
CSC 252: Computer Organization 
 Spring 2019: Lecture 16

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Action Items:
• Assignment 4 is out

Carnegie Mellon

Announcements

• Lab 4 is out.

• You will see run-to-run variation. We will take average when grading.

2

Today

Due

Carnegie Mellon

About Code Optimization

• Three entities can optimize the program: programer, compiler, and
hardware

• The best thing a programmer can do is to pick a good algorithm.
Compilers/hardware can’t do that in general.

• Algorithm choice decides overall complexity (big O), compiler/
hardware decides the constant factor in the big O notation

• Quicksort: O(n log n) = K * n * log(n)

• Bubblesort: O(n^2) = K * n^2

• Compiler and hardware implementations decide the K.

3

Carnegie Mellon

About Code Optimization
• From a programmer’s perspective:

• What you know: the functionality/intention of your code; the inputs to the
program; all the code in the program

• What you might not know: the hardware details.
• From a compiler’s perspective:

• What you know: all the code in the program (except library code); the
hardware details.

• What you might not know: the inputs to the program; the intention of the
code

• From the hardware’s perspective:

• What you know: the hardware details; some part of the code
• What you might not know: the inputs to the program; the intention of the

code
• The different perspectives indicate that different entities have different

responsibilities, limitations, and advantages in optimizing the code
4

Carnegie Mellon

Today: Optimizing Code Transformation

• Things that programmer/compilers can do

• Code motion/precomputation

• Strength reduction

• Sharing of common subexpressions

• Exploiting hardware microarchitecture

• Things that compilers can’t do but programmers can do

5

Carnegie Mellon

Code Motion

• Code Motion

• Reduce frequency with which computation performed

• If it will always produce same result
• Especially moving code out of loop

6

 long j;
 int ni = n*i;
 for (j = 0; j < n; j++)
 a[ni+j] = b[j];

void set_row(double *a, double *b,
 long i, long n)
{
 long j;
 for (j = 0; j < n; j++)
 a[n*i+j] = b[j];
}

Carnegie Mellon

Compiler-Generated Code Motion (-O1)

7

set_row:
 testq %rcx, %rcx # Test n
 jle .L1 # If 0, goto done
 imulq %rcx, %rdx # ni = n*i
 leaq (%rdi,%rdx,8), %rdx # rowp = A + ni*8
 movl $0, %eax # j = 0
.L3: # loop:
 movsd (%rsi,%rax,8), %xmm0 # t = b[j]
 movsd %xmm0, (%rdx,%rax,8) # M[A+ni*8 + j*8] = t
 addq $1, %rax # j++
 cmpq %rcx, %rax # j:n
 jne .L3 # if !=, goto loop
.L1: # done:
 rep ; ret

 long j;
 long ni = n*i;
 double *rowp = a+ni;
 for (j = 0; j < n; j++)
 *rowp++ = b[j];

void set_row(double *a, double *b,
 long i, long n)
{
 long j;
 for (j = 0; j < n; j++)
 a[n*i+j] = b[j];
}

Carnegie Mellon

Reduction in Strength
• Replace costly operation with simpler one

• Shift, add instead of multiply or divide

• 16*x	 -->	 x << 4

• Depends on cost of multiply or divide instruction

• On Intel Nehalem, integer multiply requires 3 CPU cycles

• Recognize sequence of products

8

Carnegie Mellon

Common Subexpression Elimination
• Reuse portions of expressions

• GCC will do this with –O1

9

/* Sum neighbors of i,j */
up = val[(i-1)*n + j];
down = val[(i+1)*n + j];
left = val[i*n + j-1];
right = val[i*n + j+1];
sum = up + down + left + right;

long inj = i*n + j;
up = val[inj - n];
down = val[inj + n];
left = val[inj - 1];
right = val[inj + 1];
sum = up + down + left + right;

