
CSC 252: Computer Organization 
           Spring 2019: Lecture 12 

Instructor: Yuhao Zhu


Department of Computer Science

University of Rochester

Action Items: 
• Assignment 3 is due March 1, midnight
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Announcement
• Programming Assignment 3 is due on March 1, midnight

• Mid-term exam: March 7; in class

• Past exam & Problem set: http://www.cs.rochester.edu/courses/

252/spring2019/handouts.html
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3

The Need for Storing Bits
• Assembly programs set architecture (processor) states.


• Register File 
• Status Flags 
• Memory 
• Program Counter

• Every state is essentially some bits that are stored/loaded.
• Think of the program execution as an FSM.
• The hardware must provide mechanisms to load and store bits.
• There are many different ways to store bits. They have trade-offs.
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Build a 1-Bit Storage

4

Q

D

C

Some Logic

•What I would like:

• D is the data I want to store (0 or 1) 
• C is the control signal 

• When C is 1, Q becomes D (i.e., storing the data) 
• When C is 0, Q doesn’t change with D (data stored)
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D-Latch is “Transparent”

• When you want to store d, you have to first set C to 1, and then set d
• There is a propagation delay of the combinational circuit from D to Q+ 

and Q–. So hold C for a while until the signal is fully propagated
• Then set C to 0. Value latched depends on value of D as C goes to 0
• D-latch is transparent when C is 1
• D-latch is “level-triggered” b/c Q changes as the voltage level of C rises.
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Edge-Triggered Latch (Flip-Flop)

• Flip-flop: Only latches data for a 
brief period

9

Q+

Q–

R

S

D

C

Data

Control T
Trigger

C

D

Q+

Time

T

1
0

1

->0
->1->0



Carnegie Mellon

Edge-Triggered Latch (Flip-Flop)

• Flip-flop: Only latches data for a 
brief period

• Value latched depends on data 
as C rises (i.e., 0–>1); usually 
called at the rising edge of C
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Edge-Triggered Latch (Flip-Flop)

• Flip-flop: Only latches data for a 
brief period

• Value latched depends on data 
as C rises (i.e., 0–>1); usually 
called at the rising edge of C

•Output remains stable at all 
other times
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Registers

• Stores several bits of data

• Collection of edge-triggered latches (D Flip-flops)

• Loads input on rising edge of the C signal
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Register Operation

• Stores data bits

• For most of time acts as barrier between input and output

• As C rises, loads input

• So you’d better compute the input before the C signal rises if you want 

to store the input data to the register
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Register Operation

• Stores data bits

• For most of time acts as barrier between input and output

• As C rises, loads input

• So you’d better compute the input before the C signal rises if you want 

to store the input data to the register

11

State = x

Output = xInput = y
x

C Rises
State = y

Output = y
y

C Output continuously produces 
y after the rising edge unless 
you cut off power.
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Clock Signal

• Cycle time of a clock signal: the time duration between two rising edges.
• Frequency of a clock signal: how many rising (falling) edges in 1 second.
• 1 GHz CPU means the clock frequency is 1 GHz

• The cycle time is 1/10^9 = 1 ns
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Clock

x0 x1 x2 x3 x4 x5In

x0 x1 x2 x3 x4 x5Out

Cycle time
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Register File

14

• A register file consists of a set of registers that you can individual read 
from and write to.

• To read: give a register file ID, and read the stored value out
• To write: give a register file ID, a new value, overwrite the old value
• How do we build a register file out of individual registers??
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• This implementation can read 1 register and write 1 register at 
the same time: 1 read port and 1 write port
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• This register file has 2 read ports and 1 write 
port. How many ports do we actually need?
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• How does the processor execute addq %rax,%rsi 
• The binary encoding is 60 06
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• When the rising edge of the clock arrives, the RF/PC/Flags will be written.

• So the following has to be ready: newData, nPC, which means Logic1, Logic2, 

Logic3, and Logic4 has to finish.
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