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Announcement
• Programming Assignment 3 is out


• Due on March 1, midnight

2

due

Today
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Y86 Instruction Encoding

3

0 1 2 3 4 5 6 7 8 9Byte

pushq rA A 0 rA F

jXX Dest 7 fn

popq rA B 0 rA F

call Dest 8 0

V

D

D

Dest

Dest

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB

rmmovq rA, D(rB) 4 0 rA rB

mrmovq D(rB), rA 5 0 rA rB

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0
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How Does An Assembler Work?

4
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How Does An Assembler Work?

4

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx 

call <foo>

0x100
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How Does An Assembler Work?
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rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx 

call <foo>

0x100

jXX Dest 7 fn

call Dest 8 0

D

Dest

rmmovq rA, D(rB) 4 0 rA rB

OPq rA, rB 6 fn rA rB
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How Does An Assembler Work?

4

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx 

call <foo>

0x100 40 64 1c 04 00 00 00 00 00 00

jXX Dest 7 fn

call Dest 8 0

D

Dest

rmmovq rA, D(rB) 4 0 rA rB

OPq rA, rB 6 fn rA rB
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How Does An Assembler Work?

4

90

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx 

call <foo>

0x100 40 64 1c 04 00 00 00 00 00 00

jXX Dest 7 fn

call Dest 8 0

D

Dest

rmmovq rA, D(rB) 4 0 rA rB

OPq rA, rB 6 fn rA rB
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How Does An Assembler Work?

4

90

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx 

call <foo>

0x100

60 06

40 64 1c 04 00 00 00 00 00 00

jXX Dest 7 fn

call Dest 8 0

D

Dest

rmmovq rA, D(rB) 4 0 rA rB

OPq rA, rB 6 fn rA rB
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How Does An Assembler Work?

4

90

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx 

call <foo>

0x100

60 06

80 06 00 01 00 00 00 00 00 00

40 64 1c 04 00 00 00 00 00 00

jXX Dest 7 fn

call Dest 8 0

D

Dest

rmmovq rA, D(rB) 4 0 rA rB

OPq rA, rB 6 fn rA rB



Carnegie Mellon

How Does An Assembler Work?

4

90

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx 

call <foo>

0x100

60 06

80 06 00 01 00 00 00 00 00 00

70 ????????

40 64 1c 04 00 00 00 00 00 00

jXX Dest 7 fn

call Dest 8 0

D

Dest

rmmovq rA, D(rB) 4 0 rA rB

OPq rA, rB 6 fn rA rB
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How Does An Assembler Work?

4

30 f2 cd ab 00 00 00 00 00 00

90

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx 

call <foo>

0x100

60 06

80 06 00 01 00 00 00 00 00 00

70 ????????

40 64 1c 04 00 00 00 00 00 00

jXX Dest 7 fn

call Dest 8 0

D

Dest

rmmovq rA, D(rB) 4 0 rA rB

OPq rA, rB 6 fn rA rB
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How Does An Assembler Work?

4

30 f2 cd ab 00 00 00 00 00 00

90

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx 

call <foo>

0x100

60 06

80 06 00 01 00 00 00 00 00 00

0x100 + the 
lengths of all 
instructions 
in-between

70 ????????

40 64 1c 04 00 00 00 00 00 00

jXX Dest 7 fn

call Dest 8 0

D

Dest

rmmovq rA, D(rB) 4 0 rA rB

OPq rA, rB 6 fn rA rB
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How Does An Assembler Work?

4

30 f2 cd ab 00 00 00 00 00 00

90

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx 

call <foo>

0x100

60 06

80 06 00 01 00 00 00 00 00 00

0x200

0x100 + the 
lengths of all 
instructions 
in-between

70 ????????

40 64 1c 04 00 00 00 00 00 00

jXX Dest 7 fn

call Dest 8 0

D

Dest

rmmovq rA, D(rB) 4 0 rA rB

OPq rA, rB 6 fn rA rB
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How Does An Assembler Work?

4

30 f2 cd ab 00 00 00 00 00 00

90

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx 

call <foo>

0x100

60 06

80 06 00 01 00 00 00 00 00 00

0x200

0x100 + the 
lengths of all 
instructions 
in-between

70 ????????

