
CSC 252: Computer Organization 
           Spring 2019: Lecture 10 

Instructor: Yuhao Zhu


Department of Computer Science

University of Rochester

Action Items: 
• Trivia 3 was just due 
• Assignment 3 is due March 1, midnight
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Announcement
• Programming Assignment 3 is out


• Due on March 1, midnight
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So far in 252…
int, float 
if, else 
+, -, >>

ret, call 
movq, addq 
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imulq  %rdx, %rax 
jmp    .done
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So far in 252…
• ISA is the interface between 

assembly programs and 
microarchitecture

• Assembly view:
• How to program the machine, 

based on instructions and 
processor states (registers, 
memory, condition codes, etc.)?

• Instructions are executed 
sequentially.

• Microarchitecture view:
• What hardware needs to be built to 

run assembly programs?
• How to run programs as fast 

(energy-efficient) as possible?
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Assembly 
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Microarchitecture

Circuits

Instruction Set Architecture
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(Simplified) x86 Processor State

• Processor state is what’s visible to assembly programs. Also known as 
architecture state.
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(Simplified) x86 Processor State

• Processor state is what’s visible to assembly programs. Also known as 
architecture state.

• Program Registers: 15 registers (omit %r15).  Each 64 bits
• Condition Codes: Single-bit flags set by arithmetic or logical instructions 

(ZF, SF, OF)
• Program Counter: Indicates address of next instruction
• Program Status: Indicates either normal operation or error condition
• Memory


• Byte-addressable storage array 
• Words stored in little-endian byte order
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Why Have Instructions?
• Why do we need an ISA? Can we directly program the hardware?
• Simplifies interface


• Software knows what is available 
• Hardware knows what needs to be implemented

• Abstraction protects software and hardware

• Software can run on new machines 
• Hardware can run old software

• Alternatives: Application-Specific Integrated Circuits (ASIC)

• No instructions, (largely) not programmable, fixed-functioned, so 

no instruction fetch, decoding, etc. 
• So could be implemented extremely efficiently. 
• Examples: video/audio codec, (conventional) image signal 

processors, (conventional) IP packet router
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Characteristics of a Good ISA
• x86 is just one kind of ISA; there are many (ARM, MIPS, etc.)

• Must be unambiguous

• Must be expressive


• Easily describes all the algorithms that will run on this platform 
• Instructions are used


• Very complex instructions might not be used often 
• (Relatively) easy to compile

• (Relatively) easy to implement well


• Has to be implementable 
• And, implementation provides good performance, cost, etc. 

• ISAs often highly reliant on microarchitecture and vice-versa

• Some ISAs easy to implement on some microarchitectures 
• Some microarchitectures make some instructions easy to implement
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Some ISA Design Tradeoffs
• Fewer instructions 

• Pros?
• Cons?
• There are 1 instruction ISAs

• subjle a, b, c ;
• Mem[b] = Mem[b] - Mem[a]; if (Mem[b] ≤ 0) goto c 

• Number of registers per instruction
• Affect number of bits per instruction
• Affect number of registers the microarchitecture has to implement
• How many?? Zero, One, Two, Three, Four, …
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• LOAD R1, AddrA; LOAD R2, AddrB;  
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• Three
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Number of Registers Per Instruction
• To implement C = A + B, how many registers should an ISA provide?
• Zero


• Stack machine (HP calculators): implied addresses 
• PUSH AddrA; PUSH AddrB; ADD; POP AddrC

• One (implied)

• Accumulator-based machine 
• LOAD AddrA; ADD AddrB; STORE AddrC

• Two (same register, src and dest), e.g., x86

• One source is destination 
• LOAD R1, AddrA; LOAD R2, AddrB;  
• ADD R1, R2; STORE R1, AddrC

• Three

• Current (D = S1 OP S2) 
• LOAD R1, AddrA; LOAD R2, AddrB;  
• ADD R3, R1, R2; STORE R3, AddrC

• Four and above
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Today: Instruction Encoding
• How to translate assembly instructions to binary


• Essentially how an assembler works

• Using the Y86-64 ISA: Simplified version of x86-64



Carnegie Mellon

How are Instructions Encoded in Binary?
• Remember that in a stored program computer, instructions are 

stored in memory as bits (just like data)

• Each instruction is fetched (according to the address specified 

in the PC), decoded, and executed by the CPU

• The ISA defines the format of an instruction (syntax) and its 

meaning (semantics)

• Idea: encode the two major fields, opcode and operand, 

separately in bits.

