
CSC 252: Computer Organization 
 Spring 2019: Lecture 10 

Instructor: Yuhao Zhu

Department of Computer Science

University of Rochester

Action Items:
• Trivia 3 was just due
• Assignment 3 is due March 1, midnight

Carnegie Mellon

Announcement
• Programming Assignment 3 is out

• Due on March 1, midnight

2

due

Today

Carnegie Mellon

3

So far in 252…

C Program

Assembly
Program

Processor

Microarchitecture

Circuits

Instruction Set Architecture

Carnegie Mellon

3

So far in 252…

ret, call
movq, addq
jmp, jne

C Program

Assembly
Program

Processor

Microarchitecture

Circuits

Instruction Set Architecture

Carnegie Mellon

3

So far in 252…

ret, call
movq, addq
jmp, jne

movq %rsi, %rax
imulq %rdx, %rax
jmp .done

C Program

Assembly
Program

Processor

Microarchitecture

Circuits

Instruction Set Architecture

Carnegie Mellon

3

So far in 252…
int, float
if, else
+, -, >>

ret, call
movq, addq
jmp, jne

movq %rsi, %rax
imulq %rdx, %rax
jmp .done

C Program

Assembly
Program

Processor

Microarchitecture

Circuits

Instruction Set Architecture

Carnegie Mellon

3

So far in 252…
int, float
if, else
+, -, >>

ret, call
movq, addq
jmp, jne

movq %rsi, %rax
imulq %rdx, %rax
jmp .done

Logic gates

C Program

Assembly
Program

Processor

Microarchitecture

Circuits

Instruction Set Architecture

Carnegie Mellon

3

So far in 252…
int, float
if, else
+, -, >>

ret, call
movq, addq
jmp, jne

movq %rsi, %rax
imulq %rdx, %rax
jmp .done

Logic gates

Transistors

C Program

Assembly
Program

Processor

Microarchitecture

Circuits

Instruction Set Architecture

Carnegie Mellon

4

So far in 252…
• ISA is the interface between

assembly programs and
microarchitecture

C Program

Assembly
Program

Processor

Microarchitecture

Circuits

Instruction Set Architecture

Carnegie Mellon

4

So far in 252…
• ISA is the interface between

assembly programs and
microarchitecture

• Assembly view:

C Program

Assembly
Program

Processor

Microarchitecture

Circuits

Instruction Set Architecture

Carnegie Mellon

4

So far in 252…
• ISA is the interface between

assembly programs and
microarchitecture

• Assembly view:
• How to program the machine,

based on instructions and
processor states (registers,
memory, condition codes, etc.)?

C Program

Assembly
Program

Processor

Microarchitecture

Circuits

Instruction Set Architecture

Carnegie Mellon

4

So far in 252…
• ISA is the interface between

assembly programs and
microarchitecture

• Assembly view:
• How to program the machine,

based on instructions and
processor states (registers,
memory, condition codes, etc.)?

• Instructions are executed
sequentially.

C Program

Assembly
Program

Processor

Microarchitecture

Circuits

Instruction Set Architecture

Carnegie Mellon

4

So far in 252…
• ISA is the interface between

assembly programs and
microarchitecture

• Assembly view:
• How to program the machine,

based on instructions and
processor states (registers,
memory, condition codes, etc.)?

• Instructions are executed
sequentially.

• Microarchitecture view:

C Program

Assembly
Program

Processor

Microarchitecture

Circuits

Instruction Set Architecture

Carnegie Mellon

4

So far in 252…
• ISA is the interface between

assembly programs and
microarchitecture

• Assembly view:
• How to program the machine,

based on instructions and
processor states (registers,
memory, condition codes, etc.)?

• Instructions are executed
sequentially.

• Microarchitecture view:
• What hardware needs to be built to

run assembly programs?

C Program

Assembly
Program

Processor

Microarchitecture

Circuits

Instruction Set Architecture

Carnegie Mellon

4

So far in 252…
• ISA is the interface between

assembly programs and
microarchitecture

• Assembly view:
• How to program the machine,

based on instructions and
processor states (registers,
memory, condition codes, etc.)?

• Instructions are executed
sequentially.

• Microarchitecture view:
• What hardware needs to be built to

run assembly programs?
• How to run programs as fast

(energy-efficient) as possible?

C Program

Assembly
Program

Processor

Microarchitecture

Circuits

Instruction Set Architecture

Carnegie Mellon

(Simplified) x86 Processor State

• Processor state is what’s visible to assembly programs. Also known as
architecture state.

5

ZF SF OF

RF: Program
registers

CC:
Condition

codes

PC

DMEM: Memory

Stat: Program status

%r8
%r9
%r10
%r11

%r12
%r13
%r14

%rax
%rcx
%rdx
%rbx

%rsp
%rbp
%rsi
%rdi

Carnegie Mellon

(Simplified) x86 Processor State

• Processor state is what’s visible to assembly programs. Also known as
architecture state.

• Program Registers: 15 registers (omit %r15). Each 64 bits

5

ZF SF OF

RF: Program
registers

CC:
Condition

codes

PC

DMEM: Memory

Stat: Program status

%r8
%r9
%r10
%r11

%r12
%r13
%r14

%rax
%rcx
%rdx
%rbx

%rsp
%rbp
%rsi
%rdi

Carnegie Mellon

(Simplified) x86 Processor State

• Processor state is what’s visible to assembly programs. Also known as
architecture state.

• Program Registers: 15 registers (omit %r15). Each 64 bits
• Condition Codes: Single-bit flags set by arithmetic or logical instructions

(ZF, SF, OF)

5

ZF SF OF

RF: Program
registers

CC:
Condition

codes

PC

DMEM: Memory

Stat: Program status

%r8
%r9
%r10
%r11

%r12
%r13
%r14

%rax
%rcx
%rdx
%rbx

%rsp
%rbp
%rsi
%rdi

Carnegie Mellon

(Simplified) x86 Processor State

• Processor state is what’s visible to assembly programs. Also known as
architecture state.