40 64 1c 04 00 00 00 00 00 00

00 02 00 00 00 00 00 00

jXX Dest 7 fn

call Dest 8 0

D

Dest

rmmovq rA, D(rB) 4 0 rA rB

OPq rA, rB 6 fn rA rB
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How Does An Assembler Work?
• The assembler is a program that translates assembly code to binary code

• The OS tells the assembler the start address of the code (sort of…)

• Translate the assembly program line by line

• Need to build a “label map” that maps each label to its address

5

30 f2 cd ab 00 00 00 00 00 00

90

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx 

call <foo>

0x100

60 06

80 06 00 01 00 00 00 00 00 00

0x200

0x100 + the 
lengths of all 
instructions 
in-between

70 ????????

40 64 1c 04 00 00 00 00 00 00

00 02 00 00 00 00 00 00
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How Does An Assembler Work?
• What if the ISA encoding uses relative address for jump and call?

6

30 f2 cd ab 00 00 00 00 00 00

90

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx 

call <foo>

0x100

60 06

80 06 00 01 00 00 00 00 00 00

0x200

70 00 02 00 00 00 00 00 00

40 64 1c 04 00 00 00 00 00 00

0x185

0x180
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How Does An Assembler Work?
• What if the ISA encoding uses relative address for jump and call?
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30 f2 cd ab 00 00 00 00 00 00

90

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx 

call <foo>

0x100

60 06

80 06 00 01 00 00 00 00 00 00

0x200

70 00 02 00 00 00 00 00 00

40 64 1c 04 00 00 00 00 00 00

0x185

0x180

relative addr: 
-0x80
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How Does An Assembler Work?
• What if the ISA encoding uses relative address for jump and call?
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30 f2 cd ab 00 00 00 00 00 00

90

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx 

call <foo>

0x100

60 06

80 06 00 01 00 00 00 00 00 00

0x200

70 00 02 00 00 00 00 00 00

40 64 1c 04 00 00 00 00 00 00

0x185

0x180

relative addr: 
-0x80

00 00 00 11 11 11 11 11
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How Does An Assembler Work?
• What if the ISA encoding uses relative address for jump and call?
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30 f2 cd ab 00 00 00 00 00 00

90

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx 

call <foo>

0x100

60 06

80 06 00 01 00 00 00 00 00 00

0x200

70 00 02 00 00 00 00 00 00

40 64 1c 04 00 00 00 00 00 00

0x185

0x180

relative addr: 
-0x80

0x7B

00 00 00 11 11 11 11 11
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How Does An Assembler Work?
• What if the ISA encoding uses relative address for jump and call?
• If we use relative address, the exact start address of the code 

doesn’t matter. Why?

6
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How Does An Assembler Work?
• What if the ISA encoding uses relative address for jump and call?
• If we use relative address, the exact start address of the code 

doesn’t matter. Why?
• This code is called Position-Independent Code (PIC)

6

30 f2 cd ab 00 00 00 00 00 00

90

rmmovq %rsi,0x41c(%rsp)

addq %rax,%rsi

jmp .L0

ret

<foo>

… …

… …

.L0 irmovq $0xabcd, %rdx 

call <foo>

0x100

60 06

80 06 00 01 00 00 00 00 00 00

0x200

70 00 02 00 00 00 00 00 00

40 64 1c 04 00 00 00 00 00 00

7B 00 00 00 00 00 00 000x185

0x180

relative addr: 
-0x80

0x7B

00 00 00 11 11 11 11 11
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Today: Circuits Basics
• Transistors

• Circuits for computations

• Circuits for storing data
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8

Basic Logic Gates

A | B ~(A | B)

A & B ~(A & B)



Carnegie Mellon

8

Basic Logic Gates

A | B ~(A | B)

A & B ~(A & B)

Think of them as LEGOs.
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Computing with Logic Gates

• Outputs are Boolean functions of inputs

• Respond continuously to changes in inputs with some small delay

• Different gates have different delays (b/c different transistor implementations)

