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Announcements

• Lab 4 is out.

• You will see run-to-run variation. We will take average when grading.
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About Code Optimization

• Three entities can optimize the program: programer, compiler, and 
hardware


• The best thing a programmer can do is to pick a good algorithm. 
Compilers/hardware can’t do that in general.


• Algorithm choice decides overall complexity (big O), compiler/
hardware decides the constant factor in the big O notation


• Quicksort: O(n log n) = K * n * log(n)

• Bubblesort: O(n^2) = K * n^2

• Compiler and hardware implementations decide the K.
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About Code Optimization
• From a programmer’s perspective:


• What you know: the functionality/intention of your code; the inputs to the 
program; all the code in the program 

• What you might not know: the hardware details. 
• From a compiler’s perspective:


• What you know: all the code in the program (except library code); the 
hardware details. 

• What you might not know: the inputs to the program; the intention of the 
code 

• From the hardware’s perspective:

• What you know: the hardware details; some part of the code 
• What you might not know: the inputs to the program; the intention of the 

code 
• The different perspectives indicate that different entities have different 

responsibilities, limitations, and advantages in optimizing the code
4
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Today: Optimizing Code Transformation

• Things that programmer/compilers can do

• Code motion/precomputation

• Strength reduction

• Sharing of common subexpressions

• Exploiting hardware microarchitecture


• Things that compilers can’t do but programmers can do

5
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Code Motion

• Code Motion

• Reduce frequency with which computation performed 

• If it will always produce same result 
• Especially moving code out of loop
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    long j; 
    int ni = n*i; 
    for (j = 0; j < n; j++) 
 a[ni+j] = b[j];

void set_row(double *a, double *b, 
   long i, long n) 
{ 
    long j; 
    for (j = 0; j < n; j++) 
 a[n*i+j] = b[j]; 
}
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Compiler-Generated Code Motion (-O1)
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set_row: 
 testq %rcx, %rcx  # Test n 
 jle .L1   # If 0, goto done 
 imulq %rcx, %rdx  # ni = n*i 
 leaq (%rdi,%rdx,8), %rdx # rowp = A + ni*8 
 movl $0, %eax                 # j = 0 
.L3:           # loop: 
 movsd (%rsi,%rax,8), %xmm0     # t = b[j] 
 movsd %xmm0, (%rdx,%rax,8)    # M[A+ni*8 + j*8] = t 
 addq $1, %rax   # j++ 
 cmpq %rcx, %rax  # j:n 
 jne .L3   # if !=, goto loop 
.L1:           # done: 
 rep ; ret

    long j; 
    long ni = n*i; 
    double *rowp = a+ni; 
    for (j = 0; j < n; j++) 
 *rowp++ = b[j]; 

void set_row(double *a, double *b, 
   long i, long n) 
{ 
    long j; 
    for (j = 0; j < n; j++) 
 a[n*i+j] = b[j]; 
}
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Reduction in Strength
• Replace costly operation with simpler one

• Shift, add instead of multiply or divide


• 16*x	 -->	 x << 4

• Depends on cost of multiply or divide instruction

• On Intel Nehalem, integer multiply requires 3 CPU cycles


• Recognize sequence of products

8
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Common Subexpression Elimination
• Reuse portions of expressions

• GCC will do this with –O1
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/* Sum neighbors of i,j */ 
up =    val[(i-1)*n + j  ]; 
down =  val[(i+1)*n + j  ]; 
left =  val[i*n     + j-1]; 
right = val[i*n     + j+1]; 
sum = up + down + left + right;

long inj = i*n + j; 
up =    val[inj - n]; 
down =  val[inj + n]; 
left =  val[inj - 1]; 
right = val[inj + 1]; 
sum = up + down + left + right;