• Program Registers: 15 registers (omit %r15). Each 64 bits
• Condition Codes: Single-bit flags set by arithmetic or logical instructions

(ZF, SF, OF)
• Program Counter: Indicates address of next instruction

5

ZF SF OF

RF: Program
registers

CC:
Condition

codes

PC

DMEM: Memory

Stat: Program status

%r8
%r9
%r10
%r11

%r12
%r13
%r14

%rax
%rcx
%rdx
%rbx

%rsp
%rbp
%rsi
%rdi

Carnegie Mellon

(Simplified) x86 Processor State

• Processor state is what’s visible to assembly programs. Also known as
architecture state.

• Program Registers: 15 registers (omit %r15). Each 64 bits
• Condition Codes: Single-bit flags set by arithmetic or logical instructions

(ZF, SF, OF)
• Program Counter: Indicates address of next instruction
• Program Status: Indicates either normal operation or error condition

5

ZF SF OF

RF: Program
registers

CC:
Condition

codes

PC

DMEM: Memory

Stat: Program status

%r8
%r9
%r10
%r11

%r12
%r13
%r14

%rax
%rcx
%rdx
%rbx

%rsp
%rbp
%rsi
%rdi

Carnegie Mellon

(Simplified) x86 Processor State

• Processor state is what’s visible to assembly programs. Also known as
architecture state.

• Program Registers: 15 registers (omit %r15). Each 64 bits
• Condition Codes: Single-bit flags set by arithmetic or logical instructions

(ZF, SF, OF)
• Program Counter: Indicates address of next instruction
• Program Status: Indicates either normal operation or error condition
• Memory

• Byte-addressable storage array
• Words stored in little-endian byte order

5

ZF SF OF

RF: Program
registers

CC:
Condition

codes

PC

DMEM: Memory

Stat: Program status

%r8
%r9
%r10
%r11

%r12
%r13
%r14

%rax
%rcx
%rdx
%rbx

%rsp
%rbp
%rsi
%rdi

Carnegie Mellon

6

Why Have Instructions?
• Why do we need an ISA? Can we directly program the hardware?

Carnegie Mellon

6

Why Have Instructions?
• Why do we need an ISA? Can we directly program the hardware?
• Simplifies interface

• Software knows what is available
• Hardware knows what needs to be implemented

Carnegie Mellon

6

Why Have Instructions?
• Why do we need an ISA? Can we directly program the hardware?
• Simplifies interface

• Software knows what is available
• Hardware knows what needs to be implemented

• Abstraction protects software and hardware

• Software can run on new machines
• Hardware can run old software

Carnegie Mellon

6

Why Have Instructions?
• Why do we need an ISA? Can we directly program the hardware?
• Simplifies interface

• Software knows what is available
• Hardware knows what needs to be implemented

• Abstraction protects software and hardware

• Software can run on new machines
• Hardware can run old software

• Alternatives: Application-Specific Integrated Circuits (ASIC)

• No instructions, (largely) not programmable, fixed-functioned, so

no instruction fetch, decoding, etc.
• So could be implemented extremely efficiently.
• Examples: video/audio codec, (conventional) image signal

processors, (conventional) IP packet router

Carnegie Mellon

7

Characteristics of a Good ISA
• x86 is just one kind of ISA; there are many (ARM, MIPS, etc.)

• Must be unambiguous

• Must be expressive

• Easily describes all the algorithms that will run on this platform
• Instructions are used

• Very complex instructions might not be used often
• (Relatively) easy to compile

• (Relatively) easy to implement well

• Has to be implementable
• And, implementation provides good performance, cost, etc.

• ISAs often highly reliant on microarchitecture and vice-versa

• Some ISAs easy to implement on some microarchitectures
• Some microarchitectures make some instructions easy to implement

Carnegie Mellon

8

Some ISA Design Tradeoffs
• Fewer instructions

• Pros?
• Cons?

Carnegie Mellon

8

Some ISA Design Tradeoffs
• Fewer instructions

• Pros?
• Cons?
• There are 1 instruction ISAs

Carnegie Mellon

8

Some ISA Design Tradeoffs
• Fewer instructions

• Pros?
• Cons?
• There are 1 instruction ISAs

• subjle a, b, c ;

Carnegie Mellon

8

Some ISA Design Tradeoffs
• Fewer instructions

• Pros?
• Cons?
• There are 1 instruction ISAs

• subjle a, b, c ;
• Mem[b] = Mem[b] - Mem[a]; if (Mem[b] ≤ 0) goto c

Carnegie Mellon

8

Some ISA Design Tradeoffs
• Fewer instructions

• Pros?
• Cons?
• There are 1 instruction ISAs

• subjle a, b, c ;
• Mem[b] = Mem[b] - Mem[a]; if (Mem[b] ≤ 0) goto c

• Number of registers per instruction

Carnegie Mellon

8

Some ISA Design Tradeoffs
• Fewer instructions

• Pros?
• Cons?
• There are 1 instruction ISAs

• subjle a, b, c ;
• Mem[b] = Mem[b] - Mem[a]; if (Mem[b] ≤ 0) goto c

• Number of registers per instruction
• Affect number of bits per instruction

Carnegie Mellon

8

Some ISA Design Tradeoffs
• Fewer instructions

• Pros?
• Cons?
• There are 1 instruction ISAs

• subjle a, b, c ;
• Mem[b] = Mem[b] - Mem[a]; if (Mem[b] ≤ 0) goto c

• Number of registers per instruction
• Affect number of bits per instruction
• Affect number of registers the microarchitecture has to implement

Carnegie Mellon

8

Some ISA Design Tradeoffs
• Fewer instructions

• Pros?
• Cons?
• There are 1 instruction ISAs

• subjle a, b, c ;
• Mem[b] = Mem[b] - Mem[a]; if (Mem[b] ≤ 0) goto c

• Number of registers per instruction
• Affect number of bits per instruction
• Affect number of registers the microarchitecture has to implement
• How many?? Zero, One, Two, Three, Four, …

Carnegie Mellon

9

Number of Registers Per Instruction
• To implement C = A + B, how many registers should an ISA provide?