• The OPCODE field says what the instruction does (e.g. ADD) 
• The OPERAND field(s) say where to find inputs and outputs

11
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jXX Dest
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call Dest

cmovXX rA, rB

irmovq V, rB

rmmovq rA, D(rB)

mrmovq D(rB), rA

OPq rA, rB

ret

nop

halt



Carnegie Mellon

Y86-64 Instructions

12

pushq rA

jXX Dest

popq rA

call Dest

cmovXX rA, rB

irmovq V, rB

rmmovq rA, D(rB)

mrmovq D(rB), rA

OPq rA, rB

ret

nop

halt

jmp

jle

jl

je

jne

jge

jg



Carnegie Mellon

Y86-64 Instructions

12

pushq rA

jXX Dest

popq rA

call Dest

cmovXX rA, rB

irmovq V, rB

rmmovq rA, D(rB)

mrmovq D(rB), rA

OPq rA, rB

ret

nop

halt

addq

subq

andq

xorq

jmp

jle

jl

je

jne

jge

jg



Carnegie Mellon

Y86-64 Instructions

12

pushq rA

jXX Dest

popq rA

call Dest

cmovXX rA, rB

irmovq V, rB

rmmovq rA, D(rB)

mrmovq D(rB), rA

OPq rA, rB

ret

nop

halt

addq

subq

andq

xorq

jmp

jle

jl

je

jne

jge

jg

rrmovq

cmovle

cmovl

cmove

cmovne

cmovge

cmovg



Carnegie Mellon

Y86-64 Instructions

12

pushq rA

jXX Dest

popq rA

call Dest

cmovXX rA, rB

irmovq V, rB

rmmovq rA, D(rB)

mrmovq D(rB), rA

OPq rA, rB

ret

nop

halt

addq

subq

andq

xorq

jmp

jle

jl

je

jne

jge

jg

rrmovq

cmovle

cmovl

cmove

cmovne

cmovge

cmovg

How to encode them in bits?
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pushq rA

jXX Dest

popq rA

call Dest

cmovXX rA, rB

irmovq V, rB

rmmovq rA, D(rB)
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• 27 Instructions, so need 5 bits 
for encoding the operand

• Or: group similar instructions, 
use one opcode for them, and 
then use one more bit to 
indicate specific instructions 
within a group.

• E.g., 12 categories, so 4 bits
• There are four instructions within 

the OPq category, so additional 
2 bits. Similarly, 3 more bits for 
jXX and cmovXX, respectively.

• Which one is better???
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Encoding Operands
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Byte

pushq rA A 0

jXX Dest 7 fn

popq rA B 0

call Dest 8 0

cmovXX rA, rB 2 fn

irmovq V, rB 3 0

rmmovq rA, D(rB) 4 0

mrmovq D(rB), rA 5 0

OPq rA, rB 6 fn

ret 9 0

nop 1 0

halt 0 0

0 1 2 3 4 5 6 7 8 9

• Design decision chosen by the textbook 
authors (don’t have to be this way!)


• Use 4 bits to encode the instruction 
category 

• Another 4 bits to encode the specific 
instructions within a category 

• So 1 bytes for encoding operand 
• Is this better than the alternative of using 

5 bits without classifying instructions? 
• Trade-offs.
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Encoding Registers
Each register has 4-bit ID


• Same encoding as in x86-64 
• Register ID 15 (0xF) indicates “no register”

15

%rax
%rcx
%rdx
%rbx

0
1
2
3

%rsp
%rbp
%rsi
%rdi

4
5
6
7

%r8
%r9
%r10
%r11

8
9
A
B

%r12
%r13
%r14

No Register

C
D
E
F
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Encoding Registers
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Byte

pushq rA A 0 rA F

jXX Dest 7 fn

popq rA B 0 rA F

call Dest 8 0

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB

rmmovq rA, D(rB) 4 0 rA rB

mrmovq D(rB), rA 5 0 rA rB

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

0 1 2 3 4 5 6 7 8 9



Carnegie Mellon

Instruction Example
Addition Instruction


• Add value in register rA to that in register rB 
• Store result in register rB 

• Set condition codes based on result 
• e.g., addq %rax,%rsi Encoding: 60 06 
• Two-byte encoding 

• First indicates instruction type 
• Second gives source and destination registers

17

addq rA, rB 6 0 rA rB
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Instruction Example
Addition Instruction


• Add value in register rA to that in register rB 
• Store result in register rB 

• Set condition codes based on result 
• e.g., addq %rax,%rsi Encoding: 60 06 
• Two-byte encoding 

• First indicates instruction type 
• Second gives source and destination registers