9

a
b out

a
b out a out

out = a && b out = a || b out = !a

And Or Not

Voltage

Time

a

b
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Computing with Logic Gates

• Outputs are Boolean functions of inputs

• Respond continuously to changes in inputs with some small delay

• Different gates have different delays (b/c different transistor implementations)

9

a
b out

a
b out a out

out = a && b out = a || b out = !a

And Or Not

Voltage

Time

a

b
a && b
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Computing with Logic Gates

• Outputs are Boolean functions of inputs

• Respond continuously to changes in inputs with some small delay

• Different gates have different delays (b/c different transistor implementations)

9

a
b out

a
b out a out

out = a && b out = a || b out = !a

And Or Not

Voltage

Time

a

b
a && b

Rising Delay
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Computing with Logic Gates

• Outputs are Boolean functions of inputs

• Respond continuously to changes in inputs with some small delay

• Different gates have different delays (b/c different transistor implementations)

9

a
b out

a
b out a out

out = a && b out = a || b out = !a

And Or Not

Voltage

Time

a

b
a && b

Rising Delay Falling Delay



Carnegie Mellon

Combinational Circuits

• A Network of Logic Gates

• Continuously responds to changes on primary inputs 
• Primary outputs become (after some delay) Boolean functions of 

primary inputs

10

Primary
Inputs

Primary
Outputs
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Bit Equality

11

bool eq = (a&&b)||(!a&&!b)
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bool eq = (a&&b)||(!a&&!b)
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bool eq = (a&&b)||(!a&&!b)
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Bit Equality
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a

b

eq

bool eq = (a&&b)||(!a&&!b)
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Bit Equality

11

Bit equal
a

b

eq

bool eq = (a&&b)||(!a&&!b)
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Bit Equality

• Hardware Control Language (HCL)

11

Bit equal
a

b

eq

bool eq = (a&&b)||(!a&&!b)HCL Expression
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Bit Equality

• Hardware Control Language (HCL)
• Hardware designers use HCL to describe the hardware, and a special 

compiler (called synthesis tool) generates the gate-level implementation 
of the described function. The process is called logic synthesis.

11

Bit equal
a

b

eq

bool eq = (a&&b)||(!a&&!b)HCL Expression
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Bit Equality

• Hardware Control Language (HCL)
• Hardware designers use HCL to describe the hardware, and a special 

compiler (called synthesis tool) generates the gate-level implementation 
of the described function. The process is called logic synthesis.

• Real-world examples: Verilog, VHDL (they are usually called hardware 
description language, or HDL; HCL is a name the textbook authors came 
up to confuse you.)

11

Bit equal
a

b

eq

bool eq = (a&&b)||(!a&&!b)HCL Expression
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Delay of Bit Equal Circuit

• What’s the delay of this bit equal circuit?

• Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3, 

and 2-input OR takes 4.7

12

Bit equal
a

b

eq
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Delay of Bit Equal Circuit

• What’s the delay of this bit equal circuit?

• Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3, 

and 2-input OR takes 4.7

12

Bit equal
a

b

eq1

4.3

4.7
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Delay of Bit Equal Circuit

• What’s the delay of this bit equal circuit?

• Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3, 

and 2-input OR takes 4.7
• The delay of a circuit is determined by its “critical path”


• The path between an input and the output that the maximum delay 
• Estimating the critical path delay is called static timing analysis

12

Bit equal
a

b

eq1

4.3

4.7
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Delay of Bit Equal Circuit

• What’s the delay of this bit equal circuit?

• Assuming 1-input NOT takes 1 unit of time, 2-input AND takes 4.3, 

and 2-input OR takes 4.7
• The delay of a circuit is determined by its “critical path”


• The path between an input and the output that the maximum delay 
• Estimating the critical path delay is called static timing analysis

12

Bit equal
a

b

eq1

4.3

4.7

Critical Path
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64-bit Equality

13

=
B

A

Eq

bool Eq = (A == B)

HCL Representation
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64-bit Equality

13

b63
Bit equal

a63

eq63

b62
Bit equal

a62

eq62

b1
Bit equal

a1

eq1

b0
Bit equal

a0

eq0

Eq

=
B

A

Eq

bool Eq = (A == B)

