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• Programming Assignment 6 is out
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Announcement
• Programming Assignment 6 is out


• Main assignment: 11:59pm, Thursday, May 2.
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Due

Today
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Keeping Track of Free Blocks
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• Method 1: Implicit list using length—links all blocks


• Method 2: Explicit list among the free blocks using pointers


• Method 3: Segregated free list
• Different free lists for different size classes
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Implicit List
• For each block we need both size and allocation status


• Could store this information in two words: wasteful!
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Implicit List
• For each block we need both size and allocation status


• Could store this information in two words: wasteful!

• Standard trick

• If blocks are aligned, some low-order address bits are always 0
• Instead of storing an always-0 bit, use it as a allocated/free flag
• When reading size word, must mask out this bit
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Detailed Implicit Free List Example

!6

Start  
of  

heap

Double-word
aligned

8/0 16/1 16/132/0

Unused

0/1

Allocated blocks: shaded 
Free blocks: unshaded
Headers: labeled with size in bytes/allocated bit
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Finding a Free Block
• First fit:


• Search list from beginning, choose first free block that fits 
• Can take linear time in total number of blocks (allocated and free) 
• In practice it can cause “splinters” at beginning of list
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Finding a Free Block
• First fit:


• Search list from beginning, choose first free block that fits 
• Can take linear time in total number of blocks (allocated and free) 
• In practice it can cause “splinters” at beginning of list

• Next fit:

• Like first fit, but search list starting where previous search finished 
• Should often be faster than first fit: avoids re-scanning unhelpful blocks 
• Some research suggests that fragmentation is worse

• Best fit:

• Search the list, choose the best free block: fits, with fewest bytes left over 
• Keeps fragments small—usually improves memory utilization 
• Will typically run slower than first fit
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Allocating in Free Block
• Allocated space might be smaller than free space

• We could simply leave the extra space there. Simple to implement but 

causes internal fragmentation

• Or we could split the block
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void addblock(ptr p, int len) { 
  int newsize = ((len + 1) >> 1) << 1;  // round up to even 
  int oldsize = *p & -2;                // mask out low bit 
  *p = newsize | 1;                     // set new length 
  if (newsize < oldsize) 
    *(p+newsize) = oldsize - newsize;   // set length in remaining 
}                                       //   part of block

4 4 26
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Freeing a Block
• Simplest implementation:


• Need only clear the “allocated” flag
  void free_block(ptr p) { *p = *p & -2 }

• But can lead to “false fragmentation” 
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Freeing a Block
• Simplest implementation:


• Need only clear the “allocated” flag
  void free_block(ptr p) { *p = *p & -2 }

• But can lead to “false fragmentation” 

!9

4 24 24

free(p) p

4 4 24 2

malloc(5) Oops!

There is enough free space, but the allocator won’t be able to find it 
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Coalescing
• Join (coalesce) with next/previous blocks, if they are free


• Coalescing with next block
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void free_block(ptr p) {  
    *p = *p & -2;          // clear allocated flag  
    next = p + *p;         // find next block  
    if ((*next & 1) == 0)  
      *p = *p + *next;     // add to this block if  
}                          //    not allocated

4 24 2

free(p) p

4 4 2

4

6 2

logically 
gone
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• How about now?
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• How about now?

• How do we coalesce with previous block?
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Coalescing
• How about now?

• How do we coalesce with previous block?
• Linear time solution: scans from beginning
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free(p) p

4

4 24 28
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Bidirectional Coalescing (Constant Time)
• Boundary tags [Knuth73]


• Replicate size/allocated word at “bottom” (end) of free blocks

• Allows us to traverse the “list” backwards, but requires extra space

• Important and general technique!
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Bidirectional Coalescing (Constant Time)
• Boundary tags [Knuth73]


• Replicate size/allocated word at “bottom” (end) of free blocks

• Allows us to traverse the “list” backwards, but requires extra space

• Important and general technique!

• Disadvantages? (Think of small blocks…)
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Size

Format of 
allocated and 
free blocks

Payload and 
padding

a = 1: Allocated block   
a = 0: Free block 

Size: Total block size 

Payload: Application data 
(allocated blocks only) 

a
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(footer)
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Summary of Key Allocator Policies
• Placement policy:


• First-fit, next-fit, best-fit, etc. 
• Trades off lower throughput for less fragmentation	
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Summary of Key Allocator Policies
• Placement policy:


• First-fit, next-fit, best-fit, etc. 
• Trades off lower throughput for less fragmentation	

• Splitting policy:

• When do we split free blocks? 
• How much internal fragmentation are we willing to tolerate?

• Coalescing policy:

• Immediate coalescing: coalesce each time free is called  
• Deferred coalescing: try to improve performance of free by deferring 

coalescing until needed. Examples: 
• Coalesce as you scan the free list for malloc 
• Coalesce when the amount of external fragmentation reaches 

some threshold

!13
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Implicit Lists: Summary
• Implementation: very simple
• Allocate cost: 


• linear time worst case 
• Identify free blocks requires scanning all the blocks!