17

addq rA, rB 6 0 rA rB

Encoded Representation

Assembly Form
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Arithmetic and Logical Operations
• Refer to generically as “OPq” 
• Encodings differ only by “function 

code” 
• Low-order 4 bytes in first instruction 

word 
• Set condition codes as side effect

18

addq rA, rB 6 0 rA rB

subq rA, rB 6 1 rA rB

andq rA, rB 6 2 rA rB

xorq rA, rB 6 3 rA rB

Add

Subtract (rA from rB)

And

Exclusive-Or
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Arithmetic and Logical Operations
• Refer to generically as “OPq” 
• Encodings differ only by “function 

code” 
• Low-order 4 bytes in first instruction 

word 
• Set condition codes as side effect

18

addq rA, rB 6 0 rA rB

subq rA, rB 6 1 rA rB

andq rA, rB 6 2 rA rB

xorq rA, rB 6 3 rA rB

Add

Subtract (rA from rB)

And

Exclusive-Or

Instruction Code Function Code
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Move Instructions

19

0 1 2 3 4 5 6 7 8 9Byte

pushq rA A 0 rA F

jXX Dest 7 fn

popq rA B 0 rA F

call Dest 8 0

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB

rmmovq rA, D(rB) 4 0 rA rB

mrmovq D(rB), rA 5 0 rA rB

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0



Carnegie Mellon

Move Instructions

19

0 1 2 3 4 5 6 7 8 9Byte

pushq rA A 0 rA F

jXX Dest 7 fn

popq rA B 0 rA F

call Dest 8 0

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB

rmmovq rA, D(rB) 4 0 rA rB

mrmovq D(rB), rA 5 0 rA rB

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

irmovq $0xabcd, %rdx 



Carnegie Mellon

Move Instructions

19

0 1 2 3 4 5 6 7 8 9Byte

pushq rA A 0 rA F

jXX Dest 7 fn

popq rA B 0 rA F

call Dest 8 0

V

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB

rmmovq rA, D(rB) 4 0 rA rB

mrmovq D(rB), rA 5 0 rA rB

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0



Carnegie Mellon

Move Instructions

19

0 1 2 3 4 5 6 7 8 9Byte

pushq rA A 0 rA F

jXX Dest 7 fn

popq rA B 0 rA F

call Dest 8 0

V

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB

rmmovq rA, D(rB) 4 0 rA rB

mrmovq D(rB), rA 5 0 rA rB

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

rmmovq %rsi,0x41c(%rsp)



Carnegie Mellon

Move Instructions

19

0 1 2 3 4 5 6 7 8 9Byte

pushq rA A 0 rA F

jXX Dest 7 fn

popq rA B 0 rA F

call Dest 8 0

V

D

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB

rmmovq rA, D(rB) 4 0 rA rB

mrmovq D(rB), rA 5 0 rA rB

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0



Carnegie Mellon

Move Instructions

19

0 1 2 3 4 5 6 7 8 9Byte

pushq rA A 0 rA F

jXX Dest 7 fn

popq rA B 0 rA F

call Dest 8 0

V

D

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB

rmmovq rA, D(rB) 4 0 rA rB

mrmovq D(rB), rA 5 0 rA rB

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0

mrmovq -12(%rbp),%rcx



Carnegie Mellon

Move Instructions

19

0 1 2 3 4 5 6 7 8 9Byte

pushq rA A 0 rA F

jXX Dest 7 fn

popq rA B 0 rA F

call Dest 8 0

V

D

D

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB

rmmovq rA, D(rB) 4 0 rA rB

mrmovq D(rB), rA 5 0 rA rB

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0



Carnegie Mellon

Move Instructions
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0 1 2 3 4 5 6 7 8 9Byte

pushq rA A 0 rA F

jXX Dest 7 fn

popq rA B 0 rA F

call Dest 8 0

V

D

D

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB

rmmovq rA, D(rB) 4 0 rA rB
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ret 9 0

nop 1 0

halt 0 0

The instruction length limits the 
immediate value and displacement.
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Move Instruction Examples

20

irmovq $0xabcd, %rdx 

30 82 cd ab 00 00 00 00 00 00

Y86-64

Encoding: 

rrmovq %rsp, %rbx 

20 43

mrmovq -12(%rbp),%rcx

50 15 f4 ff ff ff ff ff ff ff

rmmovq %rsi,0x41c(%rsp)

40 64 1c 04 00 00 00 00 00 00

Encoding: 

Encoding: 

Encoding: 



Carnegie Mellon

Jump/Call Instructions

21
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The assembly would assume a start 
address of the program, and then calculates 
the address of each instruction.
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Jump/Call Instructions
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0 1 2 3 4 5 6 7 8 9Byte

pushq rA A 0 rA F

jXX Dest 7 fn

popq rA B 0 rA F

call Dest 8 0

V

D

D

Dest (essentially the target address)