HCL Representation
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Bit-Level Multiplexor (MUX)
• Control signal s

• Data signals A and B

• Output A when s=1, B when s=0

14

s

B

A
OutMUX
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Bit-Level Multiplexor (MUX)
• Control signal s

• Data signals A and B

• Output A when s=1, B when s=0

14

bool out = (s&&a)||(!s&&b)

HCL Expression

s

B

A
OutMUX
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Bit-Level Multiplexor (MUX)
• Control signal s

• Data signals A and B

• Output A when s=1, B when s=0

14

bool out = (s&&a)||(!s&&b)

HCL Expression

s

b

a

out

Bit MUX

s

B

A
OutMUX
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4-Input Multiplexor
• Control signal s; Data signals A, B, C, and D

• Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

15
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4-Input Multiplexor
• Control signal s; Data signals A, B, C, and D

• Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

15

s[0]

A

C

Bit MUX
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4-Input Multiplexor
• Control signal s; Data signals A, B, C, and D

• Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

15

s[0]

A

C

Bit MUX

s[0]

B

D

Bit MUX out

s[1] Bit MUX
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4-Input Multiplexor
• Control signal s; Data signals A, B, C, and D

• Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

15

s[0]

A

C

Bit MUX

s[0]

B

D

Bit MUX out

s[1] Bit MUX

What’s the latency of 
this implementation?

1

4.7
4.3
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4-Input Multiplexor
• Control signal s; Data signals A, B, C, and D

• Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

• What’s the latency of this implementation?

• Assume 3-input AND takes 4.7 units of time and 4-input OR takes 6

16

Truth Table

s[1] s[0]
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4-Input Multiplexor
• Control signal s; Data signals A, B, C, and D

• Output: A when s = 00, B when s = 01, C when s = 10, D when s = 11

• What’s the latency of this implementation?

• Assume 3-input AND takes 4.7 units of time and 4-input OR takes 6

16

bool out = ((!s[0]&&!s[1]&&A) || 
           (s[0]&&!s[1]&&B) || 
           (!s[0]&&s[1]&&C) || 

        (s[0]&&s[1]&&D))

HCL Expression

Truth Table

s[1] s[0]
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Logic Design and VLSI
• The number of inputs of a gate (fan-in) and the number of outputs of a 

gate (fan-out) will affect the gate delay.

17
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• The logic synthesis tool will automatically generate the “best” gate-level 

implementation.
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gate (fan-out) will affect the gate delay.
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implementation.
• Think of logic gates as LEGOs, using which you/synthesis tool generate 

the gate level circuit design for complex functionalities.
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implementation.
• Think of logic gates as LEGOs, using which you/synthesis tool generate 

the gate level circuit design for complex functionalities.
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to implement a digital design.
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Logic Design and VLSI
• The number of inputs of a gate (fan-in) and the number of outputs of a 

gate (fan-out) will affect the gate delay.
• The logic synthesis tool will automatically generate the “best” gate-level 

implementation.
• Think of logic gates as LEGOs, using which you/synthesis tool generate 

the gate level circuit design for complex functionalities.
• A standard cell library is a collection of well defined and appropriately 

characterized logic gates (delay, operating voltage, etc.) that can be used 
to implement a digital design.

• Take a Logic Design or Very Large Scale Integrated-Circuit (VLSI) course 
if you want to know more about circuit design.


• Logic design uses the gate-level abstractions 
• VLSI tells you how the gates are implemented at transistor-level
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Logic Design and VLSI
• The number of inputs of a gate (fan-in) and the number of outputs of a 

gate (fan-out) will affect the gate delay.
• The logic synthesis tool will automatically generate the “best” gate-level 

implementation.
• Think of logic gates as LEGOs, using which you/synthesis tool generate 

the gate level circuit design for complex functionalities.
• A standard cell library is a collection of well defined and appropriately 

characterized logic gates (delay, operating voltage, etc.) that can be used 
to implement a digital design.

• Take a Logic Design or Very Large Scale Integrated-Circuit (VLSI) course 
if you want to know more about circuit design.