• Free cost: 

• constant time worst case

•Memory usage: 

• Will depend on placement policy 
• First-fit, next-fit, or best-fit

• Not used in practice because of linear-time allocation

• used in many special purpose applications

• However, the concepts of splitting and boundary tag coalescing 
are general to all allocators

!14
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Keeping Track of Free Blocks
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• Method 1: Implicit list using length—links all blocks


• Method 2: Explicit list among the free blocks using pointers


• Method 3: Segregated free list
• Different free lists for different size classes
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Explicit Free Lists

•Maintain list(s) of free blocks, not all blocks

• The “next” free block could be anywhere

• So we need to store forward/back pointers, not just sizes
• Still need boundary tags for coalescing
• Luckily we track only free blocks, so we can use payload area

!16

Size

Payload and 
padding

a

Size a

Size a

Size a

Next

Prev

Allocated (as before) Free
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Explicit Free Lists
• Logically:


• Physically: blocks can be in any order
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A B C

4 4 4 4 66 44 4 4

Forward (next) links

Back (prev) links

A B

C
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Allocating From Explicit Free Lists

!18

Before

After

= malloc(…)

(with splitting)

conceptual graphic
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Freeing With Explicit Free Lists
• Insertion policy: Where in the free list do you put a newly freed 

block?
• LIFO (last-in-first-out) policy


• Insert freed block at the beginning of the free list
• Pro: simple and constant time
• Con: studies suggest fragmentation is worse than address ordered

• Address-ordered policy

• Insert freed blocks so that free list blocks are always in address 

order:  
         addr(prev) < addr(curr) < addr(next)

•  Con: requires search
•  Pro: studies suggest fragmentation is lower than LIFO

!19
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Freeing With a LIFO Policy (Case 1)
• Insert the freed block at the root of the list

!20

free( )

Root
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Freeing With a LIFO Policy (Case 1)
• Insert the freed block at the root of the list
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Freeing With a LIFO Policy (Case 2)
• Splice out successor block, coalesce both memory blocks and 

insert the new block at the root of the list
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Freeing With a LIFO Policy (Case 2)
• Splice out successor block, coalesce both memory blocks and 

insert the new block at the root of the list
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free( )

Root

Before

Root

After

conceptual graphic
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Freeing With a LIFO Policy (Case 3)
• Splice out predecessor block, coalesce both memory blocks, 

and insert the new block at the root of the list
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Freeing With a LIFO Policy (Case 3)
• Splice out predecessor block, coalesce both memory blocks, 

and insert the new block at the root of the list
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Freeing With a LIFO Policy (Case 4)
• Splice out predecessor and successor blocks, coalesce all 3 

memory blocks and insert the new block at the root of the list

!23

free( )

Root

Before conceptual graphic
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Freeing With a LIFO Policy (Case 4)
• Splice out predecessor and successor blocks, coalesce all 3 

memory blocks and insert the new block at the root of the list

!23

free( )

Root

Before

Root

After

conceptual graphic
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Explicit List Summary
• Comparison to implicit list:


• Allocate is linear time in number of free blocks instead of all blocks. 
Much faster when most of the memory is full. 

• Slightly more complicated allocate and free since needs to splice 
blocks in and out of the list 

• Some extra space for the links (2 extra words needed for each 
block). Increase internal fragmentation.

!24
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Keeping Track of Free Blocks
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• Method 1: Implicit list using length—links all blocks


• Method 2: Explicit list among the free blocks using pointers


• Method 3: Segregated free list
• Different free lists for different size classes
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Segregated List (Seglist) Allocators
• Each size class of blocks has its own free list


• Often have separate classes for each small size

• For larger sizes: One class for each two-power size

!26

1-2

3

4

5-8

9-inf
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Seglist Allocator
• Given an array of free lists, each one for some size class
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• Given an array of free lists, each one for some size class
• To allocate a block of size n:


• Search appropriate free list for block of size m > n
• If an appropriate block is found:

• Split block and place fragment on appropriate list (optional)
• If no block is found, try next larger class
• Repeat until block is found
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Seglist Allocator
• Given an array of free lists, each one for some size class
• To allocate a block of size n:


• Search appropriate free list for block of size m > n
• If an appropriate block is found:

• Split block and place fragment on appropriate list (optional)
• If no block is found, try next larger class
• Repeat until block is found

• If no block is found:

• Request additional heap memory from OS (using sbrk())
• Remember heap is in VM, so request heap memory in pages
• Allocate block of n bytes from this new memory
• Place remainder as a single free block in largest size class.

• To free a block:

• Coalesce and place on appropriate list 

!27
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Advantages of Seglist allocators
• Higher throughput


• log time for power-of-two size classes 
• Better memory utilization


• First-fit search of segregated free list approximates a best-fit search 
of entire heap. 

• Extreme case: Giving each block its own size class is equivalent to 
best-fit.