Carnegie Mellon

9

Number of Registers Per Instruction
• To implement C = A + B, how many registers should an ISA provide?
• Zero

• Stack machine (HP calculators): implied addresses
• PUSH AddrA; PUSH AddrB; ADD; POP AddrC

Carnegie Mellon

9

Number of Registers Per Instruction
• To implement C = A + B, how many registers should an ISA provide?
• Zero

• Stack machine (HP calculators): implied addresses
• PUSH AddrA; PUSH AddrB; ADD; POP AddrC

• One (implied)

• Accumulator-based machine
• LOAD AddrA; ADD AddrB; STORE AddrC

Carnegie Mellon

9

Number of Registers Per Instruction
• To implement C = A + B, how many registers should an ISA provide?
• Zero

• Stack machine (HP calculators): implied addresses
• PUSH AddrA; PUSH AddrB; ADD; POP AddrC

• One (implied)

• Accumulator-based machine
• LOAD AddrA; ADD AddrB; STORE AddrC

• Two (same register, src and dest), e.g., x86

• One source is destination
• LOAD R1, AddrA; LOAD R2, AddrB;
• ADD R1, R2; STORE R1, AddrC

Carnegie Mellon

9

Number of Registers Per Instruction
• To implement C = A + B, how many registers should an ISA provide?
• Zero

• Stack machine (HP calculators): implied addresses
• PUSH AddrA; PUSH AddrB; ADD; POP AddrC

• One (implied)

• Accumulator-based machine
• LOAD AddrA; ADD AddrB; STORE AddrC

• Two (same register, src and dest), e.g., x86

• One source is destination
• LOAD R1, AddrA; LOAD R2, AddrB;
• ADD R1, R2; STORE R1, AddrC

• Three

• Current (D = S1 OP S2)
• LOAD R1, AddrA; LOAD R2, AddrB;
• ADD R3, R1, R2; STORE R3, AddrC

Carnegie Mellon

9

Number of Registers Per Instruction
• To implement C = A + B, how many registers should an ISA provide?
• Zero

• Stack machine (HP calculators): implied addresses
• PUSH AddrA; PUSH AddrB; ADD; POP AddrC

• One (implied)

• Accumulator-based machine
• LOAD AddrA; ADD AddrB; STORE AddrC

• Two (same register, src and dest), e.g., x86

• One source is destination
• LOAD R1, AddrA; LOAD R2, AddrB;
• ADD R1, R2; STORE R1, AddrC

• Three

• Current (D = S1 OP S2)
• LOAD R1, AddrA; LOAD R2, AddrB;
• ADD R3, R1, R2; STORE R3, AddrC

• Four and above

Carnegie Mellon

10

Today: Instruction Encoding
• How to translate assembly instructions to binary

• Essentially how an assembler works

• Using the Y86-64 ISA: Simplified version of x86-64

Carnegie Mellon

How are Instructions Encoded in Binary?
• Remember that in a stored program computer, instructions are

stored in memory as bits (just like data)

• Each instruction is fetched (according to the address specified

in the PC), decoded, and executed by the CPU

• The ISA defines the format of an instruction (syntax) and its

meaning (semantics)

• Idea: encode the two major fields, opcode and operand,

separately in bits.

• The OPCODE field says what the instruction does (e.g. ADD)
• The OPERAND field(s) say where to find inputs and outputs

11

Carnegie Mellon

Y86-64 Instructions

12

pushq rA

jXX Dest

popq rA

call Dest

cmovXX rA, rB

irmovq V, rB

rmmovq rA, D(rB)

mrmovq D(rB), rA

OPq rA, rB

ret

nop

halt

Carnegie Mellon

Y86-64 Instructions

12

pushq rA

jXX Dest

popq rA

call Dest

cmovXX rA, rB

irmovq V, rB

rmmovq rA, D(rB)

mrmovq D(rB), rA

OPq rA, rB

ret

nop

halt

jmp

jle

jl

je

jne

jge

jg

Carnegie Mellon

Y86-64 Instructions

12

pushq rA

jXX Dest

popq rA

call Dest

cmovXX rA, rB

irmovq V, rB

rmmovq rA, D(rB)

mrmovq D(rB), rA

OPq rA, rB

ret

nop

halt

addq

subq

andq

xorq

jmp

jle

jl

je

jne

jge

jg

Carnegie Mellon

Y86-64 Instructions

12

pushq rA

jXX Dest

popq rA

call Dest

cmovXX rA, rB

irmovq V, rB

rmmovq rA, D(rB)

mrmovq D(rB), rA

OPq rA, rB

ret

nop

halt

addq

subq

andq

xorq

jmp

jle

jl

je

jne

jge

jg

rrmovq

cmovle

cmovl

cmove

cmovne

cmovge

cmovg

Carnegie Mellon

Y86-64 Instructions

12

pushq rA

jXX Dest

popq rA

call Dest

cmovXX rA, rB

irmovq V, rB

rmmovq rA, D(rB)

mrmovq D(rB), rA

OPq rA, rB

ret

nop

halt

addq

subq

andq

xorq

jmp

jle

jl

je

jne

jge

jg

rrmovq

cmovle

cmovl

cmove

cmovne

cmovge

cmovg

How to encode them in bits?