3 multiplications: i*n, (i–1)*n, (i+1)*n 1 multiplication: i*n

leaq   1(%rsi), %rax  # i+1 
leaq   -1(%rsi), %r8  # i-1 
imulq  %rcx, %rsi     # i*n 
imulq  %rcx, %rax     # (i+1)*n 
imulq  %rcx, %r8      # (i-1)*n 
addq   %rdx, %rsi     # i*n+j 
addq   %rdx, %rax     # (i+1)*n+j 
addq   %rdx, %r8      # (i-1)*n+j

imulq %rcx, %rsi  # i*n 
addq %rdx, %rsi  # i*n+j 
movq %rsi, %rax  # i*n+j 
subq %rcx, %rax  # i*n+j-n 
leaq (%rsi,%rcx), %rcx # i*n+j+n
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Exploiting Instruction-Level Parallelism

• Hardware can execute multiple instructions in parallel

• Pipeline is a classic technique 

• Performance limited by control/data dependencies

• Simple transformations can yield dramatic performance improvement


• Compilers are generally good at exploiting hardware because it has better 
knowledge about the hardware than programmers. 

• But often compilers cannot make these transformations due to e.g., lack of 
associativity and distributivity in floating-point arithmetic, not knowing the 
accuracy requirements of a program, etc.
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Baseline Code
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.L519: 
 imulq (%rax,%rdx,4), %ecx 
 addq  $1, %rdx # i++ 
 cmpq  %rdx, %rbp # Compare length:i 
 jg  .L519 # If >, goto Loop

for (i = 0; i < length; i++) { 
  t = t * d[i]; 
  *dest = t; 
}

Overhead

Real work
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Loop Unrolling

• Perform 2x more useful work per iteration


• Reduce loop overhead (comp, jmp, index dec, etc.)


• Reduce branch stalls (if the hardware doesn’t have good 
branch predictors)
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long limit = length-1; 
long i; 
/* Combine 2 elements at a time */ 
for (i = 0; i < limit; i+=2) { 
    x = (x * d[i]) * d[i+1]; 
} 

/* Finish any remaining elements */ 
for (; i < length; i++) { 
    x = x * d[i]; 
} 
*dest = x;
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Loop Unrolling with Separate Accumulators
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long limit = length-1; 
long i; 
/* Combine 2 elements at a time */ 
for (i = 0; i < limit; i+=2) { 
    x0 = x0 * d[i]; 
    x1 = x1 * d[i+1]; 
} 

/* Finish any remaining elements */ 
for (; i < length; i++) { 
    x0 = x0 * d[i]; 
} 
*dest = x0 * x1;
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Separate Accumulators
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 x0 = x0 * d[i]; 
 x1 = x1 * d[i+1];

• What changed:

• Two independent “streams” of 

operations 
• Reduce data dependency: good for 

pipelining.
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Today: Optimizing Code Transformation

• Things that programmer/compilers can do

• Code motion/precomputation

• Strength reduction

• Sharing of common subexpressions

• Exploiting hardware microarchitecture


• Things that compilers can’t do but programmers can do
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A Trivial Example

16

float foo(int x, int y) 
{ 
    return pow(x, y) * 100 / log(x) * sqrt(y); 
}
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A Trivial Example

• As a programmer, if you know what x and y will be, say 5, you could 
direct return the results 23769.8 without having to the computation
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A Trivial Example

• As a programmer, if you know what x and y will be, say 5, you could 
direct return the results 23769.8 without having to the computation

• Compiler would have no idea
• Except…Profile-guided optimizations:

• Run the code multiple times using some sample inputs, and observe 
the values of x and y (statistically).
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A Trivial Example

• As a programmer, if you know what x and y will be, say 5, you could 
direct return the results 23769.8 without having to the computation

• Compiler would have no idea
• Except…Profile-guided optimizations:

• Run the code multiple times using some sample inputs, and observe 
the values of x and y (statistically).

• If let’s say 99% of the time, x = 2 and y = 5, what could the compiler 
do then?
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A Trivial Example

• As a programmer, if you know what x and y will be, say 5, you could 
direct return the results 23769.8 without having to the computation

• Compiler would have no idea
• Except…Profile-guided optimizations:

• Run the code multiple times using some sample inputs, and observe 
the values of x and y (statistically).