3 multiplications: i*n, (i–1)*n, (i+1)*n 1 multiplication: i*n

leaq 1(%rsi), %rax # i+1
leaq -1(%rsi), %r8 # i-1
imulq %rcx, %rsi # i*n
imulq %rcx, %rax # (i+1)*n
imulq %rcx, %r8 # (i-1)*n
addq %rdx, %rsi # i*n+j
addq %rdx, %rax # (i+1)*n+j
addq %rdx, %r8 # (i-1)*n+j

imulq %rcx, %rsi # i*n
addq %rdx, %rsi # i*n+j
movq %rsi, %rax # i*n+j
subq %rcx, %rax # i*n+j-n
leaq (%rsi,%rcx), %rcx # i*n+j+n

Carnegie Mellon

Exploiting Instruction-Level Parallelism

• Hardware can execute multiple instructions in parallel

• Pipeline is a classic technique

• Performance limited by control/data dependencies

• Simple transformations can yield dramatic performance improvement

• Compilers are generally good at exploiting hardware because it has better
knowledge about the hardware than programmers.

• But often compilers cannot make these transformations due to e.g., lack of
associativity and distributivity in floating-point arithmetic, not knowing the
accuracy requirements of a program, etc.

10

Carnegie Mellon

Baseline Code

11

.L519:
 imulq (%rax,%rdx,4), %ecx
 addq $1, %rdx # i++
 cmpq %rdx, %rbp # Compare length:i
 jg .L519 # If >, goto Loop

for (i = 0; i < length; i++) {
 t = t * d[i];
 *dest = t;
}

Overhead

Real work

Carnegie Mellon

Loop Unrolling

• Perform 2x more useful work per iteration

• Reduce loop overhead (comp, jmp, index dec, etc.)

• Reduce branch stalls (if the hardware doesn’t have good
branch predictors)

12

long limit = length-1;
long i;
/* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2) {
 x = (x * d[i]) * d[i+1];
}

/* Finish any remaining elements */
for (; i < length; i++) {
 x = x * d[i];
}
*dest = x;

Carnegie Mellon

Loop Unrolling with Separate Accumulators

13

long limit = length-1;
long i;
/* Combine 2 elements at a time */
for (i = 0; i < limit; i+=2) {
 x0 = x0 * d[i];
 x1 = x1 * d[i+1];
}

/* Finish any remaining elements */
for (; i < length; i++) {
 x0 = x0 * d[i];
}
*dest = x0 * x1;

Carnegie Mellon

Separate Accumulators

14

*

*

x1 d1

d3

*

d5

*

d7

*

*

*

x0 d0

d2

*

d4

*

d6

 x0 = x0 * d[i];
 x1 = x1 * d[i+1];

• What changed:

• Two independent “streams” of

operations
• Reduce data dependency: good for

pipelining.

Carnegie Mellon

Today: Optimizing Code Transformation

• Things that programmer/compilers can do

• Code motion/precomputation

• Strength reduction

• Sharing of common subexpressions

• Exploiting hardware microarchitecture

• Things that compilers can’t do but programmers can do

15

Carnegie Mellon

A Trivial Example

16

float foo(int x, int y)
{
 return pow(x, y) * 100 / log(x) * sqrt(y);
}

Carnegie Mellon

A Trivial Example

• As a programmer, if you know what x and y will be, say 5, you could
direct return the results 23769.8 without having to the computation

16

float foo(int x, int y)
{
 return pow(x, y) * 100 / log(x) * sqrt(y);
}

Carnegie Mellon

A Trivial Example

• As a programmer, if you know what x and y will be, say 5, you could
direct return the results 23769.8 without having to the computation

• Compiler would have no idea

16

float foo(int x, int y)
{
 return pow(x, y) * 100 / log(x) * sqrt(y);
}

Carnegie Mellon

A Trivial Example

• As a programmer, if you know what x and y will be, say 5, you could
direct return the results 23769.8 without having to the computation

• Compiler would have no idea
• Except…Profile-guided optimizations:

16

float foo(int x, int y)
{
 return pow(x, y) * 100 / log(x) * sqrt(y);
}

Carnegie Mellon

A Trivial Example

• As a programmer, if you know what x and y will be, say 5, you could
direct return the results 23769.8 without having to the computation

• Compiler would have no idea
• Except…Profile-guided optimizations:

• Run the code multiple times using some sample inputs, and observe
the values of x and y (statistically).