!28
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Explicit/Implicit Memory Management
• So far we have been talking about explicitly memory 

management: programmers explicitly calling malloc/free (C/C++)
• Downside: potential memory leaks

!29

void foo() { 
   int *p = malloc(128); 
   p = malloc(32); 
   return; /* both blocks are now garbage */ 
}

• Alternative: implicit memory management; the programmers never 
explicitly request/free memory

• Common in many dynamic languages:

• Python, Ruby, Java, JavaScript, Perl, ML, Lisp, Mathematica

• The key: Garbage collection

• Automatic reclamation of heap-allocated storage—application 

never has to free
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Garbage Collection
• How does the memory manager know when certain memory 

blocks can be freed?

• In general we cannot know what is going to be used in the future 

since it depends on program’s future behaviors 
• But we can tell that certain blocks cannot possibly be used if 

there are no pointers to them 
• Garbage collection is essentially to obtain all reachable blocks 

and discard unreachable blocks.

!30
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Memory as a Graph
• We view memory as a directed graph


• Each block is a node in the graph 
• Each pointer is an edge in the graph
• Locations not in the heap that contain pointers into the heap are called 

root  nodes  (e.g. registers, locations on the stack, global variables)

!31

Root nodes

Heap nodes

Not-reachable  
(garbage)

Reachable

A node (block) is reachable  if there is a path from any root to that node. 
Non-reachable nodes are garbage (cannot be needed by the application)
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Mark and Sweep Collecting
• Idea:


• Use extra mark bit in the head to indicate if a block is reachable
• Mark: Start at roots and set mark bit on each reachable block
• Sweep: Scan all blocks and free blocks that are not marked

!32

Mark bit set

root

Note: arrows here 
denote memory refs, 

not free list ptrs. 
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Mark and Sweep Collecting
• Idea:


• Use extra mark bit in the head to indicate if a block is reachable
• Mark: Start at roots and set mark bit on each reachable block
• Sweep: Scan all blocks and free blocks that are not marked

!32

Mark bit set
freefree

root

Note: arrows here 
denote memory refs, 

not free list ptrs. 
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• Garbage Collection in C is tricky.
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pointer.

• Must be conservative. Any 8 bytes that happen to have the value 
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• C pointers can point to the middle of a block. How do you find the 
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Conservative Mark & Sweep in C
• Garbage Collection in C is tricky.
• How do you know a pointer is a pointer? After all, a pointer is just 

a 8-byte value. Any consecutive 8 bytes could be disguised as a 
pointer.

• Must be conservative. Any 8 bytes that happen to have the value 
of some address in the heap must be treated as a pointer.

• C pointers can point to the middle of a block. How do you find the 
header of a block?
• Can use a balanced binary tree to keep track of all allocated blocks (key 

is start-of-block)

!33

ptr

Header Data

Left Right

Size Left: smaller addresses 
Right: larger addresses



Carnegie Mellon

Potential GC Implementations (in C)
• Can build on top of malloc/free function

• Call malloc until you run out of space. Then malloc will call GC. 
• Stop-the-world GC. When performing GC, the entire program stops. 

Some calls to malloc will take considerably longer than others.

!34
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Potential GC Implementations (in C)
• Can build on top of malloc/free function

• Call malloc until you run out of space. Then malloc will call GC. 
• Stop-the-world GC. When performing GC, the entire program stops. 

Some calls to malloc will take considerably longer than others.

!34

Program malloc Garbage

Collection

free

Hidden From Programmers

• To minimize main application (called mutator) pause time:
• Incremental GC: Examine a small portion of heap every GC run
• Concurrent GC: Run GC service in a separate process/thread
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Garbage Collection Implications
• GC is a great source of performance non-determinisms

• Generally can’t predict when GC will happen
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• Stop-the-world GC makes program periodically unresponsive
• Concurrent/Incremental GC helps, but still has performance impacts
• Bad for real-time systems: think of a self-driving car that needs to 

decide whether to avoid a pedestrian but a GC kicks in…
• Bad for server/cloud systems: GC is a great source of tail latency
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Classical GC Algorithms
•Mark-and-sweep collection (McCarthy, 1960)
•Mark-sweep-compact collection (Styger, 1967)
• Mark-copy collection (Minsky, 1963)


• After mark, copy reachable objects to another region of memory as 
they are being traversed. Can be done without auxiliary storage.

• Generational Collectors (Lieberman and Hewitt, 1983)

• Observation: most allocations become garbage very soon (infant 

mortality); those survive will always survive. 
• Wasteful to scan long-lived objects every collection time 
• Idea: divide heap into two generations, young and old. Allocate into 

young gen., and promote to old gen. if lived long enough. Collect 
young gen. more often than old gen.

• Question: Can all these algorithms be used for GC in C?
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Classical GC Algorithms
• All the GC algorithms described so far are tracing-based


• Start from the root pointers, trace all the reachable objects 
• Need graph traversal. Different to implement.

• Reference counting (Collins, 1960)

• Keep a counter for each object 
• Increment the counter if there is a new pointer pointing to the object 
• Decrement the counter if a pointer is taken off the object 
• When the counter reaches zero, collect the object

• Advantages of Reference Counting

• Simpler to implement 
• Collect garbage objects immediately; generally less long pauses

• Disadvantages of Reference Counting

• A naive implementation can’t deal with self-referencing

• A heterogeneous approach (RC + tracing) is often used
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