• If let’s say 99% of the time, x = 2 and y = 5, what could the compiler 
do then?
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float foo(int x, int y) 
{ 
    return pow(x, y) * 100 / log(x) * sqrt(y); 
}

float foo(int x, int y) 
{ 
  if (x == 2 && y == 5) return 23769.8;     
  else return pow(x, y) * 100 / log(x) * sqrt(y); 
}
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A Less Trivial Example: Procedure Calls

• Procedure to Convert String to Lower Case

void lower(char *s) 
{ 
  size_t i; 
  for (i = 0; i < strlen(s); i++) 
    if (s[i] >= 'A' && s[i] <= 'Z') 
      s[i] -= ('A' - 'a'); 
}

17
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Calling Strlen

• Strlen performance

• Has to scan the entire length of a string, looking for null character. 
• O(N) complexity 

• Overall performance

• N calls to strlen 
• Overall O(N2) performance

18

size_t strlen(const char *s) 
{ 
    size_t length = 0; 
    while (*s != '\0') { 
 s++;  
 length++; 
    } 
    return length; 
}
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Improving Performance
• Move call to strlen outside of loop

• Since result does not change from one iteration to another

• Form of code motion

19

void lower(char *s) 
{ 
  size_t i; 
  size_t len = strlen(s); 
  for (i = 0; i < len; i++) 
    if (s[i] >= 'A' && s[i] <= 'Z') 
      s[i] -= ('A' - 'a'); 
}
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Optimization Blocker: Procedure Calls
Why couldn’t compiler move 
strlen out of loop?

• Procedure may have side 

effects, e.g., alters global 
state each time called


• Function may not return 
same value for given 
arguments
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void lower(char *s) 
{ 
  size_t i; 
  for (i = 0; i < strlen(s); i++) 
    if (s[i] >= 'A' && s[i] <= 'Z') 
      s[i] -= ('A' - 'a'); 
} 

size_t total_lencount = 0; 
size_t strlen(const char *s) 
{ 
    size_t length = 0; 
    while (*s != '\0') { 
 s++; length++; 
    } 
    total_lencount += length; 
    return length; 
}
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Optimization Blocker: Procedure Calls

• Most compilers treat procedure call as a black box

• Assume the worst case, weak optimizations near them 
• There are interprocedural optimizations (IPO), but they are expensive 
• Sometimes the compiler doesn’t have access to source code of other 

functions because they are object files in a library. Link-time optimizations 
(LTO) comes into play, but are expensive as well. 

• Remedies:

• Use of inline functions 

• GCC does this with –O1, but only within single file 
• Do your own code motion

21
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CPU

So far in 252…

PC
Register 

File

Memory
Code 
Data 
Stack

Addresses

Data

InstructionsCondition 
CodesALU

•We have been discussing the CPU microarchitecture

• Single Cycle, sequential implementation 
• Pipeline implementation 
• Resolving data dependency and control dependency 

•What about memory?
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Memory in a Modern System
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Ideal Memory

• Zero access time (latency)

• Infinite capacity

• Zero cost

• Infinite bandwidth (to support multiple accesses in parallel)

24



Carnegie Mellon

The Problem

• Ideal memory’s requirements oppose each other
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The Problem

• Ideal memory’s requirements oppose each other

• Bigger is slower
• Bigger à Takes longer to determine the location

• Faster is more expensive
• Memory technology: Flip-flop vs. SRAM vs. DRAM vs. Disk vs. 

Tape

• Higher bandwidth is more expensive
• Need more banks, more ports, higher frequency, or faster 

technology

25
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Memory Technology:  D Flip-Flop (DFF)
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Data
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Trigger

• Very fast

• Very expensive to build

• 6 NOT gates (2 transistors / gate) 
• 3 AND gates (3 transistors / gate) 
• 2 OR gates (3 transistors / gate) 
• 27 transistors in total for just one bit!!
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Memory Technology: SRAM

27
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Memory Technology: SRAM

• Static random access memory

• Random access means you can supply an arbitrary address to the 

memory and get a value back

• Two cross coupled inverters store a single bit


• Feedback path enables the stored value to persist in the “cell” 
• 4 transistors for storage 
• 2 transistors for access 
• 6 transistors in total per bit
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Memory Technology: SRAM
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SRAM Array
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Abstract View of SRAM
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Memory Technology: DRAM