16

float foo(int x, int y)
{
 return pow(x, y) * 100 / log(x) * sqrt(y);
}

Carnegie Mellon

A Trivial Example

• As a programmer, if you know what x and y will be, say 5, you could
direct return the results 23769.8 without having to the computation

• Compiler would have no idea
• Except…Profile-guided optimizations:

• Run the code multiple times using some sample inputs, and observe
the values of x and y (statistically).

• If let’s say 99% of the time, x = 2 and y = 5, what could the compiler
do then?

16

float foo(int x, int y)
{
 return pow(x, y) * 100 / log(x) * sqrt(y);
}

Carnegie Mellon

A Trivial Example

• As a programmer, if you know what x and y will be, say 5, you could
direct return the results 23769.8 without having to the computation

• Compiler would have no idea
• Except…Profile-guided optimizations:

• Run the code multiple times using some sample inputs, and observe
the values of x and y (statistically).

• If let’s say 99% of the time, x = 2 and y = 5, what could the compiler
do then?

16

float foo(int x, int y)
{
 return pow(x, y) * 100 / log(x) * sqrt(y);
}

float foo(int x, int y)
{
 if (x == 2 && y == 5) return 23769.8;
 else return pow(x, y) * 100 / log(x) * sqrt(y);
}

Carnegie Mellon

A Less Trivial Example: Procedure Calls

• Procedure to Convert String to Lower Case

void lower(char *s)
{
 size_t i;
 for (i = 0; i < strlen(s); i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
}

17

Carnegie Mellon

Calling Strlen

• Strlen performance

• Has to scan the entire length of a string, looking for null character.
• O(N) complexity

• Overall performance

• N calls to strlen
• Overall O(N2) performance

18

size_t strlen(const char *s)
{
 size_t length = 0;
 while (*s != '\0') {
 s++;
 length++;
 }
 return length;
}

Carnegie Mellon

Improving Performance
• Move call to strlen outside of loop

• Since result does not change from one iteration to another

• Form of code motion

19

void lower(char *s)
{
 size_t i;
 size_t len = strlen(s);
 for (i = 0; i < len; i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
}

Carnegie Mellon

Optimization Blocker: Procedure Calls
Why couldn’t compiler move
strlen out of loop?

• Procedure may have side

effects, e.g., alters global
state each time called

• Function may not return
same value for given
arguments

20

void lower(char *s)
{
 size_t i;
 for (i = 0; i < strlen(s); i++)
 if (s[i] >= 'A' && s[i] <= 'Z')
 s[i] -= ('A' - 'a');
}

size_t total_lencount = 0;
size_t strlen(const char *s)
{
 size_t length = 0;
 while (*s != '\0') {
 s++; length++;
 }
 total_lencount += length;
 return length;
}

Carnegie Mellon

Optimization Blocker: Procedure Calls

• Most compilers treat procedure call as a black box

• Assume the worst case, weak optimizations near them
• There are interprocedural optimizations (IPO), but they are expensive
• Sometimes the compiler doesn’t have access to source code of other

functions because they are object files in a library. Link-time optimizations
(LTO) comes into play, but are expensive as well.

• Remedies:

• Use of inline functions

• GCC does this with –O1, but only within single file
• Do your own code motion

21

22

CPU

So far in 252…

PC
Register

File

Memory
Code
Data
Stack

Addresses

Data

InstructionsCondition
CodesALU

•We have been discussing the CPU microarchitecture

• Single Cycle, sequential implementation
• Pipeline implementation
• Resolving data dependency and control dependency

•What about memory?