Carnegie Mellon

Encoding Operands

13

pushq rA

jXX Dest

popq rA

call Dest

cmovXX rA, rB

irmovq V, rB

rmmovq rA, D(rB)

mrmovq D(rB), rA

OPq rA, rB

ret

nop

halt addq

subq

andq

xorq

jmp

jle

jl

je

jne

jge

jg

rrmovq

cmovle

cmovl

cmove

cmovne

cmovge

cmovg

• 27 Instructions, so need 5 bits
for encoding the operand

Carnegie Mellon

Encoding Operands

13

pushq rA

jXX Dest

popq rA

call Dest

cmovXX rA, rB

irmovq V, rB

rmmovq rA, D(rB)

mrmovq D(rB), rA

OPq rA, rB

ret

nop

halt addq

subq

andq

xorq

jmp

jle

jl

je

jne

jge

jg

rrmovq

cmovle

cmovl

cmove

cmovne

cmovge

cmovg

• 27 Instructions, so need 5 bits
for encoding the operand

• Or: group similar instructions,
use one opcode for them, and
then use one more bit to
indicate specific instructions
within a group.

Carnegie Mellon

Encoding Operands

13

pushq rA

jXX Dest

popq rA

call Dest

cmovXX rA, rB

irmovq V, rB

rmmovq rA, D(rB)

mrmovq D(rB), rA

OPq rA, rB

ret

nop

halt addq

subq

andq

xorq

jmp

jle

jl

je

jne

jge

jg

rrmovq

cmovle

cmovl

cmove

cmovne

cmovge

cmovg

• 27 Instructions, so need 5 bits
for encoding the operand

• Or: group similar instructions,
use one opcode for them, and
then use one more bit to
indicate specific instructions
within a group.

• E.g., 12 categories, so 4 bits

Carnegie Mellon

Encoding Operands

13

pushq rA

jXX Dest

popq rA

call Dest

cmovXX rA, rB

irmovq V, rB

rmmovq rA, D(rB)

mrmovq D(rB), rA

OPq rA, rB

ret

nop

halt addq

subq

andq

xorq

jmp

jle

jl

je

jne

jge

jg

rrmovq

cmovle

cmovl

cmove

cmovne

cmovge

cmovg

• 27 Instructions, so need 5 bits
for encoding the operand

• Or: group similar instructions,
use one opcode for them, and
then use one more bit to
indicate specific instructions
within a group.

• E.g., 12 categories, so 4 bits
• There are four instructions within

the OPq category, so additional
2 bits. Similarly, 3 more bits for
jXX and cmovXX, respectively.

Carnegie Mellon

Encoding Operands

13

pushq rA

jXX Dest

popq rA

call Dest

cmovXX rA, rB

irmovq V, rB

rmmovq rA, D(rB)

mrmovq D(rB), rA

OPq rA, rB

ret

nop

halt addq

subq

andq

xorq

jmp

jle

jl

je

jne

jge

jg

rrmovq

cmovle

cmovl

cmove

cmovne

cmovge

cmovg

• 27 Instructions, so need 5 bits
for encoding the operand

• Or: group similar instructions,
use one opcode for them, and
then use one more bit to
indicate specific instructions
within a group.

• E.g., 12 categories, so 4 bits
• There are four instructions within

the OPq category, so additional
2 bits. Similarly, 3 more bits for
jXX and cmovXX, respectively.

• Which one is better???

Carnegie Mellon

Encoding Operands

14

Byte

pushq rA A 0

jXX Dest 7 fn

popq rA B 0

call Dest 8 0

cmovXX rA, rB 2 fn

irmovq V, rB 3 0

rmmovq rA, D(rB) 4 0

mrmovq D(rB), rA 5 0

OPq rA, rB 6 fn

ret 9 0

nop 1 0

halt 0 0

0 1 2 3 4 5 6 7 8 9

• Design decision chosen by the textbook
authors (don’t have to be this way!)

• Use 4 bits to encode the instruction
category

• Another 4 bits to encode the specific
instructions within a category

• So 1 bytes for encoding operand
• Is this better than the alternative of using

5 bits without classifying instructions?
• Trade-offs.

Carnegie Mellon

Encoding Registers
Each register has 4-bit ID

• Same encoding as in x86-64
• Register ID 15 (0xF) indicates “no register”

15

%rax
%rcx
%rdx
%rbx

0
1
2
3

%rsp
%rbp
%rsi
%rdi

4
5
6
7

%r8
%r9
%r10
%r11

8
9
A
B

%r12
%r13
%r14

No Register

C
D
E
F

Carnegie Mellon

Encoding Registers

16

Byte

pushq rA A 0 rA F

jXX Dest 7 fn

popq rA B 0 rA F

call Dest 8 0

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB

rmmovq rA, D(rB) 4 0 rA rB

mrmovq D(rB), rA 5 0 rA rB

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

0 1 2 3 4 5 6 7 8 9

Carnegie Mellon

Instruction Example
Addition Instruction

• Add value in register rA to that in register rB
• Store result in register rB

• Set condition codes based on result
• e.g., addq %rax,%rsi Encoding: 60 06
• Two-byte encoding

• First indicates instruction type
• Second gives source and destination registers

17

addq rA, rB 6 0 rA rB

Carnegie Mellon

Instruction Example
Addition Instruction

• Add value in register rA to that in register rB
• Store result in register rB

• Set condition codes based on result
• e.g., addq %rax,%rsi Encoding: 60 06
• Two-byte encoding

• First indicates instruction type
• Second gives source and destination registers

17

addq rA, rB 6 0 rA rB

Assembly Form

Carnegie Mellon

Instruction Example
Addition Instruction

• Add value in register rA to that in register rB
• Store result in register rB

• Set condition codes based on result
• e.g., addq %rax,%rsi Encoding: 60 06
• Two-byte encoding

• First indicates instruction type
• Second gives source and destination registers