• Dynamic random access memory
• Capacitor charge state indicates stored value

• Whether the capacitor is charged or 
discharged indicates storage of 1 or 0

• 1 capacitor
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Memory Technology: DRAM

• Dynamic random access memory
• Capacitor charge state indicates stored value

• Whether the capacitor is charged or 
discharged indicates storage of 1 or 0

• 1 capacitor
• 1 access transistor

• Capacitors will leak!
• DRAM cell loses charge over time
• DRAM cell needs to be refreshed.
• Refresh takes time and power. When 

refreshing can’t read the data. A major issue, 
lots of research going on to reduce the refresh 
overhead.

30

row enable

_b
itl

in
e



Carnegie Mellon

DRAM Cell

31 37

• Capacitor holding value 
leaks, eventually you will 
lose information (everything 
turns to 0)

• How do you maintain the 
values in DRAM?

• Refresh periodically 
• A major source for power 

consumption in DRAM
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DRAM Cell
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Latch vs. DRAM vs. SRAM

• DFF

• Fastest 
• Low density (27 transistors per bit) 
• High cost 

• SRAM

• Faster access (no capacitor) 
• Lower density (6 transistors per bit) 
• Higher cost 
• No need for refresh 
• Manufacturing compatible with logic process (no capacitor) 

• DRAM

• Slower access (capacitor) 
• Higher density (1 transistor + 1 capacitor per bit) 
• Lower cost 
• Requires refresh (power, performance, circuitry) 
• Manufacturing requires putting capacitor and logic together

32
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Nonvolatile Memories
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• Lose information if powered off.
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Nonvolatile Memories

• DFF, DRAM and SRAM are volatile memories

• Lose information if powered off.

• Nonvolatile memories retain value even if powered off

• Flash (~ 5 years) 
• Hard Disk (~ 5 years) 
• Tape (~ 15-30 years) 
• DNA (centuries)

• Uses for Nonvolatile Memories

• Firmware (BIOS, controllers for disks, network cards, graphics accelerators, 

security subsystems,…) 
• Files in Smartphones, mp3 players, tablets, laptops 
• Backup
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The Problem

• Bigger is slower

• SRAM, 512 Bytes, sub-nanosec 
• SRAM,  KByte~MByte, ~nanosec 
• DRAM, Gigabyte, ~50 nanosec 
• Hard Disk, Terabyte, ~10 millisec 

• Faster is more expensive (dollars and chip area)

• SRAM, < 10$ per Megabyte 
• DRAM, < 1$ per Megabyte 
• Hard Disk < 1$ per Gigabyte 

• Other technologies have their place as well 

• PC-RAM, MRAM, RRAM
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We want both fast and large Memory

• But we cannot achieve both with a single level of memory


• Idea: Memory Hierarchy

• Have multiple levels of storage (progressively bigger and slower as the 

levels are farther from the processor) 
• ensure most of the data the processor needs in the near future is kept 

in the fast(er) level(s) 

• Question: How do we know what kind of data processors would use in 
the near future?
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Locality

• Principle of Locality: Programs tend to use data and instructions with 
addresses near or equal to those they have used recently
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to be referenced again in the near future
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Locality

• Principle of Locality: Programs tend to use data and instructions with 
addresses near or equal to those they have used recently

• Temporal locality:  
• Recently referenced items are likely  

to be referenced again in the near future

• Spatial locality:  
• Items with nearby addresses tend  

to be referenced close together in time
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Locality Example

• Data references

• Spatial Locality: Reference array elements in succession (stride-1 reference 

pattern) 
• Temporal Locality: Reference variable sum each iteration. 

• Instruction references

• Spatial Locality: Reference instructions in sequence. 
• Temporal Locality: Cycle through loop repeatedly. 