Carnegie Mellon

Memory in a Modern System

23

CORE 1

L2 C
A

C
H

E 0

SH
A

R
ED

 L3 C
A

C
H

E

D
R

A
M

 IN
TER

FA
C

E

CORE 0

CORE 2 CORE 3
L2 C

A
C

H
E 1

L2 C
A

C
H

E 2

L2 C
A

C
H

E 3

D
R

A
M

 M
odules

DRAM MEMORY
CONTROLLER

Carnegie Mellon

Ideal Memory

• Zero access time (latency)

• Infinite capacity

• Zero cost

• Infinite bandwidth (to support multiple accesses in parallel)

24

Carnegie Mellon

The Problem

• Ideal memory’s requirements oppose each other

25

Carnegie Mellon

The Problem

• Ideal memory’s requirements oppose each other

• Bigger is slower

25

Carnegie Mellon

The Problem

• Ideal memory’s requirements oppose each other

• Bigger is slower
• Bigger à Takes longer to determine the location

25

Carnegie Mellon

The Problem

• Ideal memory’s requirements oppose each other

• Bigger is slower
• Bigger à Takes longer to determine the location

• Faster is more expensive

25

Carnegie Mellon

The Problem

• Ideal memory’s requirements oppose each other

• Bigger is slower
• Bigger à Takes longer to determine the location

• Faster is more expensive
• Memory technology: Flip-flop vs. SRAM vs. DRAM vs. Disk vs.

Tape

25

Carnegie Mellon

The Problem

• Ideal memory’s requirements oppose each other

• Bigger is slower
• Bigger à Takes longer to determine the location

• Faster is more expensive
• Memory technology: Flip-flop vs. SRAM vs. DRAM vs. Disk vs.

Tape

• Higher bandwidth is more expensive

25

Carnegie Mellon

The Problem

• Ideal memory’s requirements oppose each other

• Bigger is slower
• Bigger à Takes longer to determine the location

• Faster is more expensive
• Memory technology: Flip-flop vs. SRAM vs. DRAM vs. Disk vs.

Tape

• Higher bandwidth is more expensive
• Need more banks, more ports, higher frequency, or faster

technology

25

Carnegie Mellon

Memory Technology: D Flip-Flop (DFF)

26

Q+

Q–

R

S

D

C

Data

Clock T
Trigger

• Very fast

• Very expensive to build

• 6 NOT gates (2 transistors / gate)
• 3 AND gates (3 transistors / gate)
• 2 OR gates (3 transistors / gate)
• 27 transistors in total for just one bit!!

Carnegie Mellon

Memory Technology: SRAM

27

Carnegie Mellon

Memory Technology: SRAM

• Static random access memory

• Random access means you can supply an arbitrary address to the

memory and get a value back

• Two cross coupled inverters store a single bit

• Feedback path enables the stored value to persist in the “cell”
• 4 transistors for storage
• 2 transistors for access
• 6 transistors in total per bit

27

Carnegie Mellon

Memory Technology: SRAM

• Static random access memory

• Random access means you can supply an arbitrary address to the

memory and get a value back

• Two cross coupled inverters store a single bit

• Feedback path enables the stored value to persist in the “cell”
• 4 transistors for storage
• 2 transistors for access
• 6 transistors in total per bit

27

1

Carnegie Mellon

Memory Technology: SRAM

• Static random access memory

• Random access means you can supply an arbitrary address to the

memory and get a value back

• Two cross coupled inverters store a single bit

• Feedback path enables the stored value to persist in the “cell”
• 4 transistors for storage
• 2 transistors for access
• 6 transistors in total per bit

27

1 0

Carnegie Mellon

Memory Technology: SRAM

• Static random access memory

• Random access means you can supply an arbitrary address to the

memory and get a value back

• Two cross coupled inverters store a single bit

• Feedback path enables the stored value to persist in the “cell”
• 4 transistors for storage
• 2 transistors for access
• 6 transistors in total per bit

27

1 0

1

Carnegie Mellon

Memory Technology: SRAM

• Static random access memory

• Random access means you can supply an arbitrary address to the

memory and get a value back

• Two cross coupled inverters store a single bit

• Feedback path enables the stored value to persist in the “cell”
• 4 transistors for storage
• 2 transistors for access
• 6 transistors in total per bit

27

row select

bi
tli

ne

_b
itl

in
e1 0

1

Carnegie Mellon

Memory Technology: SRAM

• Static random access memory

• Random access means you can supply an arbitrary address to the

memory and get a value back

• Two cross coupled inverters store a single bit

• Feedback path enables the stored value to persist in the “cell”
• 4 transistors for storage
• 2 transistors for access
• 6 transistors in total per bit