Dest (essentially the start address of the callee)

cmovXX rA, rB 2 fn rA rB

irmovq V, rB 3 0 F rB

rmmovq rA, D(rB) 4 0 rA rB

mrmovq D(rB), rA 5 0 rA rB

OPq rA, rB 6 fn rA rB

ret 9 0

nop 1 0

halt 0 0 The assembly would assume a start 
address of the program, and then calculates 
the address of each instruction.
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Jump Instructions

22

jmp Dest 7 0

Jump Unconditionally
Dest

jle Dest 7 1

Jump When Less or Equal
Dest

jl Dest 7 2

Jump When Less
Dest

je Dest 7 3

Jump When Equal
Dest

jne Dest 7 4

Jump When Not Equal
Dest

jge Dest 7 5

Jump When Greater or Equal
Dest

jg Dest 7 6

Jump When Greater
Dest
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Subroutine Call and Return

• Push address of next instruction onto stack 
• Start executing instructions at Dest 
• Like x86-64 

• Pop value from stack 
• Use as address for next instruction 
• Like x86-64

23

call Dest 8 0 Dest

ret 9 0
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One More Complication…

24

jXX Dest 7 fn

call Dest 8 0

Dest (essentially the target address)

Dest (essentially the start address of the callee)

jle .L4

call foo

0 1 2 3 4 5 6 7 8 9Byte
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• The instruction length limits how far you can jump/call functions. What if the jump 
target has a very long address that can’t fit in 8 bytes?



Carnegie Mellon

One More Complication…

24

jXX Dest 7 fn

call Dest 8 0

Dest (essentially the target address)

Dest (essentially the start address of the callee)

jle .L4

call foo

0 1 2 3 4 5 6 7 8 9Byte

• The instruction length limits how far you can jump/call functions. What if the jump 
target has a very long address that can’t fit in 8 bytes?

• One alternative: use a super long instruction encoding format.

• Simple to encode, but space inefficient (waste bits for jumps to short addr.)



Carnegie Mellon

One More Complication…

24

jXX Dest 7 fn

call Dest 8 0

Dest (essentially the target address)

Dest (essentially the start address of the callee)

jle .L4

call foo

0 1 2 3 4 5 6 7 8 9Byte

• The instruction length limits how far you can jump/call functions. What if the jump 
target has a very long address that can’t fit in 8 bytes?

• One alternative: use a super long instruction encoding format.

• Simple to encode, but space inefficient (waste bits for jumps to short addr.)

• Another alternative: have to different encodings for jump/call, one with a short 
Dest field for short jumps and the other for long jumps.



Carnegie Mellon

One More Complication…

24

jXX Dest 7 fn

call Dest 8 0

Dest (essentially the target address)

Dest (essentially the start address of the callee)

jle .L4

call foo

0 1 2 3 4 5 6 7 8 9Byte

• The instruction length limits how far you can jump/call functions. What if the jump 
target has a very long address that can’t fit in 8 bytes?

• One alternative: use a super long instruction encoding format.

• Simple to encode, but space inefficient (waste bits for jumps to short addr.)

• Another alternative: have to different encodings for jump/call, one with a short 
Dest field for short jumps and the other for long jumps.

• Or: encode the relative address, not the absolute address

• E.g., encode (.L4 - current address) in Dest



Carnegie Mellon

One More Complication…

24

jXX Dest 7 fn

call Dest 8 0

Dest (essentially the target address)

Dest (essentially the start address of the callee)

jle .L4

call foo

0 1 2 3 4 5 6 7 8 9Byte

• The instruction length limits how far you can jump/call functions. What if the jump 
target has a very long address that can’t fit in 8 bytes?

• One alternative: use a super long instruction encoding format.

• Simple to encode, but space inefficient (waste bits for jumps to short addr.)

• Another alternative: have to different encodings for jump/call, one with a short 
Dest field for short jumps and the other for long jumps.

• Or: encode the relative address, not the absolute address

• E.g., encode (.L4 - current address) in Dest

• Better yet, combines the above two ideas: short relative jump and long relative 
jump. This is what x86 and many other ISAs do. Elegant design.



Carnegie Mellon

One More Complication…

24

jXX Dest 7 fn

call Dest 8 0

Dest (essentially the target address)

Dest (essentially the start address of the callee)

jle .L4

call foo

0 1 2 3 4 5 6 7 8 9Byte

• The instruction length limits how far you can jump/call functions. What if the jump 
target has a very long address that can’t fit in 8 bytes?