37

sum = 0; 
for (i = 0; i < n; i++) 
 sum += a[i]; 
return sum;
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Memory Hierarchy
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Memory Hierarchy

• Fundamental tradeoff

• Fast memory: small 
• Large memory: slow 

• Balance latency, cost, size, 
bandwidth

39

CPU Main 
Memory 
(DRAM) RF 

(Latch)

Cache 
(SRAM)

Hard Disk 
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The Bookshelf Analogy

• Book in your hand

• Desk

• Bookshelf

• Boxes at home

• Boxes in library


• Recently-used books tend to stay on desk

• Comp Org. books, books for classes you are currently taking 
• Until the desk gets full 

• Adjacent books in the shelf needed around the same time

40
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Register	  File	  (DFF)	  
32	  words,	  sub-‐nsec	  

L1	  cache	  (SRAM)	  
~32	  KB,	  ~nsec	  

L2	  cache	  (SRAM)	  
512	  KB	  ~	  1MB,	  many	  nsec	  

L3	  cache	  (SRAM)	  
.....	  

Main	  memory	  (DRAM),	  	  
GB,	  ~100	  nsec	  

Hard	  Disk	  
100	  GB,	  ~10	  msec

A Modern Memory Hierarchy

41
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This Module (3 Lectures)

• Today: Memory Hierarchy Overview

• Trade-offs between different memory technologies 
• Exploiting locality to get the best of all worlds 
• SRAM/DRAM Hardware Basics 

• Cache

• Memory-oriented Program Optimizations
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DRAM Chip Organization
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Reading DRAM Supercell (2,1)
Step 1(a): Row access strobe (RAS) selects row 2.

Step 1(b): Row 2 copied from DRAM array to row buffer.
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Reading DRAM Supercell (2,1)
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Reading DRAM Supercell (2,1)
Step 1(a): Row access strobe (RAS) selects row 2.

Step 1(b): Row 2 copied from DRAM array to row buffer.
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Reading DRAM Supercell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1.

Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually back to 

the CPU.
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Reading DRAM Supercell (2,1)
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Reading DRAM Supercell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1.

Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually back to 

the CPU.
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Reading DRAM Supercell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1.

Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually back to 

the CPU.
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Reading DRAM Supercell (2,1)
Step 3: A sense amplifier amplifies and regenerates the bitline and refresh the 

cells. A DRAM controller must periodically read each row within the allowed 
refresh time (10s of ms) to restore charge.
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Reading DRAM Supercell (2,1)
Step 3: A sense amplifier amplifies and regenerates the bitline and refresh the 

cells. A DRAM controller must periodically read each row within the allowed 
refresh time (10s of ms) to restore charge.
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Memory Modules
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Memory Modules
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Memory Modules
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Memory Modules

47

: supercell (i,j)

64 MB   
memory module 
consisting of 
eight 8Mx8 DRAMs

addr (row = i, col = j)

Memory 
controller

DRAM 7

DRAM 0

031 78151623243263 394047485556

64-bit word main memory address A

bits 
0-7

bits 
8-15

bits 
16-23

bits 
24-31

bits 
32-39
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40-47
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48-55

bits 
56-63

64-bit word

031 78151623243263 394047485556
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Memory Layout Across Two Chips
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Memory Layout Across Two Chips
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Narrower RAMs Enable Greater Capacity

• Given Constant Total Width (pins)

• Multiple smaller chips are more reliable than one big chip


• Yield rate issue
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Why Split Address into Row and Column?

• +: Reduce the number of address pins

• +: Also allow reading multiple columns within the same row

• -: Send address in two steps, increase latency
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Memory Scheduling
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Memory Scheduling

• Assume the following memory accesses: 
A, B, C
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Memory Scheduling

• Assume the following memory accesses: 
A, B, C

• Which one is faster?

• A —> B —> C 
• A —> C —> B
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Memory Scheduling

• Assume the following memory accesses: 
A, B, C

• Which one is faster?

• A —> B —> C 
• A —> C —> B

• Most common memory scheduling policy: 
FR-FCFS


• First-ready, first-come-first-serve 
• Prioritize addresses to data that is 

already in the row buffer; otherwise first-
come-first-serve
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