17

addq rA, rB 6 0 rA rB

Encoded Representation

Assembly Form

Carnegie Mellon

Arithmetic and Logical Operations
• Refer to generically as “OPq”
• Encodings differ only by “function

code”
• Low-order 4 bytes in first instruction

word
• Set condition codes as side effect

18

addq rA, rB 6 0 rA rB

subq rA, rB 6 1 rA rB

andq rA, rB 6 2 rA rB

xorq rA, rB 6 3 rA rB

Add

Subtract (rA from rB)

And

Exclusive-Or

Carnegie Mellon

Arithmetic and Logical Operations
• Refer to generically as “OPq”
• Encodings differ only by “function

code”
• Low-order 4 bytes in first instruction

word
• Set condition codes as side effect

18

addq rA, rB 6 0 rA rB

subq rA, rB 6 1 rA rB

andq rA, rB 6 2 rA rB

xorq rA, rB 6 3 rA rB

Add

Subtract (rA from rB)

And

Exclusive-Or

Function Code

Carnegie Mellon

Arithmetic and Logical Operations
• Refer to generically as “OPq”
• Encodings differ only by “function

code”
• Low-order 4 bytes in first instruction

word
• Set condition codes as side effect

18

addq rA, rB 6 0 rA rB

subq rA, rB 6 1 rA rB

andq rA, rB 6 2 rA rB

xorq rA, rB 6 3 rA rB

Add

Subtract (rA from rB)

And

Exclusive-Or

Instruction Code Function Code

Carnegie Mellon

Move Instructions

19

0 1 2 3 4 5 6 7 8 9Byte

pushq rA A 0 rA F

jXX Dest 7 fn

popq rA B 0 rA F

call Dest 8 0

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB

rmmovq rA, D(rB) 4 0 rA rB

mrmovq D(rB), rA 5 0 rA rB

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

Carnegie Mellon

Move Instructions

19

0 1 2 3 4 5 6 7 8 9Byte

pushq rA A 0 rA F

jXX Dest 7 fn

popq rA B 0 rA F

call Dest 8 0

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB

rmmovq rA, D(rB) 4 0 rA rB

mrmovq D(rB), rA 5 0 rA rB

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

irmovq $0xabcd, %rdx

Carnegie Mellon

Move Instructions

19

0 1 2 3 4 5 6 7 8 9Byte

pushq rA A 0 rA F

jXX Dest 7 fn

popq rA B 0 rA F

call Dest 8 0

V

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB

rmmovq rA, D(rB) 4 0 rA rB

mrmovq D(rB), rA 5 0 rA rB

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

Carnegie Mellon

Move Instructions

19

0 1 2 3 4 5 6 7 8 9Byte

pushq rA A 0 rA F

jXX Dest 7 fn

popq rA B 0 rA F

call Dest 8 0

V

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB

rmmovq rA, D(rB) 4 0 rA rB

mrmovq D(rB), rA 5 0 rA rB

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

rmmovq %rsi,0x41c(%rsp)

Carnegie Mellon

Move Instructions

19

0 1 2 3 4 5 6 7 8 9Byte

pushq rA A 0 rA F

jXX Dest 7 fn

popq rA B 0 rA F

call Dest 8 0

V

D

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB

rmmovq rA, D(rB) 4 0 rA rB

mrmovq D(rB), rA 5 0 rA rB

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

Carnegie Mellon

Move Instructions

19

0 1 2 3 4 5 6 7 8 9Byte

pushq rA A 0 rA F

jXX Dest 7 fn

popq rA B 0 rA F

call Dest 8 0

V

D

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB

rmmovq rA, D(rB) 4 0 rA rB

mrmovq D(rB), rA 5 0 rA rB

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

mrmovq -12(%rbp),%rcx

Carnegie Mellon

Move Instructions

19

0 1 2 3 4 5 6 7 8 9Byte

pushq rA A 0 rA F

jXX Dest 7 fn

popq rA B 0 rA F

call Dest 8 0

V

D

D

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB

rmmovq rA, D(rB) 4 0 rA rB

mrmovq D(rB), rA 5 0 rA rB

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

Carnegie Mellon

Move Instructions

19

0 1 2 3 4 5 6 7 8 9Byte

pushq rA A 0 rA F

jXX Dest 7 fn

popq rA B 0 rA F

call Dest 8 0

V

D

D

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB

rmmovq rA, D(rB) 4 0 rA rB

mrmovq D(rB), rA 5 0 rA rB

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

The instruction length limits the
immediate value and displacement.

Carnegie Mellon

Move Instruction Examples

20

irmovq $0xabcd, %rdx

30 82 cd ab 00 00 00 00 00 00

Y86-64

Encoding:

rrmovq %rsp, %rbx

20 43

mrmovq -12(%rbp),%rcx

50 15 f4 ff ff ff ff ff ff ff

rmmovq %rsi,0x41c(%rsp)

40 64 1c 04 00 00 00 00 00 00

Encoding:

Encoding:

Encoding:

Carnegie Mellon

Jump/Call Instructions

21

0 1 2 3 4 5 6 7 8 9Byte

pushq rA A 0 rA F

jXX Dest 7 fn

popq rA B 0 rA F

call Dest 8 0

V

D

D

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB

rmmovq rA, D(rB) 4 0 rA rB

mrmovq D(rB), rA 5 0 rA rB

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

Carnegie Mellon

Jump/Call Instructions

21

0 1 2 3 4 5 6 7 8 9Byte

pushq rA A 0 rA F

jXX Dest 7 fn

popq rA B 0 rA F

call Dest 8 0

V

D

D

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB

rmmovq rA, D(rB) 4 0 rA rB

mrmovq D(rB), rA 5 0 rA rB

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

jle .L4

Carnegie Mellon

Jump/Call Instructions

21

0 1 2 3 4 5 6 7 8 9Byte

pushq rA A 0 rA F

jXX Dest 7 fn

popq rA B 0 rA F

call Dest 8 0

V

D

D

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB

rmmovq rA, D(rB) 4 0 rA rB

mrmovq D(rB), rA 5 0 rA rB

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

jle .L4

The assembly would assume a start
address of the program, and then calculates
the address of each instruction.