27

row select

bi
tli

ne

_b
itl

in
e1 0

11 0

Carnegie Mellon

SRAM Array

28

word line 0

word line 1

b0 b0 b1 b1 b2 b2 b3 b3

word line 2

word line 3

Column decoder / mux

Ro
w

 d
ec

od
er

Carnegie Mellon

Abstract View of SRAM

29

Address
n

CE (chip enable)

WE (write enable)

k

Content

Carnegie Mellon

Memory Technology: DRAM

• Dynamic random access memory
• Capacitor charge state indicates stored value

• Whether the capacitor is charged or
discharged indicates storage of 1 or 0

• 1 capacitor

30

Carnegie Mellon

Memory Technology: DRAM

• Dynamic random access memory
• Capacitor charge state indicates stored value

• Whether the capacitor is charged or
discharged indicates storage of 1 or 0

• 1 capacitor
• 1 access transistor

• Capacitors will leak!

30

row enable

_b
itl

in
e

Carnegie Mellon

Memory Technology: DRAM

• Dynamic random access memory
• Capacitor charge state indicates stored value

• Whether the capacitor is charged or
discharged indicates storage of 1 or 0

• 1 capacitor
• 1 access transistor

• Capacitors will leak!
• DRAM cell loses charge over time

30

row enable

_b
itl

in
e

Carnegie Mellon

Memory Technology: DRAM

• Dynamic random access memory
• Capacitor charge state indicates stored value

• Whether the capacitor is charged or
discharged indicates storage of 1 or 0

• 1 capacitor
• 1 access transistor

• Capacitors will leak!
• DRAM cell loses charge over time
• DRAM cell needs to be refreshed.

30

row enable

_b
itl

in
e

Carnegie Mellon

Memory Technology: DRAM

• Dynamic random access memory
• Capacitor charge state indicates stored value

• Whether the capacitor is charged or
discharged indicates storage of 1 or 0

• 1 capacitor
• 1 access transistor

• Capacitors will leak!
• DRAM cell loses charge over time
• DRAM cell needs to be refreshed.
• Refresh takes time and power. When

refreshing can’t read the data. A major issue,
lots of research going on to reduce the refresh
overhead.

30

row enable

_b
itl

in
e

Carnegie Mellon

DRAM Cell

31 37

• Capacitor holding value
leaks, eventually you will
lose information (everything
turns to 0)

• How do you maintain the
values in DRAM?

• Refresh periodically
• A major source for power

consumption in DRAM

Carnegie Mellon

DRAM Cell

31 37

• Capacitor holding value
leaks, eventually you will
lose information (everything
turns to 0)

• How do you maintain the
values in DRAM?

• Refresh periodically
• A major source for power

consumption in DRAM

Carnegie Mellon

DRAM Cell

31 37

• Capacitor holding value
leaks, eventually you will
lose information (everything
turns to 0)

• How do you maintain the
values in DRAM?

• Refresh periodically
• A major source for power

consumption in DRAM

Carnegie Mellon

Latch vs. DRAM vs. SRAM

• DFF

• Fastest
• Low density (27 transistors per bit)
• High cost

• SRAM

• Faster access (no capacitor)
• Lower density (6 transistors per bit)
• Higher cost
• No need for refresh
• Manufacturing compatible with logic process (no capacitor)

• DRAM

• Slower access (capacitor)
• Higher density (1 transistor + 1 capacitor per bit)
• Lower cost
• Requires refresh (power, performance, circuitry)
• Manufacturing requires putting capacitor and logic together

32

Carnegie Mellon

Nonvolatile Memories

33

Carnegie Mellon

Nonvolatile Memories

• DFF, DRAM and SRAM are volatile memories

• Lose information if powered off.

33

Carnegie Mellon

Nonvolatile Memories

• DFF, DRAM and SRAM are volatile memories

• Lose information if powered off.

