x = 7000

Invalidate-Based Cache Coherence

!47

C1 C2

Bus

x
Main Memory

1000

5000

I

M S

PrRd/BusRd

PrWr/Invd
BusRd/Supply Data
PrRd/—

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared

PrRd/—
PrWr/—

BusRd/Flush

Carnegie Mellon

5000

Write: x = 7000

Invalidate-Based Cache Coherence

!47

C1 C2

Bus

x
Main Memory

1000

I

M S

PrRd/BusRd

PrWr/Invd
BusRd/Supply Data
PrRd/—

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared

PrRd/—
PrWr/—

BusRd/Flush

5000

Carnegie Mellon

5000

Write: x = 7000

Invalidate-Based Cache Coherence

!47

C1 C2

Bus

x
Main Memory

1000

I

M S

PrRd/BusRd

PrWr/Invd
BusRd/Supply Data
PrRd/—

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared

PrRd/—
PrWr/—

BusRd/Flush

7000

Carnegie Mellon

5000

Write: x = 7000

Invalidate-Based Cache Coherence

!47

C1 C2

Bus

x
Main Memory

1000

I

M S

PrRd/BusRd

PrWr/Invd
BusRd/Supply Data
PrRd/—

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared

PrRd/—
PrWr/—

BusRd/Flush

PrWr/BusRdX
7000

Carnegie Mellon

5000

Write: x = 7000

Invalidate-Based Cache Coherence

!47

C1 C2

Bus

x
Main Memory

1000

I

M S

PrRd/BusRd

PrWr/Invd
BusRd/Supply Data
PrRd/—

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared

PrRd/—
PrWr/—

BusRd/Flush

PrWr/BusRdX
7000

BusRdX/Flush

Carnegie Mellon

5000

Write: x = 7000

Invalidate-Based Cache Coherence

!47

C1 C2

Bus

x
Main Memory

1000

I

M S

PrRd/BusRd

PrWr/Invd
BusRd/Supply Data
PrRd/—

Below: State Transition for x in C2’s cache;
Syntax: Event/Action

Associate each cache line with 3
states: Modified, Invalid, Shared

Invd/—

PrRd/—
PrWr/—

BusRd/Flush

PrWr/BusRdX
7000

BusRd/—
BusRdX/—
Invd/—

Invd/—
BusRdX/Flush

BusRdX/Flush

Carnegie Mellon

Readings: Cache Coherence
• Most helpful

• Culler and Singh, Parallel Computer Architecture
• Chapter 5.1 (pp 269 – 283), Chapter 5.3 (pp 291 – 305)

• Patterson&Hennessy, Computer Organization and Design
• Chapter 5.8 (pp 534 – 538 in 4th and 4th revised eds.)

• Papamarcos and Patel, “A low-overhead coherence solution for multiprocessors
with private cache memories,” ISCA 1984.

• Also very useful

• Censier and Feautrier, “A new solution to coherence problems in multicache

systems,” IEEE Trans. Computers, 1978.
• Goodman, “Using cache memory to reduce processor-memory traffic,” ISCA 1983.
• Laudon and Lenoski, “The SGI Origin: a ccNUMA highly scalable server,” ISCA

1997.
• Martin et al, “Token coherence: decoupling performance and correctness,” ISCA

2003.
• Baer and Wang, “On the inclusion properties for multi-level cache hierarchies,”

ISCA 1988.

!48

Carnegie Mellon

Does Hardware Have to Keep Cache Coherent?

• Hardware-guaranteed cache coherence is complex to implement.

!49

Carnegie Mellon

Does Hardware Have to Keep Cache Coherent?

• Hardware-guaranteed cache coherence is complex to implement.
• Can the programmers ensure cache coherence themselves?

!49

Carnegie Mellon

Does Hardware Have to Keep Cache Coherent?

• Hardware-guaranteed cache coherence is complex to implement.
• Can the programmers ensure cache coherence themselves?
• Key: ISA must provide cache flush/invalidate instructions

• FLUSH-LOCAL A: Flushes/invalidates the cache block containing
address A from a processor’s local cache.

• FLUSH-GLOBAL A: Flushes/invalidates the cache block containing
address A from all other processors’ caches.

• FLUSH-CACHE X: Flushes/invalidates all blocks in cache X.

!49

Carnegie Mellon

Does Hardware Have to Keep Cache Coherent?

• Hardware-guaranteed cache coherence is complex to implement.
• Can the programmers ensure cache coherence themselves?
• Key: ISA must provide cache flush/invalidate instructions

• FLUSH-LOCAL A: Flushes/invalidates the cache block containing
address A from a processor’s local cache.

• FLUSH-GLOBAL A: Flushes/invalidates the cache block containing
address A from all other processors’ caches.

• FLUSH-CACHE X: Flushes/invalidates all blocks in cache X.
•Classic example: TLB

• Hardware does not guarantee that TLBs of different core are coherent
• ISA provides instructions for OS to flush PTEs
• Called “TLB shootdown”

!49

Thinking in Parallel is Hard

�50

Thinking in Parallel is Hard

�50

Maybe Thinking is Hard