Carnegie Mellon

Jump/Call Instructions

21

0 1 2 3 4 5 6 7 8 9Byte

pushq rA A 0 rA F

jXX Dest 7 fn

popq rA B 0 rA F

call Dest 8 0

V

D

D

Dest (essentially the target address)

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB

rmmovq rA, D(rB) 4 0 rA rB

mrmovq D(rB), rA 5 0 rA rB

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0 The assembly would assume a start
address of the program, and then calculates
the address of each instruction.

Carnegie Mellon

Jump/Call Instructions

21

0 1 2 3 4 5 6 7 8 9Byte

pushq rA A 0 rA F

jXX Dest 7 fn

popq rA B 0 rA F

call Dest 8 0

V

D

D

Dest (essentially the target address)

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB

rmmovq rA, D(rB) 4 0 rA rB

mrmovq D(rB), rA 5 0 rA rB

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0 The assembly would assume a start
address of the program, and then calculates
the address of each instruction.

call foo

Carnegie Mellon

Jump/Call Instructions

21

0 1 2 3 4 5 6 7 8 9Byte

pushq rA A 0 rA F

jXX Dest 7 fn

popq rA B 0 rA F

call Dest 8 0

V

D

D

Dest (essentially the target address)

Dest (essentially the start address of the callee)

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB

rmmovq rA, D(rB) 4 0 rA rB

mrmovq D(rB), rA 5 0 rA rB

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0 The assembly would assume a start
address of the program, and then calculates
the address of each instruction.

Carnegie Mellon

Jump Instructions

22

jmp Dest 7 0

Jump Unconditionally
Dest

jle Dest 7 1

Jump When Less or Equal
Dest

jl Dest 7 2

Jump When Less
Dest

je Dest 7 3

Jump When Equal
Dest

jne Dest 7 4

Jump When Not Equal
Dest

jge Dest 7 5

Jump When Greater or Equal
Dest

jg Dest 7 6

Jump When Greater
Dest

Carnegie Mellon

Subroutine Call and Return

• Push address of next instruction onto stack
• Start executing instructions at Dest
• Like x86-64

• Pop value from stack
• Use as address for next instruction
• Like x86-64

23

call Dest 8 0 Dest

ret 9 0

Carnegie Mellon

One More Complication…

24

jXX Dest 7 fn

call Dest 8 0

Dest (essentially the target address)

Dest (essentially the start address of the callee)

jle .L4

call foo

0 1 2 3 4 5 6 7 8 9Byte

Carnegie Mellon

One More Complication…

24

jXX Dest 7 fn

call Dest 8 0

Dest (essentially the target address)

Dest (essentially the start address of the callee)

jle .L4

call foo

0 1 2 3 4 5 6 7 8 9Byte

• The instruction length limits how far you can jump/call functions. What if the jump
target has a very long address that can’t fit in 8 bytes?

Carnegie Mellon

One More Complication…

24

jXX Dest 7 fn

call Dest 8 0

Dest (essentially the target address)

Dest (essentially the start address of the callee)

jle .L4

call foo

0 1 2 3 4 5 6 7 8 9Byte

• The instruction length limits how far you can jump/call functions. What if the jump
target has a very long address that can’t fit in 8 bytes?

• One alternative: use a super long instruction encoding format.

• Simple to encode, but space inefficient (waste bits for jumps to short addr.)

Carnegie Mellon

One More Complication…

24

jXX Dest 7 fn

call Dest 8 0

Dest (essentially the target address)

Dest (essentially the start address of the callee)

jle .L4

call foo

0 1 2 3 4 5 6 7 8 9Byte

• The instruction length limits how far you can jump/call functions. What if the jump
target has a very long address that can’t fit in 8 bytes?

• One alternative: use a super long instruction encoding format.

• Simple to encode, but space inefficient (waste bits for jumps to short addr.)

• Another alternative: have to different encodings for jump/call, one with a short
Dest field for short jumps and the other for long jumps.

Carnegie Mellon

One More Complication…

24

jXX Dest 7 fn

call Dest 8 0

Dest (essentially the target address)

Dest (essentially the start address of the callee)

jle .L4

call foo

0 1 2 3 4 5 6 7 8 9Byte

• The instruction length limits how far you can jump/call functions. What if the jump
target has a very long address that can’t fit in 8 bytes?

• One alternative: use a super long instruction encoding format.

• Simple to encode, but space inefficient (waste bits for jumps to short addr.)

• Another alternative: have to different encodings for jump/call, one with a short
Dest field for short jumps and the other for long jumps.

• Or: encode the relative address, not the absolute address

• E.g., encode (.L4 - current address) in Dest

Carnegie Mellon

One More Complication…

24

jXX Dest 7 fn

call Dest 8 0

Dest (essentially the target address)

Dest (essentially the start address of the callee)

jle .L4

call foo

0 1 2 3 4 5 6 7 8 9Byte

• The instruction length limits how far you can jump/call functions. What if the jump
target has a very long address that can’t fit in 8 bytes?

• One alternative: use a super long instruction encoding format.

• Simple to encode, but space inefficient (waste bits for jumps to short addr.)

• Another alternative: have to different encodings for jump/call, one with a short
Dest field for short jumps and the other for long jumps.

• Or: encode the relative address, not the absolute address

• E.g., encode (.L4 - current address) in Dest

• Better yet, combines the above two ideas: short relative jump and long relative
jump. This is what x86 and many other ISAs do. Elegant design.