• Nonvolatile memories retain value even if powered off

• Flash (~ 5 years)
• Hard Disk (~ 5 years)
• Tape (~ 15-30 years)
• DNA (centuries)

33

Carnegie Mellon

Nonvolatile Memories

• DFF, DRAM and SRAM are volatile memories

• Lose information if powered off.

• Nonvolatile memories retain value even if powered off

• Flash (~ 5 years)
• Hard Disk (~ 5 years)
• Tape (~ 15-30 years)
• DNA (centuries)

33

Carnegie Mellon

Nonvolatile Memories

• DFF, DRAM and SRAM are volatile memories

• Lose information if powered off.

• Nonvolatile memories retain value even if powered off

• Flash (~ 5 years)
• Hard Disk (~ 5 years)
• Tape (~ 15-30 years)
• DNA (centuries)

• Uses for Nonvolatile Memories

• Firmware (BIOS, controllers for disks, network cards, graphics accelerators,

security subsystems,…)
• Files in Smartphones, mp3 players, tablets, laptops
• Backup

33

Carnegie Mellon

The Problem

• Bigger is slower

• SRAM, 512 Bytes, sub-nanosec
• SRAM, KByte~MByte, ~nanosec
• DRAM, Gigabyte, ~50 nanosec
• Hard Disk, Terabyte, ~10 millisec

• Faster is more expensive (dollars and chip area)

• SRAM, < 10$ per Megabyte
• DRAM, < 1$ per Megabyte
• Hard Disk < 1$ per Gigabyte

• Other technologies have their place as well

• PC-RAM, MRAM, RRAM

34

Carnegie Mellon

We want both fast and large Memory

• But we cannot achieve both with a single level of memory

• Idea: Memory Hierarchy

• Have multiple levels of storage (progressively bigger and slower as the

levels are farther from the processor)
• ensure most of the data the processor needs in the near future is kept

in the fast(er) level(s)

• Question: How do we know what kind of data processors would use in
the near future?

35

Carnegie Mellon

Locality

• Principle of Locality: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

36

Carnegie Mellon

Locality

• Principle of Locality: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

• Temporal locality:
• Recently referenced items are likely  

to be referenced again in the near future

36

Carnegie Mellon

Locality

• Principle of Locality: Programs tend to use data and instructions with
addresses near or equal to those they have used recently

• Temporal locality:
• Recently referenced items are likely  

to be referenced again in the near future

• Spatial locality:
• Items with nearby addresses tend  

to be referenced close together in time

36

Carnegie Mellon

Locality Example

• Data references

• Spatial Locality: Reference array elements in succession (stride-1 reference

pattern)
• Temporal Locality: Reference variable sum each iteration.

• Instruction references

• Spatial Locality: Reference instructions in sequence.
• Temporal Locality: Cycle through loop repeatedly.

37

sum = 0;
for (i = 0; i < n; i++)
 sum += a[i];
return sum;

Carnegie Mellon

Memory Hierarchy

38

fast

small

big but slow

move what you use here

backup

everything

here

With good locality of reference,
memory appears as fast as

and as large as

fa
st
er
	 p
er
	 b
yt
e

ch
ea
pe

r	 p
er
	 b
yt
e

Carnegie Mellon

Memory Hierarchy

38

fast

small

big but slow

move what you use here

backup

everything

here

With good locality of reference,
memory appears as fast as

and as large as

fa
st
er
	 p
er
	 b
yt
e

ch
ea
pe

r	 p
er
	 b
yt
e

Carnegie Mellon

Memory Hierarchy

• Fundamental tradeoff

• Fast memory: small
• Large memory: slow

• Balance latency, cost, size,
bandwidth

39

CPU Main
Memory
(DRAM) RF

(Latch)

Cache
(SRAM)

Hard Disk

Carnegie Mellon

The Bookshelf Analogy

• Book in your hand

• Desk

• Bookshelf

• Boxes at home

• Boxes in library

• Recently-used books tend to stay on desk

• Comp Org. books, books for classes you are currently taking
• Until the desk gets full

• Adjacent books in the shelf needed around the same time

40

Carnegie Mellon

Register	 File	 (DFF)	
32	 words,	 sub-‐nsec	

L1	 cache	 (SRAM)	
~32	 KB,	 ~nsec	

L2	 cache	 (SRAM)	
512	 KB	 ~	 1MB,	 many	 nsec	

L3	 cache	 (SRAM)	
.....	