• Logic design uses the gate-level abstractions 
• VLSI tells you how the gates are implemented at transistor-level

• CMOS VLSI Design: A Circuits and Systems Perspective is a good 
reference

17
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Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0
0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1
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Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0
0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

S = (~A & ~B & Cin)
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Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0
0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

S = (~A & ~B & Cin)
        | (~A & B & ~Cin)
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Full (1-bit) Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out. A B Cin S Cou

t

0 0 0 0 0
0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

S = (~A & ~B & Cin)
        | (~A & B & ~Cin)

        | (A & ~B & ~Cin)

        | (A &  B &  Cin)

Cou = (~A & B & Cin)

        | (A & ~B & Cin)

        | (A & B & ~Cin)
        | (A &  B &  Cin)



Carnegie Mellon

19

1-bit Full Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)

        | (A & ~B & Cin)
        | (A & B & ~Cin)

        | (A &  B &  Cin)



Carnegie Mellon

19

1-bit Full Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)

        | (A & ~B & Cin)
        | (A & B & ~Cin)

        | (A &  B &  Cin)

AND Gates

OR Gates



Carnegie Mellon

19

1-bit Full Adder
Add two bits and carry-in, 
produce one-bit sum and carry-out.

Cou = (~A & B & Cin)

        | (A & ~B & Cin)
        | (A & B & ~Cin)

        | (A &  B &  Cin)

AND Gates

OR Gates



Carnegie Mellon

20

Four-bit Adder



Carnegie Mellon

20

Four-bit Adder

• Ripple-carry Adder

• Simple, but performance linear to bit width



Carnegie Mellon

20

Four-bit Adder

• Ripple-carry Adder

• Simple, but performance linear to bit width

• Carry look-ahead adder (CLA)

• Generate all carriers simultaneously
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Arithmetic Logic Unit
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A
L
U

Y

X

Result  of some computation 
between X and Y

s

A

B

• An ALU performs multiple kinds of computations.

• The actual computation depends on the selection signal s.

• Also sets the condition codes (status flags)

• For instance:


• X + Y when s == 00

• X - Y when s == 01

• X & Y when s == 10

• X ^ Y when s == 11


• How can this ALU be implemented?
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Arithmetic Logic Unit

• Implement 4 different circuits, one for each operation.

• Then use a MUX to select the results
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OF
ZF
CF

OF
ZF
CF

OF
ZF
CF

OF
ZF
CF

+
Y

X

X + Y

Y

X

X - Y

Y

X

X & Y

Y

X

X ^ Y

A

B

A

B

A

B

A

B

- & ^

MUXs

Out
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Today: Circuits Basics
• Transistors

• Circuits for computations

• Circuits for storing data
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The Need for Storing Bits
• Assembly programs set architecture (processor) states.


• Register File 
• Status Flags 
• Memory 
• Program Counter

• Every state is essentially some bits that are stored/loaded.
• Think of the program execution as an FSM.
• The hardware must provide mechanisms to load and store bits.
• There are many different ways to store bits. They have trade-offs.
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Build a 1-Bit Storage
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Q

D

C

Some Logic

•What I would like:

• D is the data I want to store (0 or 1) 
• C is the control signal 

• When C is 1, Q becomes D (i.e., storing the data) 
• When C is 0, Q doesn’t change with D (data stored)
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Bistable Element

Q+

Q–

q

!q

q = 0 or 1
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Bitstable Element
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Bistable Element

Q+

Q–

q

!q

q = 0 or 1

Vin V1

V2

Vin = V2

1
0

1

Q+ continuously outputs q.
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R-S Latch
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D-Latch is “Transparent”

• When you want to store d, you have to first set C to 1, and then set d
• There is a propagation delay of the combinational circuit from D to Q+ 

and Q–. So hold C for a while until the signal is fully propagated
• Then set C to 0. Value latched depends on value of D as C goes to 0
• D-latch is transparent when C is 1
• D-latch is “level-triggered” b/c Q changes as the voltage level of C rises.
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Edge-Triggered Latch (Flip-Flop)

• Flip-flop: Only latches data for a 
brief period

• Value latched depends on data 
as C rises (i.e., 0–>1); usually 
called at the rising edge of C

•Output remains stable at all 
other times
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