Carnegie Mellon

One More Complication…

24

jXX Dest 7 fn

call Dest 8 0

Dest (essentially the target address)

Dest (essentially the start address of the callee)

jle .L4

call foo

0 1 2 3 4 5 6 7 8 9Byte

• The instruction length limits how far you can jump/call functions. What if the jump
target has a very long address that can’t fit in 8 bytes?

• One alternative: use a super long instruction encoding format.

• Simple to encode, but space inefficient (waste bits for jumps to short addr.)

• Another alternative: have to different encodings for jump/call, one with a short
Dest field for short jumps and the other for long jumps.

• Or: encode the relative address, not the absolute address

• E.g., encode (.L4 - current address) in Dest

• Better yet, combines the above two ideas: short relative jump and long relative
jump. This is what x86 and many other ISAs do. Elegant design.

• What if you want to jump really far away from the current instruction?

• Alternatives: indirect jump, use a combination of absolute + relative addresses

(“Far jumps” in x86).

Carnegie Mellon

Miscellaneous Instructions

• Don’t do anything

• Stop executing instructions
• Usually can’t be executed in the user mode, only by the OS
• Encoding ensures that program hitting memory initialized to zero will halt

25

nop 1 0

halt 0 0

Carnegie Mellon

How Does An Assemble Work?
• Translates assembly code to binary-encode

• Reads assembly program line by line, and translates according

to the instruction format defined by an ISA

26

addq rA, rB 6 0 rA rB

Add

• It sometimes needs to make two passes on the assembly
program to resolve forward references

• E.g., forward branch target address

jmp Dest 7 0

Jump Unconditionally
Dest

Carnegie Mellon

27

Variable Length Instructions

Carnegie Mellon

27

Variable Length Instructions

• X86 (and Y86) is a variable length ISA (1 to 15 bytes), where
different instructions have different lengths.

http://www.c-jump.com/CIS77/CPU/x86/lecture.html

Carnegie Mellon

27

Variable Length Instructions

• X86 (and Y86) is a variable length ISA (1 to 15 bytes), where
different instructions have different lengths.

• There are fixed length ISAs: all instructions have the same length

http://www.c-jump.com/CIS77/CPU/x86/lecture.html

Carnegie Mellon

27

Variable Length Instructions

• X86 (and Y86) is a variable length ISA (1 to 15 bytes), where
different instructions have different lengths.

• There are fixed length ISAs: all instructions have the same length
• ARM’s ISA for micro-controllers have a 4-bit ISA. Very Long Instruction Word

(VLIW) ISAs have instructions that are hundreds of bytes long.

http://www.c-jump.com/CIS77/CPU/x86/lecture.html

Carnegie Mellon

27

Variable Length Instructions

• X86 (and Y86) is a variable length ISA (1 to 15 bytes), where
different instructions have different lengths.

• There are fixed length ISAs: all instructions have the same length
• ARM’s ISA for micro-controllers have a 4-bit ISA. Very Long Instruction Word

(VLIW) ISAs have instructions that are hundreds of bytes long.
• Or you can have a combination of both: e.g., 16-bit ISA with 32-bit extensions

(e..g, ARM Thumb-extension).

http://www.c-jump.com/CIS77/CPU/x86/lecture.html

Carnegie Mellon

27

Variable Length Instructions

• X86 (and Y86) is a variable length ISA (1 to 15 bytes), where
different instructions have different lengths.

• There are fixed length ISAs: all instructions have the same length
• ARM’s ISA for micro-controllers have a 4-bit ISA. Very Long Instruction Word

(VLIW) ISAs have instructions that are hundreds of bytes long.
• Or you can have a combination of both: e.g., 16-bit ISA with 32-bit extensions

(e..g, ARM Thumb-extension).

• Advantages of variable length ISAs

http://www.c-jump.com/CIS77/CPU/x86/lecture.html

Carnegie Mellon

27

Variable Length Instructions

• X86 (and Y86) is a variable length ISA (1 to 15 bytes), where
different instructions have different lengths.

• There are fixed length ISAs: all instructions have the same length
• ARM’s ISA for micro-controllers have a 4-bit ISA. Very Long Instruction Word

(VLIW) ISAs have instructions that are hundreds of bytes long.
• Or you can have a combination of both: e.g., 16-bit ISA with 32-bit extensions

(e..g, ARM Thumb-extension).

• Advantages of variable length ISAs
• More compact. Some instructions do not need that many bits. (Actually what’s

the optimal way of encoding instructions in a variable length ISA?)

http://www.c-jump.com/CIS77/CPU/x86/lecture.html

Carnegie Mellon

27

Variable Length Instructions

• X86 (and Y86) is a variable length ISA (1 to 15 bytes), where
different instructions have different lengths.

• There are fixed length ISAs: all instructions have the same length
• ARM’s ISA for micro-controllers have a 4-bit ISA. Very Long Instruction Word

(VLIW) ISAs have instructions that are hundreds of bytes long.
• Or you can have a combination of both: e.g., 16-bit ISA with 32-bit extensions

(e..g, ARM Thumb-extension).

• Advantages of variable length ISAs
• More compact. Some instructions do not need that many bits. (Actually what’s

the optimal way of encoding instructions in a variable length ISA?)
• Can have arbitrary number of instructions: easy to add new inst.

http://www.c-jump.com/CIS77/CPU/x86/lecture.html

Carnegie Mellon

27

Variable Length Instructions

• X86 (and Y86) is a variable length ISA (1 to 15 bytes), where
different instructions have different lengths.

• There are fixed length ISAs: all instructions have the same length
• ARM’s ISA for micro-controllers have a 4-bit ISA. Very Long Instruction Word

(VLIW) ISAs have instructions that are hundreds of bytes long.
• Or you can have a combination of both: e.g., 16-bit ISA with 32-bit extensions

(e..g, ARM Thumb-extension).