Main	 memory	 (DRAM),	 	
GB,	 ~100	 nsec	

Hard	 Disk	
100	 GB,	 ~10	 msec

A Modern Memory Hierarchy

41

Carnegie Mellon

This Module (3 Lectures)

• Today: Memory Hierarchy Overview

• Trade-offs between different memory technologies
• Exploiting locality to get the best of all worlds
• SRAM/DRAM Hardware Basics

• Cache

• Memory-oriented Program Optimizations

42

Carnegie Mellon

DRAM Chip Organization

43

cols

rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

addr

data

Supercell
(2, 1)
8 bits

2 bits
/

8 bits
/

Memory
controller

(to/from CPU)

Carnegie Mellon

Reading DRAM Supercell (2,1)
Step 1(a): Row access strobe (RAS) selects row 2.

Step 1(b): Row 2 copied from DRAM array to row buffer.

44

Cols

Rows

0 1 2 3

0

1

2

Internal row buffer

16 x 8 DRAM chip

3

addr

data

2
/

8
/

Memory
controller

Carnegie Mellon

Reading DRAM Supercell (2,1)
Step 1(a): Row access strobe (RAS) selects row 2.

Step 1(b): Row 2 copied from DRAM array to row buffer.

44

Cols

Rows

RAS = 2
0 1 2 3

0

1

2

Internal row buffer

16 x 8 DRAM chip

3

addr

data

2
/

8
/

Memory
controller

Carnegie Mellon

Reading DRAM Supercell (2,1)
Step 1(a): Row access strobe (RAS) selects row 2.

Step 1(b): Row 2 copied from DRAM array to row buffer.

44

Cols

Rows

RAS = 2
0 1 2 3

0

1

2

Internal row buffer

16 x 8 DRAM chip

3

addr

data

2
/

8
/

Memory
controller

Carnegie Mellon

Reading DRAM Supercell (2,1)
Step 1(a): Row access strobe (RAS) selects row 2.

Step 1(b): Row 2 copied from DRAM array to row buffer.

44

Cols

Rows

RAS = 2
0 1 2 3

0

1

2

Internal row buffer

16 x 8 DRAM chip

3

addr

data

2
/

8
/

Memory
controller

Carnegie Mellon

Reading DRAM Supercell (2,1)
Step 1(a): Row access strobe (RAS) selects row 2.

Step 1(b): Row 2 copied from DRAM array to row buffer.

44

Cols

Rows

RAS = 2
0 1 2 3

0

1

2

Internal row buffer

16 x 8 DRAM chip

3

addr

data

2
/

8
/

Memory
controller

Carnegie Mellon

Reading DRAM Supercell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1.

Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually back to

the CPU.

45

Cols

Rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

addr

data

2
/

8
/

Memory
controller

Carnegie Mellon

Reading DRAM Supercell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1.

Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually back to

the CPU.

45

Cols

Rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

CAS = 1

addr

data

2
/

8
/

Memory
controller

Carnegie Mellon

Reading DRAM Supercell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1.

Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually back to

the CPU.

45

Cols

Rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

CAS = 1

addr

data

2
/

8
/

Memory
controller

Carnegie Mellon

Reading DRAM Supercell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1.

Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually back to

the CPU.

45

Cols

Rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

CAS = 1

addr

data

2
/

8
/

Memory
controller

Carnegie Mellon

Reading DRAM Supercell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1.

Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually back to

the CPU.

45

Cols

Rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

CAS = 1

addr

data

2
/

8
/

Memory
controller

supercell
(2,1)

Carnegie Mellon

Reading DRAM Supercell (2,1)
Step 2(a): Column access strobe (CAS) selects column 1.

Step 2(b): Supercell (2,1) copied from buffer to data lines, and eventually back to

the CPU.