• One alternative: use a super long instruction encoding format.

• Simple to encode, but space inefficient (waste bits for jumps to short addr.)

• Another alternative: have to different encodings for jump/call, one with a short 
Dest field for short jumps and the other for long jumps.

• Or: encode the relative address, not the absolute address

• E.g., encode (.L4 - current address) in Dest

• Better yet, combines the above two ideas: short relative jump and long relative 
jump. This is what x86 and many other ISAs do. Elegant design.

• What if you want to jump really far away from the current instruction?

• Alternatives: indirect jump, use a combination of absolute + relative addresses 

(“Far jumps” in x86).
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Miscellaneous Instructions

• Don’t do anything 

• Stop executing instructions 
• Usually can’t be executed in the user mode, only by the OS 
• Encoding ensures that program hitting memory initialized to zero will halt

25

nop 1 0

halt 0 0
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How Does An Assemble Work?
• Translates assembly code to binary-encode

• Reads assembly program line by line, and translates according 

to the instruction format defined by an ISA

26

addq rA, rB 6 0 rA rB

Add

• It sometimes needs to make two passes on the assembly 
program to resolve forward references


• E.g., forward branch target address

jmp Dest 7 0

Jump Unconditionally
Dest
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Variable Length Instructions

• X86 (and Y86) is a variable length ISA (1 to 15 bytes), where 
different instructions have different lengths.

• There are fixed length ISAs: all instructions have the same length
• ARM’s ISA for micro-controllers have a 4-bit ISA. Very Long Instruction Word 

(VLIW) ISAs have instructions that are hundreds of bytes long.
• Or you can have a combination of both: e.g., 16-bit ISA with 32-bit extensions 

(e..g, ARM Thumb-extension).

• Advantages of variable length ISAs
• More compact. Some instructions do not need that many bits. (Actually what’s 

the optimal way of encoding instructions in a variable length ISA?)
• Can have arbitrary number of instructions: easy to add new inst.

•What is the down side?
• Fetch and decode are harder to implement. More on this later.

• A good writeup showing some of the complexity involved:  
http://www.c-jump.com/CIS77/CPU/x86/lecture.html

http://www.c-jump.com/CIS77/CPU/x86/lecture.html
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So far in 252…
int, float 
if, else 
+, -, >>

ret, call 
movq, addq 
jmp, jne

movq   %rsi, %rax 
imulq  %rdx, %rax 
jmp    .done

Logic gates

Transistors

C Program

Assembly 
Program

Processor

Microarchitecture

Circuits

Instruction Set Architecture
and their bit 
encodings.
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Today: Circuits Basics
• Transistors

• Circuits for computations

• Circuits for storing data
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Overview of Circuit-Level Design
• Fundamental Hardware Requirements


• Communication: How to get values from one place to another. Mainly 
three electrical wires. 

• Computation: transistors. Combinational logic. 
• Storage: transistors. Sequential logic. 

•Circuit design is often abstracted as logic design

30
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Digital Signals

• Extract discrete values from continuous voltage signal

• Simplest version: 1-bit signal


• Either high range (1) or low range (0) 
• With guard range between them 

• Not strongly affected by noise or low quality circuit elements

• Can make circuits simple, small, and fast

31

Voltage

Time

0 1 0
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Basic Building Block: Transistors
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Basic Building Block: Transistors
MOS = Metal Oxide Semiconductor

• two types: n-type and p-type
n-type (NMOS)

• when Gate has positive voltage, 
short circuit between #1 and #2  
(switch closed)

• when Gate has zero voltage,  
open circuit between #1 and #2  
(switch open)

Gate = 0

Gate = 1

Terminal #2 must be 
connected to GND (0V).
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Basic Building Block: Transistors
p-type is complementary to n-type (PMOS)


• when Gate has positive voltage, 
open circuit between #1 and #2  
(switch open) 

• when Gate has zero voltage,  
short circuit between #1 and #2  
(switch closed)

Gate = 1

Gate = 0

Terminal #1 must be 
connected to +1.2V

+1.2V
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CMOS Circuit
• Complementary MOS

• Uses both n-type and p-type MOS transistors
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Inverter (NOT Gate)
+1.2V

+0.0V
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Inverter (NOT Gate)

In Out

0 1

1 0

+1.2V

+0.0V

+1.2V

+0.0V
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NOR Gate (NOT + OR)

A B C

0 0 1

0 1 0

1 0 0

1 1 0

Note: Serial structure on top, parallel on bottom.
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Basic Logic Gates

A | B ~(A | B)

A & B ~(A & B)