• Advantages of variable length ISAs
• More compact. Some instructions do not need that many bits. (Actually what’s

the optimal way of encoding instructions in a variable length ISA?)
• Can have arbitrary number of instructions: easy to add new inst.

•What is the down side?

http://www.c-jump.com/CIS77/CPU/x86/lecture.html

Carnegie Mellon

27

Variable Length Instructions

• X86 (and Y86) is a variable length ISA (1 to 15 bytes), where
different instructions have different lengths.

• There are fixed length ISAs: all instructions have the same length
• ARM’s ISA for micro-controllers have a 4-bit ISA. Very Long Instruction Word

(VLIW) ISAs have instructions that are hundreds of bytes long.
• Or you can have a combination of both: e.g., 16-bit ISA with 32-bit extensions

(e..g, ARM Thumb-extension).

• Advantages of variable length ISAs
• More compact. Some instructions do not need that many bits. (Actually what’s

the optimal way of encoding instructions in a variable length ISA?)
• Can have arbitrary number of instructions: easy to add new inst.

•What is the down side?
• Fetch and decode are harder to implement. More on this later.

http://www.c-jump.com/CIS77/CPU/x86/lecture.html

Carnegie Mellon

27

Variable Length Instructions

• X86 (and Y86) is a variable length ISA (1 to 15 bytes), where
different instructions have different lengths.

• There are fixed length ISAs: all instructions have the same length
• ARM’s ISA for micro-controllers have a 4-bit ISA. Very Long Instruction Word

(VLIW) ISAs have instructions that are hundreds of bytes long.
• Or you can have a combination of both: e.g., 16-bit ISA with 32-bit extensions

(e..g, ARM Thumb-extension).

• Advantages of variable length ISAs
• More compact. Some instructions do not need that many bits. (Actually what’s

the optimal way of encoding instructions in a variable length ISA?)
• Can have arbitrary number of instructions: easy to add new inst.

•What is the down side?
• Fetch and decode are harder to implement. More on this later.

• A good writeup showing some of the complexity involved:  
http://www.c-jump.com/CIS77/CPU/x86/lecture.html

http://www.c-jump.com/CIS77/CPU/x86/lecture.html

Carnegie Mellon

28

So far in 252…
int, float
if, else
+, -, >>

ret, call
movq, addq
jmp, jne

movq %rsi, %rax
imulq %rdx, %rax
jmp .done

Logic gates

Transistors

C Program

Assembly
Program

Processor

Microarchitecture

Circuits

Instruction Set Architecture
and their bit
encodings.

Carnegie Mellon

29

Today: Circuits Basics
• Transistors

• Circuits for computations

• Circuits for storing data

Carnegie Mellon

Overview of Circuit-Level Design
• Fundamental Hardware Requirements

• Communication: How to get values from one place to another. Mainly
three electrical wires.

• Computation: transistors. Combinational logic.
• Storage: transistors. Sequential logic.

•Circuit design is often abstracted as logic design

30

Carnegie Mellon

Digital Signals

• Extract discrete values from continuous voltage signal

• Simplest version: 1-bit signal

• Either high range (1) or low range (0)
• With guard range between them

• Not strongly affected by noise or low quality circuit elements

• Can make circuits simple, small, and fast

31

Voltage

Time

0 1 0

Carnegie Mellon

32

Basic Building Block: Transistors

Carnegie Mellon

32

Basic Building Block: Transistors
MOS = Metal Oxide Semiconductor

• two types: n-type and p-type

Carnegie Mellon

32

Basic Building Block: Transistors
MOS = Metal Oxide Semiconductor

• two types: n-type and p-type
n-type (NMOS)

Terminal #2 must be
connected to GND (0V).

Carnegie Mellon

32

Basic Building Block: Transistors
MOS = Metal Oxide Semiconductor

• two types: n-type and p-type
n-type (NMOS)

• when Gate has positive voltage, 
short circuit between #1 and #2  
(switch closed)

Gate = 1

Terminal #2 must be
connected to GND (0V).

Carnegie Mellon

32

Basic Building Block: Transistors
MOS = Metal Oxide Semiconductor

• two types: n-type and p-type
n-type (NMOS)

• when Gate has positive voltage, 
short circuit between #1 and #2  
(switch closed)

• when Gate has zero voltage,  
open circuit between #1 and #2  
(switch open)

Gate = 0

Gate = 1

Terminal #2 must be
connected to GND (0V).

Carnegie Mellon

33

Basic Building Block: Transistors
p-type is complementary to n-type (PMOS)

• when Gate has positive voltage, 
open circuit between #1 and #2  
(switch open)

• when Gate has zero voltage,  
short circuit between #1 and #2  
(switch closed)

Gate = 1

Gate = 0

Terminal #1 must be
connected to +1.2V

+1.2V

Carnegie Mellon

34

CMOS Circuit
• Complementary MOS

• Uses both n-type and p-type MOS transistors

Carnegie Mellon

35

Inverter (NOT Gate)
+1.2V

+0.0V

Carnegie Mellon

35

Inverter (NOT Gate)
+1.2V

+0.0V

PMOS

Carnegie Mellon

35

Inverter (NOT Gate)
+1.2V

+0.0V

PMOS

NMOS

Carnegie Mellon

35

Inverter (NOT Gate)
+1.2V

+0.0V

+1.2V

Carnegie Mellon

35

Inverter (NOT Gate)
+1.2V

+0.0V

+1.2V

+0.0V

Carnegie Mellon

35

Inverter (NOT Gate)

In Out

0 1

1 0

+1.2V

+0.0V

+1.2V

+0.0V

Carnegie Mellon

36

NOR Gate (NOT + OR)

A B C

0 0 1

0 1 0

1 0 0

1 1 0

Note: Serial structure on top, parallel on bottom.

Carnegie Mellon

37

Basic Logic Gates

A | B ~(A | B)

A & B ~(A & B)