45

Cols

Rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

CAS = 1

addr

data

2
/

8
/

Memory
controller

supercell
(2,1)

supercell
(2,1)

To CPU

Carnegie Mellon

Reading DRAM Supercell (2,1)
Step 3: A sense amplifier amplifies and regenerates the bitline and refresh the

cells. A DRAM controller must periodically read each row within the allowed
refresh time (10s of ms) to restore charge.

46

Cols

Rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

addr

data

2
/

8
/

Memory
controller

Carnegie Mellon

Reading DRAM Supercell (2,1)
Step 3: A sense amplifier amplifies and regenerates the bitline and refresh the

cells. A DRAM controller must periodically read each row within the allowed
refresh time (10s of ms) to restore charge.

46

Cols

Rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

addr

data

2
/

8
/

Memory
controller

Carnegie Mellon

Reading DRAM Supercell (2,1)
Step 3: A sense amplifier amplifies and regenerates the bitline and refresh the

cells. A DRAM controller must periodically read each row within the allowed
refresh time (10s of ms) to restore charge.

46

Cols

Rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

addr

data

2
/

8
/

Memory
controller

Carnegie Mellon

Memory Modules

47

: supercell (i,j)

64 MB
memory module
consisting of
eight 8Mx8 DRAMs

Memory
controller

DRAM 7

DRAM 0

Carnegie Mellon

Memory Modules

47

: supercell (i,j)

64 MB
memory module
consisting of
eight 8Mx8 DRAMs

addr (row = i, col = j)

Memory
controller

DRAM 7

DRAM 0

Carnegie Mellon

Memory Modules

47

: supercell (i,j)

64 MB
memory module
consisting of
eight 8Mx8 DRAMs

addr (row = i, col = j)

Memory
controller

DRAM 7

DRAM 0

031 78151623243263 394047485556

64-bit word main memory address A

bits
0-7

bits
8-15

bits
16-23

bits
24-31

bits
32-39

bits
40-47

bits
48-55

bits
56-63

Carnegie Mellon

Memory Modules

47

: supercell (i,j)

64 MB
memory module
consisting of
eight 8Mx8 DRAMs

addr (row = i, col = j)

Memory
controller

DRAM 7

DRAM 0

031 78151623243263 394047485556

64-bit word main memory address A

bits
0-7

bits
8-15

bits
16-23

bits
24-31

bits
32-39

bits
40-47

bits
48-55

bits
56-63

64-bit word

031 78151623243263 394047485556

Carnegie Mellon

Memory Layout Across Two Chips

48

16b

83b address

Carnegie Mellon

Memory Layout Across Two Chips

48

16b

83b address High

8

Low

8

Carnegie Mellon

Memory Layout Across Two Chips

48

16b

83b address High

8

Low

8

Why is unaligned
memory access slow?

Carnegie Mellon

Narrower RAMs Enable Greater Capacity

• Given Constant Total Width (pins)

• Multiple smaller chips are more reliable than one big chip

• Yield rate issue

49

8M x 16

32
M

 x
 4

32
M

 x
 4

32
M

 x
 4

32
M

 x
 4

Carnegie Mellon

Why Split Address into Row and Column?

• +: Reduce the number of address pins

• +: Also allow reading multiple columns within the same row

• -: Send address in two steps, increase latency

50

Cols

Rows

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

addr

data

2
/

8
/

Memory
controller

Carnegie Mellon

Memory Scheduling

51

Cols

Rows
A C

B

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

Carnegie Mellon

Memory Scheduling

• Assume the following memory accesses:
A, B, C

51

Cols

Rows
A C

B

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

Carnegie Mellon

Memory Scheduling

• Assume the following memory accesses:
A, B, C

• Which one is faster?

• A —> B —> C
• A —> C —> B

51

Cols

Rows
A C

B

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

Carnegie Mellon

Memory Scheduling

• Assume the following memory accesses:
A, B, C

• Which one is faster?

• A —> B —> C
• A —> C —> B

• Most common memory scheduling policy:
FR-FCFS

• First-ready, first-come-first-serve
• Prioritize addresses to data that is

already in the row buffer; otherwise first-
come-first-serve

51

Cols

Rows
A C

B

0 1 2 3

0

1

2

3

Internal row buffer

16 x 8 DRAM chip

